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Consumer cameras, especially on smartphones, are popular and effective instruments for
above-water radiometry. The remote sensing reflectance Rrs is measured above the water
surface and used to estimate inherent optical properties and constituent concentrations.
Two smartphone apps, HydroColor and EyeOnWater, are used worldwide by professional
and citizen scientists alike. However, consumer camera data have problems with accuracy
and reproducibility between cameras, with systematic differences of up to 40% in
intercomparisons. These problems stem from the need, until recently, to use JPEG
data. Lossless data, in the RAW format, and calibrations of the spectral and
radiometric response of consumer cameras can now be used to significantly improve
the data quality. Here, we apply these methods to above-water radiometry. The resulting
accuracy in Rrs is around 10% in the red, green, and blue (RGB) bands and 2% in the RGB
band ratios, similar to professional instruments and up to 9 times better than existing
smartphone-based methods. Data from different smartphones are reproducible to within
measurement uncertainties, which are on the percent level. The primary sources of
uncertainty are environmental factors and sensor noise. We conclude that using RAW
data, smartphones and other consumer cameras are complementary to professional
instruments in terms of data quality. We offer practical recommendations for using
consumer cameras in professional and citizen science.
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1 INTRODUCTION

The remote sensing reflectance Rrs(λ) is an apparent optical property that contains a wealth of
information about the substances within the water column (IOCCG, 2008). In above-water
radiometry, Rrs is measured using one or more (spectro)radiometers deployed above the water
surface (Ruddick et al., 2019). The absorption and scattering coefficients and concentrations of
colored dissolved organic matter (CDOM), suspended particulate matter, and prominent
phytoplankton pigments such as chlorophyll-a (chl-a) can be determined from Rrs (Werdell
et al., 2018). Due to spectral range and long-term stability requirements, the equipment
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necessary for accurate measurements of Rrs is often expensive.
High costs limit the uptake and, therefore, impact of these
instruments.

Consumer cameras have long been seen as a low-cost
alternative or complement to professional instruments
(Sunamura and Horikawa, 1978). Work in this direction has
mostly focused on hand-held digital cameras, which measure the
incoming radiance in red-green-blue (RGB) spectral bands
typically spanning the visible range from 390 to 700 nm
(Goddijn-Murphy et al., 2009). Uncrewed aerial vehicles
(UAVs or drones) and webcams have similar optical
properties, often contain the same sensors, and are also
increasingly used in remote sensing (Burggraaff et al., 2019).
Consumer cameras have been used to retrieve CDOM, chl-a, and
suspended mineral concentrations through above-water
radiometry (Goddijn-Murphy et al., 2009; Hoguane et al.,
2012). They are particularly useful for measuring at small
spatial scales, short cadence, and over long time periods (Lim
et al., 2010; Iwaki et al., 2021).

Smartphones are especially effective as low-cost sensing
platforms thanks to their wide availability, cameras, and
functionalities including accelerometers, GPS, and wireless
communications. They are already commonly used in place of
professional sensors in laboratories (Friedrichs et al., 2017;
Hatiboruah et al., 2020). However, what smartphones truly
excel at is providing a platform for citizen science in the field
(Snik et al., 2014; Garcia-Soto et al., 2021). There is a vibrant
ecosystem of applications (apps) using the smartphone camera
for environmental citizen science purposes (Andrachuk et al.,
2019). Some use additional fore-optics to measure
hyperspectrally (Burggraaff et al., 2020; Stuart et al., 2021),
while most use the camera as it is (Busch J. et al., 2016; Leeuw
and Boss, 2018; Gao et al., 2022). Smartphone science apps are
also commonly used for educational purposes and in professional
research (Gallagher and Chuan, 2018; Ayeni and Odume, 2020;
Al-Ghifari et al., 2021).

Two apps are currently widely used for above-water radiometry,
namely HydroColor (Leeuw and Boss, 2018) and EyeOnWater
(Busch J. et al., 2016). HydroColor measures Rrs in the RGB
bands using the Mobley (1999) protocol, guiding the user to the
correct pointing angles with on-screen prompts. Through an
empirical algorithm based on the red band of Rrs, the app
estimates the turbidity, suspended matter concentration, and
backscattering coefficient of the target body of water.
EyeOnWater uses the WACODI algorithm (Novoa et al., 2015)
to determine the hue angle α of the water, representing its intrinsic
color. From α it also estimates the Forel-Ule (FU) index, a discrete
water color scale with a century-long history (Novoa et al., 2013). α
and the FU index are reasonable first-order indicators of the surface
chl-a concentration and optical depth (Pitarch et al., 2019).

While these apps and other consumer camera-based methods
provide useful data, improvements to the accuracy and
reproducibility are necessary to derive high-quality end products.
Validation campaigns have consistently found the radiance, Rrs in
the RGB bands, and hue angle from consumer cameras to be well-
correlated with reference instruments, but often with a wide
dispersion and a significant bias. For Rrs, the mean difference

between smartphone and reference match-up data is typically
≥ 0.003 sr−1 or ≥ 30%, but varies wildly between studies (Leeuw
and Boss, 2018; Yang et al., 2018; Gao et al., 2020, 2022). As an
extreme example, Malthus et al. (2020) found no correlation at all
betweenHydroColor and referenceRrs data, albeit under challenging
observing conditions. The typical accuracy in α is around 10° or 1–2
FU (Novoa et al., 2015; Busch J. A. et al., 2016; Malthus et al., 2020;
Gao et al., 2022). Differences in Rrs between smartphones can be as
large as 40% (Yang et al., 2018). The uncertainties, as well as the
differences between smartphones and reference instruments, in
observed optical properties and derived water constituent
concentrations are often even greater than 40% (Ouma et al.,
2018; Malthus et al., 2020; Pratama et al., 2021), although this
may be explained in part by differences in inherent optical properties
and observing conditions between study sites.

A major source of uncertainty in existing methods is the use of
the JPEG data format. Until recently JPEG was the only format
available to third-party developers on most smartphones and
other consumer cameras. JPEG data are irreversibly compressed
and post-processed for visual appeal, at the cost of radiometric
accuracy and dynamic range. Most importantly, they are very
nonlinear, meaning a 2× increase in radiance does not cause a 2×
increase in response (Burggraaff et al., 2019). Instead, in a process
termed gamma correction or gamma compression, the radiance is
scaled by a power law. The nonlinearity of JPEG data is a
significant contributor to the uncertainty in Rrs obtained from
consumer cameras and apps such as HydroColor (Burggraaff
et al., 2019; Gao et al., 2020; Malthus et al., 2020). Some
approaches, including WACODI, attempt to correct for
nonlinearity through an inverse gamma correction (Novoa
et al., 2015; Gao et al., 2020). This inverse correction cannot
be performed consistently because the smartphone JPEG
processing differs between smartphone brands, models, and
firmware versions (Burggraaff et al., 2019).

A secondary source of uncertainty are the spectral response
functions (SRFs) of the cameras. Because exact SRF profiles are
laborious to measure and are rarely provided by manufacturers, it
is often necessary to use simplified SRFs and assume them to be
device-independent (Novoa et al., 2015; Leeuw and Boss, 2018).
However, the SRFs of different cameras actually vary significantly
(Burggraaff et al., 2019).

The quality of consumer camera radiometry can be improved
significantly by using lossless data, in the RAW format, and
camera calibrations. RAW data are almost entirely unprocessed
and thus are not affected by the uncertainties introduced by the
JPEG format. Furthermore, through calibration and
characterization of the radiometric and spectral response,
consumer cameras can be used as professional-grade (spectro)-
radiometers (Burggraaff et al., 2019).

In this work, we assess the uncertainty, reproducibility, and
accuracy of calibrated smartphone cameras, using RAW data, for
above-water radiometry. By comparing in situ observations from
two smartphone cameras and two hyperspectral instruments, we test
the hypothesis that the new methods decrease the uncertainty and
increase the reproducibility and accuracy of data from consumer
cameras. To our knowledge, this is the first time that the new
methods have been applied or assessed in a field setting.
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Section 2 describes the data acquisition and processing as well
as the performed experiments. The results are presented in
Section 3. In Section 4, we discuss the results, compare them
to the literature, and present some recommendations for projects
using smartphones. Finally, the conclusions of the analysis are
presented in Section 5.

2 METHODS

Smartphone and reference data were gathered on and around
Lake Balaton, Hungary, from 3 to 5 July 2019. Lake Balaton is the
largest (597 km2) lake in central Europe, with a mean depth of
only 3.3 m, and is well-studied. It has a high concentration of
suspended mineral particles and appears very bright and
turquoise (bluish-green) to the eye (Figure 1, further discussed
in Section 2.1). Due to inflow from the Zala river, the western side
of the lake is richer in nutrients than the eastern side. The
adjacent Kis-Balaton reservoir is hypereutrophic with chl-a
concentrations up to 160 mg m−3. More detailed descriptions
of this site are given in Riddick (2016) and Palmer (2015).

Two smartphones were used, an Apple iPhone SE and a
Samsung Galaxy S8, and two hyperspectral spectroradiometer
instruments were used as references. The reference instruments
were a set of three TriOS RAMSES instruments mounted on a
prototype Solar-tracking Radiometry (So-Rad) platform (Wright
and Simis, 2021) to maintain a favorable viewing geometry
throughout the day, and a hand-held Water Insight WISP-3
spectroradiometer (Hommersom et al., 2012). The spectral and
radiometric calibration of the smartphones is described in
Burggraaff et al. (2019); manufacturer calibrations were used
for the So-Rad and WISP-3.

Data processing and analysis were done using custom Python
scripts based on the NumPy (Harris et al., 2020), SciPy (Virtanen
et al., 2020), and SPECTACLE (Burggraaff et al., 2019) libraries,
available from GitHub1. The smartphone data processing
pipeline supports RAW data from most consumer cameras.

The processing of the reference and smartphone data is
further discussed in Section 2.2-2.4, the analysis in
Section 2.5 and Section 2.6.

2.1 Data Acquisition
Observations were performed on 3 July 2019 from the Tihany-
Szántód ferry on eastern Lake Balaton, performing continuous
transects around 46°53′00″N 17°53′43″E, facing southwest before
10:00 UTC (12:00 local time) and northeast afterwards. Data were
also acquired on 4 July in the Kis-Balaton reservoir at 46°39′41″N
17°07′45″E and on 5 July on western Lake Balaton at 46°45′15″N
17°15′09″E, 46°42′25″N 17°15′53″E, 46°43′59″N 17°16′34″E, and
46°45′04″N 17°24′46″E. The So-Rad, which was mounted on the
ferry, was only used in the morning on 3 July; the two
smartphones and WISP-3 were used at all stations. All data,
including a detailed station log, are available from Zenodo2.

The upwelling radiance Lu, sky radiance Lsky, and either
downwelling radiance Ld (smartphones) or downwelling
irradiance Ed (references) were measured. The So-Rad and
WISP-3 data were hyperspectral, the smartphones
multispectral in different RGB bands (Burggraaff et al., 2019).
A Brandess Delta 1 18% gray card was used to measure Ld, which
is discussed in Section 2.3. The observations on 3 and 5 July were
done under a partially clouded sky (Figure 1), which introduced
uncertainties in Lsky and Rrs by increasing the variability of the sky
brightness and causing cloud glitter effects on the water surface
(Mobley, 1999). Simultaneous measurements from different
instruments were affected in the same way, meaning an
intercomparison was still possible. However, for measurements
taken farther apart in time and space, the match-up error may be
significant. On 4 July, the sky was overcast.

Following standard procedure (Mobley, 1999; Ruddick et al.,
2019), the smartphone observations were performed pointing
135° away from the solar azimuth in the direction furthest from
the observing platform and 40° from nadir (Lu, Ld) or zenith
(Lsky). The smartphones were taped together and aligned in
azimuth by eye and in elevation using the tilt sensors in the
iPhone SE, to approximately 5° precision. Example smartphone
images are shown in Figure 1. The same viewing geometry is used
in HydroColor, but not EyeOnWater (Malthus et al., 2020). The
reference observations were performed in the same way,
following standard procedure for the respective sensors
(Hommersom et al., 2012; Simis and Olsson, 2013).

The So-Rad and WISP-3 each recorded Lu, Lsky, and Ed
simultaneously while the smartphones took sequential Lu, Ld,
and Lsky images within 1 minute. Using the SPECTACLE apps for
iOS and Android smartphones (Burggraaff et al., 2019), the
iPhone SE took one RAW image and one JPEG image
simultaneously, and the Galaxy S8 took 10 sequential RAW
images per exposure. The exposure settings on both
smartphones were chosen manually to prevent saturation and
were not recorded, but were kept constant throughout the
campaign.

FIGURE 1 | Example iPhone SE images of Lu, Lsky, and Ld, taken at Lake
Balaton on 3 July 2019 at 07:47 UTC (09:47 local time). Little wave motion is
visible on the water surface in Lu, while Lsky shows patchy cloud coverage. The
conditions seen here were representative for the entire campaign.

1https://github.com/burggraaff/smartphone-water-colour 2https://dx.doi.org/10.5281/zenodo.4549621
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In total, 304 and 453 sets of WISP-3 and So-Rad spectra,
respectively, and 28 sets each of iPhone SE and Galaxy S8
images were obtained. For theWISP-3, one set of spectra (5 July
at 10:35:51 UTC) was manually removed because it appeared
excessively noisy. Six sets of smartphone data were discarded
due to saturation.

2.2 Reference Data Processing
Rrs spectra were calculated from the WISP-3 and So-Rad data
(Figure 2). For the WISP-3, the Mobley (1999) method shown in
Eq. 1, with a sea surface reflectance factor of ρ = 0.028, was used.
Wavelength dependencies are dropped for brevity. The value of
ρ = 0.028 was chosen for the WISP-3 and smartphone data
processing (Section 2.3) to enable a direct comparison to
HydroColor, which uses the same value (Leeuw and Boss,
2018). Given the brightness of Lake Balaton, the relative
magnitude of ρLsky compared to Lu was small (typically < 5%
in the WISP-3 data) for any value of ρ around 0.03, and thus the
effect of a small difference in ρ on Rrs was negligible. The So-Rad
data, having a wider spectral range, were processed using the
three-component (3C) method, which subtracts an additional
glint term Δ and determines ρ empirically from a spectral
optimization (Groetsch et al., 2017; Jordan et al., 2022).

Rrs � Lu − ρLsky

Ed
(1)

The general appearance of the reflectance spectra (Figure 2) is
that of a broad peak around 560 nm. On the short wavelength side
of this peak, absorption by phytoplankton and CDOM suppresses
Rrs to approximately 25% of the peak amplitude. Towards longer
wavelengths, the effects of increasing absorption by water are
clearly seen around 600 nm and beyond 700 nm, and Rrs reaches
near-zero amplitude at the edge of the visible spectrum. The
reflectance is ultimately skewed towards blue-green wavelengths,
giving the water a turquoise appearance. A minor absorption
feature of chl-a and associated accessory pigments is visible
around 675 nm. Sun-induced chl-a fluorescence is visible at

FIGURE 2 | Reference Rrs spectra derived from measurements on and
around Lake Balaton. There is a difference in normalization between the two
data sets, which is discussed in Section 4.3.

FIGURE 3 | Smartphone data processing pipeline, from RAW images
to multispectral Rrs. The example input images are those from Figure 1.
Some processing steps have been combined for brevity. The histograms
show the distribution of normalized pixel values in the central 100 ×
100 pixels for the RGBG2 channels separately (colored lines, G and G2

combined) and together (black bars). The order of elements in L and Rrs

is RGB.
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680–690 nm in the WISP-3 spectra taken on 4 and 5 July, but not
the WISP-3 or So-Rad spectra taken on 3 July.

2.3 Smartphone Data Processing
The RAW smartphone images were processed using a
SPECTACLE-based (Burggraaff et al., 2019) pipeline
(Figure 3). The images were first corrected for bias or black
level, which shifts the pixel values in each image by a constant
amount. On the Galaxy S8, the nominal black level was 0 analog-
digital units (ADU), while on the iPhone SE it was 528 ADU or
13% of the dynamic range, as determined from the RAW image
metadata and validated experimentally (Burggraaff et al., 2019).
Next, a flat-field correction was applied, correcting for pixel-to-
pixel sensitivity variations. The sensitivity varies by up to 142%
across the iPhone SE sensor (Burggraaff et al., 2019), although in
the central 100 × 100 pixels, the variations are only 0.2% on the
iPhone SE and 1.6% on the Galaxy S8. A central slice of 100 × 100
pixels was taken to decrease the uncertainties introduced by
spatial variations across the image (Leeuw and Boss, 2018).
The central pixels were then demosaicked into separate images
for the RGBG2 channels, where G2 is the duplicate green channel
present in most consumer cameras (Burggraaff et al., 2019). The
RGBG2 images were flattened into lists of 10,000 samples per
channel and normalized by the effective spectral bandwidths of
the channels, determined from the SRFs (Burggraaff et al., 2019).
The mean radiance was calculated per channel, after which the G
and G2 channels, which have identical SRFs, were averaged
together. Finally, Rrs was calculated from Lu, Lsky, and Ld using
Eq. 2 (Mobley, 1999). Like for the WISP-3 (Section 2.2) and in
HydroColor, a constant ρ = 0.028 was used. Rref is the gray card
reference reflectance, nominally 0.18.

Rrs � Lu − ρLsky

π
Rref

Ld
(2)

For Rref, a Brandess Delta 1 18% gray card was used by
manually holding it horizontal in front of the camera. The
nominal reflectance of Rref = 18% was verified to within 0.5
percent point in the smartphone RGB bands by comparing
spectroradiometer measurements of Ld on a similar gray card
to cosine collector measurements of Ed. Angular variations in Rref
were found to be)1 percent point for nadir angles of 35°–45° in a
laboratory experiment with the iPhone SE. This value is similar to
previous characterizations of different consumer-grade gray
cards (Soffer et al., 1995). To account for these factors as well
as fouling, an uncertainty of σRref � 0.01, or 1 percent point, was
used in our data processing. This does not account for systematic
errors (Section 4.3).

Unlike EyeOnWater, which selects multiple sub-images from
different parts of each image, our pipeline only used a central slice
of 100 × 100 pixels. The use of sub-images was not necessary since all
images were manually curated and sub-imaging has been shown to
have little impact on the data quality (Malthus et al., 2020). The 100 ×
100 size was chosen to minimize spatial variations, but a comparison
of box sizes from50 to 200 pixels showed that the exact sizemade little
difference. For example, the mean radiance typically varied by
< 0.4%, less than the typical uncertainty on the radiance

estimated from each image (Section 3.1). Furthermore, the signal-
to-noise ratio (SNR) varied by < 3% for Lu and Ld but up to 19% in
Lsky due to the patchy cloud coverage.

The iPhone SE JPEG data were processed using a simplified
version of the RAW pipeline, lacking the bias and flat-field
corrections and G-G2 averaging. Smartphone cameras perform
these three tasks internally for JPEG data (Burggraaff et al., 2019).
The processing was repeated with an additional linearization step,
like in WACODI and EyeOnWater, to determine whether
linearization improves the data quality. Following WACODI,
the default sRGB inverse gamma curve was used, although this
curve has already been shown to be poorly representative of real
smartphones (Burggraaff et al., 2019).

The uncertainties in the image data, determined from the
sample covariance matrix of the 10,000 pixels per channel per
image, were propagated analytically as described in
Supplementary Datasheet S1. The pixel values were
approximately normally distributed (Figure 3). Significant
correlations between the RGBG2 channels were found. For
example, the iPhone SE Lsky image from 3 July 2019 at 07:47
UTC had a correlation of rRG = 0.68 between R and G, while in the
08:01 image this was only rRG = 0.09. The observed correlations
were likely due to spatial structures in the images (Menon et al.,
2007), such as patchy clouds for Lsky and waves for Lu. In larger
data sets, the presence of strong correlations could be used as a
means to filter out images that are not sufficiently homogeneous.
The propagated uncertainties in Rrs were typically 5–10% of the
mean Rrs and similarly correlated between channels. For example,
the 07:47 data had correlations in Rrs of rRG = 0.67, rRB = 0.57, and
rGB = 0.72.

2.4 Color
In addition to absolute Rrs in the RGB bands, several relative color
measurements were investigated, namely RGB band ratios, hue
angle, and FU index.

The band ratios were calculated as specific combinations of Rrs
bands. For simplicity in notation, the ratios are expressed as, for
example, G/R instead of Rrs(G)/Rrs(R). Following the literature,
the numerators and denominators were chosen as G/R, B/G, and
R/B. The G/R ratio is sensitive to water clarity and optical depth
(Gao et al., 2022). B/G is sensitive to the chl-a concentration
(Goddijn-Murphy et al., 2009), at least in water types where
phytoplankton covaries with other absorbing substances. Finally,
the R/B ratio is particularly sensitive to broad features such as
CDOM absorption, as well as the concentration of scatterers
(turbidity, suspended matter concentrations), as described in
Hoguane et al. (2012) and Goddijn-Murphy et al. (2009).

To calculate the hue angle, the data were first transformed to
the CIE XYZ color space. CIE XYZ is a standard color space
representing the colors that a person with average color vision can
experience (Sharma, 2003). The reference data were spectrally
convolved with the XYZ color matching functions (Nimeroff,
1957). The spectral convolution was applied directly to Rrs, since
Rrs represents the true color of the water (Burggraaff, 2020). For
the smartphone data, transformation matrices calculated from
the smartphone camera SRFs (Supplementary Datasheet S1)
were used (Juckett, 2010; Wernand et al., 2013). These matrices
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are given in Eqs 3, 4. The uncertainties on the matrix elements
were not included since this would require a full re-analysis of the
raw SRF data (Wyszecki, 1959), which is outside the scope of this
work. The resulting colors were relative to an E-type (flat
spectrum, x = y = 1/3) illuminant.

MiPhone SE
RGB→XYZ �

0.5709 0.2452 0.1839
0.3760 0.4346 0.1894
0.0439 0.0913 0.8648

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (3)

MGalaxy S8
RGB→XYZ �

0.5611 0.1451 0.2938
0.3944 0.2391 0.3666
0.0231 0.0416 0.9353

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (4)

From XYZ, the chromaticity (x, y) and hue angle α were
calculated as shown in Eqs 5, 6. Chromaticity is a normalization
of the XYZ color space that removes information on brightness
(Sharma, 2003). The FU index was determined from α using a
look-up table (Novoa et al., 2013; Pitarch et al., 2019). The
uncertainties in Rrs were propagated analytically into XYZ and
(x, y), as described in Supplementary Datasheet S1. However,
further propagation into α was not feasible, since the linear
approximation of Eq. 6 breaks down near the white point (x,
y) = (1/3, 1/3), especially with highly correlated x and y (Onusic
and Mandic, 1989).

x � X

X + Y + Z

y � Y

X + Y + Z

(5)

α � arctan2 y − 1/3, x − 1/3( ) mod 2π (6)

2.5 Replicate Analysis
The Galaxy S8 data were taken in sets of 10 sequential replicates
per image. The variability between these replicates was analyzed
to assess the uncertainty in smartphone data.

The processing chain described in Section 2.3 was applied to
each image from each set, resulting in 10 measurements per
channel of Lu, Lsky, and Ld. Rrs was calculated from each
combination of images, resulting in 1,000 values. From these,
the band ratios, α, and FU were calculated.

The relative uncertainty in Lu, Lsky, Ld, Rrs, and the band ratios
was estimated through the coefficient of variation σ

μ, σ being the
standard deviation and μ the mean value. Because α and FU have
arbitrary zero-points, relative uncertainties are not applicable to
them, and σwas instead used to estimate the absolute uncertainty.

2.6 Match-Up Analysis
Simultaneous data taken with the various sensors were matched
up and compared. There were 27 pairs of iPhone SE and Galaxy
S8 images, taken on average 50 s apart. On the ferry, which had an
average speed of 8 km/h, a 50 s delay corresponded to a distance
along the transect of approximately 120 m. The smartphone
images were also matched to reference spectra taken within a
10-min time frame, resulting in 1–41 reference spectra per match-
up. The reference Rrs spectra were convolved to the smartphone
RGB bands by first convolving the reference radiances

(Burggraaff, 2020). For match-ups with multiple reference
spectra per smartphone image, the median value of each
variable in the reference spectra was used, with the standard
deviation as an estimate for the uncertainty. For match-ups with a
single reference spectrum per smartphone image, the uncertainty
was instead estimated as the median uncertainty on the multiple-
spectrum match-ups, for each variable. Match-up reference
spectra with large uncertainties, for example relative
uncertainties of > 10% in Rrs, were not discarded because
these represent common measurement scenarios.

Thematch-up datawere compared using themetrics shown inEqs
7–10. Here P,Q are any two data sets with elements pi, qi; cov (P,Q) is
their covariance; σP, σQ are the standard deviations in P and Q,
respectively;Medi is themedian evaluated over the indices i; and sgn is
the sign function. The RGB channels were treated as separate samples,
as were the three band ratios.

r � cov P,Q( )
σPσQ

(7)
M � Medi |qi − pi|( ) (8)

ζ � exp Medi ln
qi
pi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣( ) − 1[ ] (9)

B � sgn Medi ln
qi
pi

( )[ ] × exp Medi ln
qi
pi

( )∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣( ) − 1[ ] (10)

The Pearson correlation r and median absolute deviation M
are well-known (Morley et al., 2018; Seegers et al., 2018). The
median symmetric accuracy ζ and signed symmetric percentage
bias B, both expressed as a percentage, are recent introductions,
which we chose to use for their robustness, symmetry, and ability
to span multiple orders of magnitude in the data (Morley et al.,
2018). r expresses the degree of linear correlation between
variables, from −1 to 1, but is sensitive to outliers and the
data range. M and ζ measure the typical random error or
dispersion between variables in absolute and relative terms,
respectively. Both are robust to outliers. B is similar to ζ but
measures the bias towards over- or underestimation. The
covariance, standard deviations, and median calculated in r
and M were weighted by wi � 1

σ2pi+σ2qi
. ζ and B are unweighted.

The FU indices were also compared by the number of matches
(Busch J. A. et al., 2016; Seegers et al., 2018), considering both full
(ΔFU = 0) and near-matches (ΔFU ≤ 1). The typical uncertainty
on human observations is 1 FU (Burggraaff et al., 2021).

5–95% confidence intervals (CIs) on the metrics were
estimated by bootstrapping over pairs of (pi, qi), and wi if
applicable. Bootstrapping involves randomly resampling the
data with replacement, mimicking the original sampling
process (Wasserman, 2004). This was necessary to account for
the relatively small size of our data set, which increases the effects
of outliers, even on robust metrics like M or ζ. The bootstraps
were evaluated with 9,999 resamples, sufficient to obtain
consistent results matching the analytical formula for CIs on
unweighted r to 4 decimals (Wasserman, 2004).

Some data were also compared through a linear regression
(y = ax + b with parameters a, b), to convert data to the same
units or account for normalization differences. The regression
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was done through the scipy.odr function for orthogonal
distance regression, which minimizes differences and accounts
for weights on both axes. The same process was used to fit a
power law (y = axb) in the JPEG data comparison (Section 3.4).

3 RESULTS

3.1 Replicate Analysis
The Galaxy S8 replicate analysis showed that among the
radiances, Lu had the largest relative variability with a
quartile range (QR, the 25–75% percentile range of
variability among the sets of replicate observations) of
1.8–5.8%, followed by Lsky with 1.1–3.4%, and Ld with
0.4–1.2% (Figure 4). Lu and Lsky were affected primarily by
cloud and wave movement, shaking of the camera, and
movement of the ferry on 3 July. Therefore, the variability
in Lu and Lsky was largely methodological in nature, as
discussed further in Section 4.1. Since Ld was measured on
a bright, stable gray card, it was not affected by the above
factors, and its variability best represented the radiometric
stability of the smartphone camera.

The RGB Rrs varied by 1.9–8.1%, while the Rrs band ratios only
varied by 0.5–1.9%. The difference can be explained by
correlations between channels. For example, wave movements
between successive images affected all three RGB channels of Lu
equally, changing the individual Rrs values, but having little effect
on their ratios. The same held true for other environmental
variations and camera stability issues.

Finally, there was a variability in hue angle α of 2.1°–6.8°

and in FU index of 0.19–0.62 FU. The variability distributions
of α and FU index did not have the same shape because the
hue angle difference between successive FU indices varies
greatly.

The variability between replicates represents the typical
uncertainty associated with random effects on our data. However,
there are some caveats. First, systematic effects such as an error in

Rref would affect successive measurements equally, and not cause
randomvariations. Second, the uncertainty in individual imagesmay
be larger due to spatial structures, which the uncertainty propagation
described in Section 2.3 does account for. Both of these issues
explain differences between the replicate and propagated
uncertainties in our data. For example, the propagated
uncertainty in individual images was 6.6–9.0% for RGB Rrs and
4.5–7.0% for the band ratios.While the exact uncertainties will differ
between campaigns, sites, and even smartphones, the trends seen
here can be generalized.

FIGURE 4 | Variability in radiance, Rrs, and color between replicate Galaxy S8 images. The boxes show the distribution, among 27 individually processed sets of 10
replicates, of the variability between replicate images. The orange lines indicate the medians, the boxes span the quartile range (QR), the whiskers extend to 1.5 times the
QR, and circles indicate outliers. Up to two outliers per column fell outside the y-axis range.

FIGURE 5 | Comparison between iPhone SE and Galaxy S8 radiance
measurements. The axes are in different units due to differences in exposure
settings. The RGB channels are shown in their respective colors, with different
symbols for Lu, Lsky, and Ld. The statistics in the text box are relative to
the regression line.
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As a point of comparison, the uncertainty QRs for the
spectrally convolved WISP-3 data in the Galaxy S8 match-up
(Section 3.3), were 4.2–38% in Lu, 4.8–14% in Lsky, 2.5–30% in Ed,
2.6%–7.2% in RGB Rrs, 0.7%–2.9% in Rrs band ratios, 0.4°–2.8° in
α, and 0–0.46 in FU. While the Galaxy S8 and WISP-3 variability
cannot be compared 1:1 due to differences in data acquisition and
processing and in the uncertainty estimation, the order of
magnitude of the uncertainties in the Galaxy S8 and WISP-3
reference data was the same.

3.2 Smartphone Comparison
There was a strong correlation, r = 0.94 (CI 0.90, 0.96),
between the iPhone SE and Galaxy S8 radiances (Figure 5).
Due to differences in exposure settings, both cameras
measured radiance in different, arbitrary units (a.u.). After
re-scaling the Galaxy S8 data through a linear regression
(Section 2.6), the median absolute deviation was M � 0.39
(CI 0.29, 0.52) in iPhone SE units and the median symmetric
accuracy was ζ = 6.9% (CI 5.1%, 8.7%). The value of ζ was
comparable to the variability between replicate images (Section 3.1).

The Rrs match-ups between the two smartphones, in both
RGB (Figure 6) and band ratios (Figure 7), showed excellent
agreement. The data were strongly correlated, with r = 0.98 (CI
0.95, 0.99) for RGB and r = 0.99 (CI 0.99, 1.00) for band ratio
Rrs. The typical difference in RGB Rrs was M � 0.0010 (CI
0.0005, 0.0013) sr−1 or ζ = 5.5% (CI 3.8%, 8.2%). For band

FIGURE 6 | Comparison between iPhone SE and Galaxy S8 Rrs

measurements in the RGB bands. The solid line corresponds to a 1:1 relation,
the dashed line is the best-fitting linear regression line. The statistics in the text
box are based on a 1:1 comparison, as are the differences in the
lower panel.

FIGURE 7 | Comparison between iPhone SE and Galaxy S8 Rrs band
ratios. The solid line corresponds to a 1:1 relation, the dashed line is the best-
fitting linear regression line. The statistics in the text box are based on a 1:1
comparison, as are the differences in the lower panel.

FIGURE 8 | Comparison between iPhone SE and Galaxy S8
measurements of hue angle and FU index. The solid line corresponds to a 1:1
relation. The dark gray squares indicate a full FU match, the light gray ones a
near-match. Accurate uncertainties on individual points could not be
determined (Section 2.4). The statistics in the text box are based on a 1:1
comparison.
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ratios, the typical difference was M � 0.032 (CI 0.026, 0.035),
unitless, and ζ = 2.9% (CI 2.3%, 3.7%). Both values of ζ are
consistent with Section 3.1, as is the observation that band
ratios are more reproducible than RGB Rrs. Finally, the signed
symmetric percentage bias in RGB Rrs, B � −2.7% (CI −7.0%,
−1.8%), was smaller than the typical uncertainty. There was no
significant offset in the band ratios, with B � −1.1% (CI
−1.8%, +0.7%).

The agreement in α and FU was poorer but still similar to the
expected uncertainties (Figure 8). The typical difference was
M � 8.3° (CI 5.0°, 11°) in α and M � 1 (CI 0, 2) in FU index.
33% (CI 15%, 48%) of the match-up pairs had the same FU index,
59% (CI 37%, 74%) had a difference ΔFU ≤ 1. The wide CIs are
due to the relatively small number (N = 27) of match-ups. The
data did not span the full range of α, but were mostly
concentrated into two clusters, around 50° (FU 14–16,
greenish brown) and 90° (FU 8–9, bluish green). Interestingly,
while the 90° cluster was centered roughly on the 1:1 line, the 50°

cluster fell entirely underneath it. However, due to the small N
and the uncertainties on the data, it is difficult to say whether this
was significant.

3.3 Smartphone vs. Reference Comparison
A total of 72 pairs of smartphone vs. reference match-up
spectra were analyzed, four of which are shown in Figure 9.
There were 27 match-ups between the WISP-3 and each
smartphone and 9 between the So-Rad and each
smartphone. Except for the normalization difference that
was also present between the So-Rad and WISP-3
(Figure 2, discussed in Section 4.3), there was good
agreement between the instruments (Figure 9).

The full statistics of the match-up analysis are given inTable 1.
The correlation between smartphone and reference radiance was
r ≥ 0.71 in all pairs of instruments (Figure 10). The median
symmetric accuracy ζ ranged between 12% and 19%, larger than
the typical uncertainties and the value from the smartphone vs.

TABLE 1 | Summary of the smartphone vs. reference match-up analysis. The values between parentheses indicate the 5–95% CI determined from bootstrapping. N is the
number of matching observations; the other metrics are described in Section 2.6.M(L) is in units of W m−2 nm−1 sr−1. For theWISP-3, Rrswas compared 1:1 and with
a linear regression (regr.).

N r, M(α) M ζ, ΔFU = 0 B, ΔFU ≤1

WISP-3

iPhone SE L 162 0.71 0.009 19% −7.8%
(0.57, 0.80) (0.007, 0.010) (15%, 24%) (−11%, +0.21%)

Rrs 81 0.97 0.0014 sr−1 22% −22%
(0.91, 0.99) (0.0001, 0.0063) (18%, 27%) (−28%, −20%)

Rrs 81 0.97 0.0004 sr−1 9.7% +1.9%
(regr.) (0.90, 0.99) (0.0001, 0.0025) (6.7%, 13%) (−1.1%, +4.8%)
Band ratios 81 0.98 0.013 1.9% +0.25%

(0.97, 0.99) (0.009, 0.019) (1.2%, 2.7%) (−0.61%, +0.87%)
α, FU 27 9.4° 1 FU 26% 59%

(6.3°, 12°) (1, 2) (7.4%, 41%) (37%, 74%)
Galaxy S8 L 162 0.75 0.009 19% −3.2%

(0.66, 0.83) (0.007, 0.011) (15%, 24%) (−7.5%, +2.5%)
Rrs 81 0.94 0.0025 sr−1 31% −31%

(0.75, 0.98) (0.0013, 0.0072) (24%, 35%) (−36%, −25%)
Rrs 81 0.93 0.0007 sr−1 13% +5.9%
(regr.) (0.70, 0.97) (0.0005, 0.0041) (9.2%, 14%) (+3.2%, +11%)
Band ratios 81 0.98 0.010 1.7% +0.04%

(0.96, 0.99) (0.007, 0.012) (1.1%, 2.0%) (−0.59%, +0.68%)
α, FU 27 16° 2 FU 19% 48%

(11°, 21°) (1, 4) (3.7%, 33%) (26%, 63%)

So-Rad

iPhone SE L 54 0.87 0.006 13% −4.7%
(0.75, 0.94) (0.004, 0.007) (8.4%, 16%) (−12%, −0.01%)

Rrs 27 0.70 0.004 sr−1 13% +12%
(0.49, 0.86) (0.003, 0.005) (9.9%, 16%) (+6.5%, +14%)

Band ratios 27 0.97 0.013 3.8% +0.82%
(0.95, 0.98) (0.006, 0.042) (0.98%, 5.6%) (−1.3%, +1.6%)

α, FU 9 11° 1 FU 11% 89%
(6.1°, 13°) (1, 1) (0%, 33%) (34%, 100%)

Galaxy S8 L 54 0.83 0.005 12% −5.4%
(0.69, 0.93) (0.003, 0.007) (9.2%, 16%) (−12%, +1.4%)

Rrs 27 0.75 0.003 sr−1 8.5% +6.4%
(0.49, 0.87) (0.002, 0.005) (5.5%, 13%) (−0.08%, +9.1%)

Band ratios 27 0.99 0.004 1.1% +0.36%
(0.98, 0.99) (0.003, 0.009) (0.42%, 2.4%) (−0.35%, +0.45%)

α, FU 9 16° 1 FU 11% 56%
(12°, 23°) (1, 2) (0%, 33%) (11%, 78%)
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smartphone comparison. This larger difference in observed
radiance is not surprising, since the smartphone vs. reference
match-ups typically differed more in time and location than the
smartphone vs. smartphone match-ups. No significant
differences in the match-up statistics between the individual
RGB bands were found.

The RGB Rrs data were strongly correlated between
smartphone and reference sensors (r ≥ 0.94 for the WISP-3)
and showed a relatively small dispersion, although with a

normalization difference in the WISP-3 comparisons
(Figure 11), similar to that between the WISP-3 and So-Rad
data (Figure 2). To negate the normalization issue, the smartphone
data were re-scaled based on a linear regression (Section 2.6) for

FIGURE 10 | Comparison between iPhone SE and spectrally convolved
WISP-3 radiance measurements. The RGB channels are shown in their
respective colors, with different symbols for Lu and Lsky. The statistics in the
text box are relative to the regression line. We note that this regression
line cannot be used as a general absolute radiometric calibration for the
iPhone SE due to the arbitrary choice of exposure settings. FIGURE 11 | Comparison between iPhone SE and spectrally convolved

WISP-3 Rrs measurements in the RGB bands. The solid line corresponds to a
1:1 relation, the dashed line is the best-fitting linear regression line. The
statistics in the solid-outline text box are based on a 1:1 comparison,
those in the dashed-outline text box are based on the regression line. The
differences in the lower panel are based on the regression line.

FIGURE 9 | Examples of smartphone vs. reference Rrsmatch-ups at different stations. The solid lines show the reference spectrum, with uncertainties in gray. The
RGB dots show the smartphone data, with error bars indicating the effective bandwidth (horizontal) and Rrs uncertainty (vertical). In some panels, the vertical error bars
are smaller than the data point size.
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the smartphone vs. WISP-3 RGB Rrs comparison. The So-Rad and
smartphone data were compared 1:1. The typical differences in Rrs,
then, were on the order of 10–3 sr−1 for the So-Rad and 10–4 sr−1 for
the WISP-3, differing mostly due to their different ranges. The
difference in range of Rrs also decreased the correlation coefficient r
for the So-Rad comparisons. In the four smartphone vs. reference
Rrs comparisons, ζ was between 9% and 13%, twice the value seen
in the smartphone vs. smartphone comparison but similar to the
differences between smartphone and reference radiances.

The agreement between smartphone and reference Rrs band
ratios was better than the agreement in RGB Rrs (Figure 12). In
all four band ratio comparisons, the correlation was near-
perfect (r ≥ 0.97), and the typical differences (1.1% ≤ ζ ≤ 3.8%)
were consistent with the uncertainties in the data. The WISP-3
normalization difference did not affect this comparison since it
divided out.

The agreement in α and FU was not as good as that in L and
Rrs, like in the smartphone intercomparison (Section 3.2). For
each smartphone, there were only N = 27WISP-3 match-ups and
even fewer So-Rad ones, making the CIs wide and the
interpretation difficult. The difference between the WISP-3
and iPhone SE was slightly larger than in the smartphone
comparison, at M(α) � 9.4° (CI 6.3°, 12°) and M(FU) � 1

(CI 1, 2). The Galaxy S8 and WISP-3 differed more, at M(α) �
16° (CI 11°, 21°) and M(FU) � 2 (CI 1, 4). The cause for this
difference is unclear but may simply be an artifact of the small
number of match-ups; the Galaxy S8 also differed more in RGB
Rrs but not in the band ratios. Both smartphones performed
similarly in the FU match-ups, with 19–26% of the match-ups
agreeing fully and 48–59% to within 1 FU, although these figures
had particularly wide CIs.

3.4 JPEG Data
28 sets of JPEG images from the iPhone SE, taken
simultaneously with the RAW images, were analyzed and
compared to the RAW and reference data.

The relationship between JPEG and RAW radiances was
highly nonlinear (Figure 13). Each RGB channel had a
different best-fitting power law, with exponents ranging
from 0.477 ± 0.005 for B to 0.949 ± 0.013 for R. Due to
differences between the RAW and JPEG data processing, the
power law exponents are not equivalent to sRGB gamma
exponents (Burggraaff et al., 2019). Figure 13 also shows
the significant dispersion of the data around the power law
curves. Comparing the RAW and re-scaled JPEG data yielded ζ
ranging from 8.9% (CI 7.5%, 11%) for B to 38% (CI 29%, 43%)
for R.

The JPEG vs. RAW Rrs match-ups agreed better, particularly
in the band ratios. The RGB Rrs were strongly correlated, with
r = 0.92 (CI 0.84, 0.97), but the JPEG data showed a large,
consistent overestimation of B � +52% (CI +39%, +59%).
Comparing Rrs through a linear regression removed this
offset, although a significant dispersion of ζ = 15% (CI 12%, 21%)

FIGURE 12 | Comparison between iPhone SE and spectrally convolved
WISP-3 Rrs band ratios. The solid line corresponds to a 1:1 relation, the
dashed line is the best-fitting linear regression line. The statistics in the text box
are based on a 1:1 comparison, as are the differences in the lower panel.

FIGURE 13 | Comparison between RAW- and JPEG-based iPhone SE
radiance measurements. The axes are in different units due to differences in
exposure settings and normalization. The RGB channels are shown in their
respective colors, with different symbols for Lu, Lsky, and Ld. The colored
lines show the best-fitting power law for each channel.
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remained. Conversely, the Rrs band ratios were more similar with r =
0.97 (CI 0.95, 0.98), M � 0.033 (CI 0.023, 0.042), and ζ = 4.9% (CI
3.6%, 6.8%).

Finally, the agreement in α and FU was similar to the
smartphone vs. smartphone and smartphone vs. reference
comparisons. M was 11° (CI 3.6°, 14°) in α and 1 (CI 0, 2) in
FU. 39% (CI 18%, 54%) of match-up pairs had the same FU
index, while 61% (CI 39%, 75%) agreed to within 1 FU.

The agreement between JPEG and reference data was notably
worse than between RAW and reference data. While the JPEG vs.
reference radiance match-ups appeared to follow a single linear
relationship, rather than the multiple power laws seen in the
JPEG vs. RAW comparison, they were only weakly correlated,
with r = 0.39 (CI 0.22, 0.52) in the JPEG vs. WISP-3 comparison.
The dispersion around the regression line was ζ = 31% (CI 26%,
41%), 1.6× larger than for the RAW data.

The JPEG data consistently overestimated Rrs compared to the
references, and were widely dispersed. In the JPEG vs. WISP-3
comparison, B � +17% (CI +10%, +19%), although this was
reduced to B � +1.1% (CI −7.3%, +5.8%) when comparing to
a regression line instead of the 1:1 line, as in Section 3.3.
However, the dispersion remained significant at M � 0.0039
(CI 0.0018, 0.0047) sr−1 or ζ = 21% (CI 12%, 24%), with
M 9× as much as for the RAW data, and ζ 2.1×.

The JPEG band ratios deviated from theWISP-3 by > 2.5× as
much as the RAW data, withM � 0.032 (CI 0.023, 0.041) and
ζ = 5.5% (CI 3.7%, 6.4%). The So-Rad comparison showed a
similarly stark difference. However, while this represents a
serious reduction in performance, a typical difference of 5.5%
is still relatively small.

It was only in α and FU that the JPEG vs. reference and RAW
vs. reference agreements were similar. M(α) in the JPEG vs.
WISP-3 comparison was even marginally better at 7.1° (CI 5.0°,
11°); in the JPEG vs. So-Rad comparison it was 13° (CI 3.8°, 16°),
almost identical to Table 1. M(FU) and the fraction of FU
matches were also similar, atM(FU) � 1 (CI 1, 2), with 26% (CI
7.4%, 41%) full and 59% (CI 37%, 74%) partial FU matches
between the JPEG and WISP-3 data. The agreement between
JPEG and reference α and FU is discussed further in Section 4.3.

The effectiveness of an sRGB linearization applied to the JPEG
data, like in WACODI, was also investigated (Section 2.3). In α
and FU, the main outputs from WACODI, the linearization had
very little effect. In the JPEG vs. WISP-3 comparison, M(α)
changed from 7.1° (CI 5.0°, 11°) originally to 7.0° (CI 5.4°, 9.4°)
with linearization. In radiance and Rrs, the linearization made all
comparison metrics significantly worse.

4 DISCUSSION

4.1 Uncertainty
The uncertainty of the smartphone data as derived from replicate
measurements (Section 3.1) is comparable to that of professional
spectroradiometers. This was shown by the comparison with
WISP-3 replicate measurements, which had a variability similar
to, and in some cases larger than, the Galaxy S8. In general, the
uncertainty from instrumental effects, excluding environmental

factors and photon noise, in professional spectroradiometer data
is around 1% (Vabson et al., 2019). In field data, the typical
uncertainty is 1–7% (Białek et al., 2020). The Galaxy S8 replicate
variability, which was 0.4–1.2% (Ld), 1.1–3.4% (Lsky), and
1.8–5.8% (Lu), falls within this range.

The same is true for the smartphone Rrs uncertainty, both in
RGB (1.9–8.1%) and in band ratios (0.5–1.9%). Rrs is typically
measured with an uncertainty of 5% at blue and green
wavelengths (IOCCG, 2019) and this is the target for satellites
like PACE (Werdell et al., 2019). The 5% target also applies to
narrower bands than the smartphone SRFs and to waters
considerably darker than Lake Balaton, which increases the
influence of sensor noise. The reduced uncertainty in band
ratios is well-known and can be attributed to correlated
uncertainties dividing out (Lee et al., 2014). Propagated into
the mineral suspended sediment (MSS) algorithm described in
Hoguane et al. (2012), for R/B ranging from 1.0 to 1.4, a 2%
uncertainty in R/B results in a relative MSS uncertainty of only
1%. In the chl-a algorithm from Goddijn-Murphy et al. (2009), a
2% uncertainty in B/G induces a relative chl-a uncertainty of 9%.
This level of uncertainty is well within the desired limits for many
end users (IOCCG, 2019).

Finally, the uncertainty of the Galaxy S8 α (2.1°–6.8°) and FU
index (0.19–0.62 FU) estimates is similar to the uncertainty of
satellite and human measurements as well as the existing
EyeOnWater app. Through propagation from Rrs, Pitarch et al.
(2019) found uncertainties on SeaWiFS-derived α of 6°–18°,
although it is difficult to compare these values due to the
vastly different water types examined. Furthermore,
propagated and replicate-based uncertainty estimates may vary
significantly due to differences in sensitivity to various factors
(Section 3.1). A more representative comparison point is the
standard deviation of 3.15° among replicate EyeOnWater
observations by Malthus et al. (2020), which falls squarely
within the range found in this work. The similarity in
uncertainty is interesting because EyeOnWater is based on
JPEG data, not RAW. However, since we did not take
replicate JPEG images, a direct comparison in uncertainty
between JPEG and RAW could not be made. The accuracy of
JPEG and RAW data, including α and FU index, is compared in
Section 4.3. The uncertainty of 0.19–0.62 FU is 5.3–1.6× better
than human measurements, which have a typical uncertainty of 1
FU with perfect color vision (Burggraaff et al., 2021).

Since the use of RAWdata eliminates virtually all smartphone-
specific sources of uncertainty (Burggraaff et al., 2019), the
primary remaining sources are those that apply to all
(spectro)-radiometers as well as environmental factors. For a
thorough overview of the former, we refer the reader to Białek
et al. (2020) and Mittaz et al. (2019); for the latter, to IOCCG
(2019). Read-out noise, thermal dark current, and digitization
noise are negligible for well-lit smartphone images (Burggraaff
et al., 2019). Since Ld was measured on a stable target, its
variability of 0.4–1.2% between replicates can be ascribed
mostly to sensor noise (Section 3.1). Sensor noise scales with
the square root of the number of photons, so the induced
uncertainty will be larger in darker conditions such as overcast
days, highly absorbing waters, and low solar elevation angles. In
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practice, smartphone observations under dark conditions will
require longer exposure times or multiple images to attain similar
levels of uncertainty. The impact of sun glint, which is estimated
from Lsky, on the uncertainty in Rrs is also larger for darker waters.
The sensitivity of smartphone cameras to temperature variations
and polarization is unknown, although the latter is expected to be
negligible unless special fore-optics are used (Burggraaff et al.,
2020). Because our data were gathered in a single 3-days
campaign, long-term sensor drift is unlikely to have had any
effect; in general, sensor drift does not affect relative
measurements like Rrs and α. Environmental factors, such as
the patchy clouds that were present during our campaign
(Figure 1), likely contributed the bulk of the uncertainty in
Lsky and Lu. These environmental factors also affected the
reference measurements and are inherent to above-water
radiometry.

4.2 Reproducibility
As there are hundreds of different smartphone models,
reproducibility between devices is key. This is a major
problem with HydroColor, as reported to us directly by users
and as reported in the literature. For example, HydroColor
measurements of Rrs with different smartphones regularly
differ by as much as 50% or 0.005 sr−1 (Leeuw and Boss,
2018; Yang et al., 2018). This is largely due to the use of JPEG
data, which are processed differently on every smartphone model,
leading to a wide variety of errors and uncertainties that cannot be
reliably corrected (Burggraaff et al., 2019). On the other hand,
Goddijn-Murphy et al. (2009) reported smaller differences (4 ±
4%) between JPEG data from two high-quality digital cameras,
suggesting that some of the problems may be specific to
smartphones.

In Section 3.2, we showed that with RAW data and camera
calibrations, excellent agreement and thus reproducibility
between smartphones can be achieved. Near-simultaneous
iPhone SE and Galaxy S8 measurements of radiance and Rrs
were nearly perfectly correlated (r ≥ 0.94), and their dispersion
could be explained by the uncertainties in the individual
measurements. The typical difference in Rrs was 0.0010 (CI
0.0005, 0.0013) sr−1 or 5.5% (CI 3.8%, 8.2%), both major
improvements over HydroColor. In fact, the dispersion in
radiance between the two smartphones, ζ = 6.9% (CI 5.1%,
8.7%), is only slightly larger than that between professional
instruments in a similar experiment (Vabson et al., 2019).

On the contrary, the smartphone JPEG processing algorithm
was found to be poorly constrained and highly inconsistent
between the RGB channels (Section 3.4). Moreover, the
internal JPEG processing in the smartphone is re-tuned every
time a camera session is started (Burggraaff et al., 2019).
Combined, the differences between channels and between
sessions highly limit the reproducibility of JPEG-based
measurements of radiance and Rrs. As discussed below, white-
balancing further reduces the reproducibility of JPEG-based Rrs
band ratios and hue angles. Finally, the JPEG processing
algorithms differ between manufacturers, further reducing the
reproducibility of JPEG data between devices (Burggraaff et al.,
2019). Due to limitations in the SPECTACLE app in 2019, we did

not collect Galaxy S8 JPEG data in this study, meaning a direct
comparison between the RAW vs. RAW and JPEG vs. JPEG
reproducibility could not be performed. Reproducing JPEG data
from the RAW data was not possible, due to the aforementioned
proprietary smartphone algorithms.

Differences in smartphone SRFs set some minor fundamental
limits on the reproducibility between different cameras (Nguyen
et al., 2014). However, since most natural waters have broad and
smooth spectra, this should only lead to minor differences. In
theory, JPEG data do not have this problem because they are
always in the sRGB color space (Novoa et al., 2015), but in
practice the various proprietary color algorithms cause larger
differences in JPEG data than in RAW (Burggraaff et al., 2019).
Furthermore, to account for illumination differences, JPEG data
are white-balanced, changing the relative intensity of each
channel. The re-normalization directly reduces the accuracy of
band ratio and hue angle measurements and is difficult to correct
post-hoc (Burggraaff et al., 2019; Gao et al., 2022). The white-
balance setting may be locked between exposures (Goddijn-
Murphy et al., 2009; Leeuw and Boss, 2018), but this does not
guarantee consistency between different devices. Finally, due to
differences in field-of-view between cameras, the central slice of
100 × 100 pixels does not always subtend the same solid angle. In
future work, it may be advisable to use a constant solid angle
rather than a constant pixel slice (Leeuw and Boss, 2018).

4.3 Accuracy
In Section 3.3, we compared smartphone and reference data to
determine the accuracy of the smartphone data, but this comes
with important caveats. While each instrument measured Lu and
Lsky, they did not do so in exactly the same way, having differences
in field of view, spectral response, spectral resolution, and time
and location. While the smartphones measured Ld on a gray card,
the references measured Ed with a cosine collector. Due to these
differences, the true “ground truth” value of each measurand is
not known (Mittaz et al., 2019; Woodhouse, 2021). The
reference data can be used to approximate the true values
and achieve closure (Werdell et al., 2018), but one must be
aware of the uncertainties and systematic errors that may be
present. Additionally, one must exercise caution when
comparing different metrics, such as the median symmetric
accuracy ζ and the mean percentage deviation, which measure
the same quantity but are calculated differently and on
different data.

TheWISP-3 and So-Rad Rrs spectra were similarly shaped, but
differently normalized (Section 2.2). Both were similar to spectra
from previous work in shape, with the So-Rad more similar in
magnitude (Palmer, 2015; Riddick, 2016). Normalization
differences and offsets have been seen in previous comparisons
between the WISP-3 and other instruments (Hommersom et al.,
2012; Vabson et al., 2019), so we felt confident in using a linear
regression to re-scale Rrs in the smartphone vs. WISP-3
comparisons. In fact, since each smartphone Rrs measurement
was based on three images from the same camera, rather than
from three separate sensors like the WISP-3, and the gray card
reference was independently verified, we can bemore confident in
the normalization of the smartphone Rrs than that of the WISP-3,
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at least for the particular unit and calibration settings used during
our campaign. These results suggest that smartphones and other
low-cost cameras could be used to provide closure when there is
tension between data from professional instruments
(Section 4.5).

Considering the above, the level of closure between
smartphone and reference data was comparable to
intercomparisons between professional radiometers to within a
factor of 2–3. The dispersion ζ in radiance was relatively large at
12–19%, 2–3× that reported in a comparison of hyperspectral
instruments on a single, stable platform (Vabson et al., 2019), but
as discussed previously, our radiance measurements were
particularly affected by environmental factors and were taken
at slightly different times and positions between instruments.
Patchy clouds can increase the dispersion in radiance match-ups
by a factor of 10 or more (Hommersom et al., 2012). In Rrs, the
typical difference was on the order of 10−4–10−3 sr−1 or 9–13%.
Comparing hyperspectral radiometers, Tilstone et al. (2020) found
mean differences between sensors on the order of 10–3 sr−1 or 1–8%,
with outliers up to 13%. A comparison between WISP-3 and
RAMSES sensors under cloudy conditions, similar to ours, found
differences in Rrs of 20–30% (Hommersom et al., 2012).

Most importantly, the smartphone and reference
measurements of Rrs band ratios agreed to within 2% in three
out of four comparisons. The difference was only larger in the
iPhone SE vs. So-Rad comparison, at 3.8%. Since band ratios are
what most inversion algorithms for inherent optical properties
and constituent concentrations are based on, it is the band ratio
accuracy that determines the usefulness of smartphones as
spectroradiometers. An accuracy and uncertainty of around
2% is well within most user requirements (Section 4.1).

The accuracy of the JPEG data was considerably worse (Section
3.4). In Rrs, the dispersion in the JPEG vs. WISP-3 comparison was
0.0039 (CI 0.0018, 0.0047) sr−1 or 21% (CI 12%, 24%), which is in line
with previous validation efforts for HydroColor (Leeuw and Boss,
2018; Yang et al., 2018) and other JPEG-based methods (Gao et al.,
2020, 2022). AtM � 0.032 (CI 0.023, 0.041) and ζ = 5.5% (CI 3.7%,
6.4%), the same is true for the Rrs band ratios (Yang et al., 2018). The
RAW data performed better on each of these metrics, most notably
by 9× for the RGB Rrs and 2.5× for the band ratios. These results do
not completely invalidate previous JPEG-based methods nor
HydroColor specifically (Malthus et al., 2020), but demonstrate
the significant increase in accuracy and decrease in uncertainty
obtained by using RAW data.

The results for the hue angle α and FU index were less
conclusive. While at first glance the dispersion of
approximately 10° or 1 FU appears to be in line with previous
studies (Novoa et al., 2015; Busch J. A. et al., 2016; Malthus et al.,
2020), our measurement protocol did not follow the EyeOnWater
protocol exactly, so the results cannot be compared directly to the
aforementioned validation efforts. Additionally, our data only
contained 27 smartphone vs. WISP-3 match-ups and even fewer
for the So-Rad, with little diversity. Lastly, hue angles derived
from narrow-bandmultispectral satellite data have been shown to
differ systematically by several degrees, up to 20° in extreme cases,
compared to hue angles derived from hyperspectral data (van der
Woerd and Wernand, 2018; Pitarch et al., 2019). This effect may

also be present in the smartphone data and a correction term in
the hue angle algorithm may be necessary (van der Woerd and
Wernand, 2015). This work used the original hue angle
algorithm, which is based only on the SRFs (Wernand et al.,
2013), to enable a comparison between RAW and JPEG data and
between the current study and previous works, particularly the
WACODI algorithm (Novoa et al., 2015). We recommend that
future work be done to investigate the magnitude of the hue angle
bias in consumer camera data. Interestingly, there was little
difference in accuracy between the RAW- and JPEG-derived
hue angles and FU indices. It is unclear whether this is
because the method is inherently robust to JPEG-induced
errors (Novoa et al., 2015), although Gao et al. (2022) have
suggested that it is not. More data, from more diverse waters,
will be necessary to compare the accuracy of RAW- and JPEG-
based hue angles and FU indices.

A potentially important source of systematic error is the 18%
gray card. While the gray card used here did not deviate
significantly from Rref = 18% (Section 2.3), this may not be
true in general. Since many smartphone radiometry projects are
aimed at citizen scientists, who may purchase a wide variety of
gray cards and may not always use them correctly, this presents
an important possible source for error. Even a small difference in
Rref can significantly bias Rrs. One possible solution to this
problem is to issue or recommend standardized gray cards
(Gao et al., 2022). Characterizing the most popular gray cards
is another possibility (Soffer et al., 1995), whichmay itself be done
through citizen science. The use of relative quantities like band
ratios negates this problem.

4.4 Recommendations
Based on previous work and the results discussed above, several
recommendations can be made. Some are specific to
smartphones, but most apply in general to above-water
radiometry with consumer cameras since the cameras in most
smartphones, digital cameras, UAVs, and webcams are extremely
similar (Burggraaff et al., 2019).

RAW data provide professional-grade radiometric
performance and should be used whenever possible. Most
consumer cameras now support this natively and many
smartphone apps provide this capacity. Within the
MONOCLE3 project, a universal smartphone library for RAW
acquisition and processing is in development. In the future, apps
like HydroColor may simply import this library and use RAW
data without further work from the user. The SPECTACLE
Python library (Section 2.3) provides this functionality on PCs.

Few calibration data are necessary for above-water radiometry.
Our processing pipeline contains bias and flatfield corrections,
demosaicks the data to the RGBG2 channels, and normalizes by
the SRF spectral bandwidths (Figure 3). RAW files from virtually
all cameras contain metadata describing the bias correction and
demosaicking pattern. The flatfield correction requires additional
data, which can be obtained through do-it-yourself methods
(Burggraaff et al., 2019), but may also be neglected at little

3https://monocle-h2020.eu/
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cost in accuracy because its effect is typically small (0.2% for the
iPhone SE and 1.6% for the Galaxy S8) in the central 100 × 100
pixels. The flat-field correction is more important in approaches
that require a wider field-of-view like the multiple gray card
approach (Gao et al., 2022). The bandwidth normalization
divides out in the calculation of Rrs and thus is only necessary
to obtain accurate radiances. The SRFs are also required to
accurately calculate α and convolve hyperspectral data in
validation efforts, but may be approximated by standard
profiles (Leeuw and Boss, 2018). Low-cost smartphone
spectrometers and other novel methods will soon enable on-
the-fly SRF calibrations (Burggraaff et al., 2020; Tominaga et al.,
2022).

As discussed in Burggraaff et al. (2019), it is important to
accurately record exposure settings. In the current study, the
exposure settings were not recorded, so it is not possible to
combine our data with data from other studies, taken with
different settings. The most important exposure settings are
ISO speed and exposure time, which strongly affect the
observed signal, but are not recorded accurately in the image
metadata (EXIF). The settings must therefore be recorded by the
user or the app. Since ISO speed does not affect the signal-to-
noise ratio (SNR), a constant value maybe used. Longer
exposure times increase the SNR but run the risk of
saturation. Ideally, an automatic exposure time is
determined and recorded for each image; if this is not
possible, a single value may be used.

Algorithms to retrieve inherent optical properties from
smartphone-based Rrs measurements are best based on band
ratios since they are the most precise, reproducible, and
accurate. Algorithms based on absolute Rrs in RGB (Leeuw
and Boss, 2018; Gao et al., 2022) are more susceptible to
uncertainty and systematic errors. Because the RGB SRFs
are broad and overlapping, some narrow spectral features
like pigment absorption peaks cannot be distinguished, and
retrieval algorithms require tuning to specific sites (Hoguane
et al., 2012). In edge cases where spectral features fall on
wavelengths where SRFs vary significantly between devices, the
reproducibility of retrieval algorithms between devices may also
vary. For example, the iPhone SE andGalaxy S8 B-band SRFs differ
greatly between 550 and 600 nm (Burggraaff et al., 2019).
Algorithms that use spectrally distinct peaks, for example to
retrieve chl-a concentrations, should be unaffected.
Distinguishing between chl-a and CDOM, which both absorb in
the B and G bands, may require a three-band algorithm that also
estimates the backscattering coefficient bb from the R-band (Hoge
and Lyon, 1996). Alternative color spaces like relative RGB
(Hoguane et al., 2012; Iwaki et al., 2021), hue-saturation-
intensity (Hatiboruah et al., 2020), and CIE L*a*b* (Watanabe
et al., 2016) are also worth exploring. Potential algorithms may be
identified through spectral convolution of archival Rrs spectra
(Burggraaff, 2020).

4.5 Outlook
The findings presented in this work extend to other methods
for smartphone (spectro)radiometry and to most consumer
cameras. This study was performed as a precursor to the field

validation for the iSPEX 2 smartphone spectropolarimeter
(Burggraaff et al., 2020). The uncertainty, accuracy, and
reproducibility of iSPEX 2 data will be comparable to what
was found in this study, although longer exposure times will be
necessary to attain similar photon counts. The low uncertainty
and high accuracy of the Rrs band ratios is particularly
promising since iSPEX 2 will measure hyperspectrally across
the visible range, enabling many such algorithms. Also
applicable to iSPEX 2 are some of the limitations found in
this work, primarily the dependence on a gray card and the
question of sensitivity in low-light conditions.

There is also potential for low-cost cameras, like webcams and
UAV cameras, to augment professional spectroradiometers.
Removal of the direct sun glint remains challenging, requiring
assumptions about the spectrum and wave statistics (Groetsch
et al., 2017; Ruddick et al., 2019). Low-cost camera images, taken
simultaneously with the spectra, could be used to determine the
wave statistics akin to Cox and Munk (1954) but for individual
exposures. A similar system, which flags spectra if the associated
image has saturated pixels, was already demonstrated in Garaba
et al. (2012), and there are further opportunities for image-based
anomaly detection. Finally, low-cost cameras can serve as simple
validation checks for other sensors, for example to identify
normalization problems.

5 CONCLUSION

In this work, we have assessed the performance of smartphones as
multispectral above-water radiometers. We have extended the
existing smartphone-based approaches by using RAW data,
processed through the SPECTACLE method for calibration of
consumer cameras (Burggraaff et al., 2019). Using field data
gathered under realistic observing conditions on and around
Lake Balaton, we have analyzed the uncertainty,
reproducibility, and accuracy of above-water radiometry data
taken with smartphone cameras. Furthermore, by comparing
RAW and JPEG data, we have determined to what extent our
new method improves upon existing work.

The uncertainty of the smartphone data, determined from
replicate observations, was on the percent level and was
comparable to professional radiometers. The typical
uncertainty on Rrs band ratios was 0.5–1.9%, leading to
percent-level uncertainties in retrieved inherent optical
properties and constituent concentrations. This level of
uncertainty falls within the desired limits for many end users.

The reproducibility between smartphones was excellent,
representing a significant improvement over existing methods,
in some cases nearly tenfold. Any differences in the data between
smartphones could be explained by measurement uncertainties.

The accuracy of smartphone data, as determined from match-
ups with reference instruments, was comparable to professional
instruments. The typical difference between smartphone and
reference instruments was 10−4–10−3 sr−1 or 9–13% in RGB
Rrs, and 0.004–0.013 or 1.1–3.8% in Rrs band ratios. These
differences were an improvement of 9× and 2.5×, respectively,
over JPEG data.
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Based on the findings of this study, we recommend the use of
RAW data for above-water radiometry with smartphones by
professional and citizen scientists alike. We further recommend
that retrieval algorithms be based on Rrs band ratios rather than
absolute RGB Rrs. Potential algorithms may be identified through
spectral convolution of archival hyperspectral data. The conclusions
and recommendations described above extend to other consumer
cameras and to hyperspectral approaches like iSPEX 2. Future work
should focus on determining the limitations of consumer cameras,
primarily in terms of sensitivity, and exploring opportunities for
complementary use of consumer cameras and professional
spectroradiometers.
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