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The Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observation (CALIPSO)
satellite was launched in 2006 with the primary goal of measuring the properties of
clouds and aerosols in Earth’s atmosphere using LiDAR. Since then, numerous
studies have shown the viability of using CALIPSO to observe day/night
differences in subsurface optical properties of oceans and large seas from space.
To date no studies have been done on using CALIPSO to monitor the subsurface
optical properties of large, freshwater-lakes. This is likely due to the limited spatial
resolution of CALIPSO, which makes the mapping of subsurface properties of
regions smaller than large seas impractical. Still, CALIPSO does pass over some of
the world’s largest, freshwater-lakes, yielding important information about thewater.
Here we use the entire CALIPSO data record (approximately 15 years) to measure the
particulate backscatter coefficient (bbp,m

−1) across LakeMichigan. We then compare
the LiDAR derived values of bbp to optical imagery values obtained from MODIS and
to in situmeasurements. Critically, we find that the LiDAR derived bbp aligns better in
non-summer months with in situ values when compared to the optically imagery.
However, due to both high cloud coverage and high wind speeds on Lake Michigan,
this comes with the caveat that the CALIPSO product is limited in its usability. We
close by speculating on the roll that spaceborne LiDAR, including CALIPSO and other
satitlites, have on the future of monitoring the Great Lakes and other large bodies of
fresh water.
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1 Introduction

The particulate backscatter coefficient, or bbp (m
−1), is a central inherent optical property

that gives important insight into ecological processes that happen in large bodies of water.
Specifically, bbp has been used as a proxy for particulate organic carbon in regions where
inorganic material concentrations are low (Cetinić et al., 2012). Through this connection, on the
global oceans bbp has been used to quantify global carbon stocks (Loisel et al., 2001; Stramski
et al., 2008; Behrenfeld et al., 2013; Martinez-Vicente et al., 2013), track the vertical migrations
of ocean animals (Burt and Tortell, 2018; Behrenfeld et al., 2019), quantify primary production
(Behrenfeld et al., 2005; Westberry et al., 2008; Schulien et al., 2017), and can be used to
potentially monitor the overall health of water environments. Typically, bbp has been sampled
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globally on the open oceans via two methods. First, by way of in situ
collected measurements from ship (Concannon and Prentice, 2008;
Dickey et al., 2011), aircraft (Hair et al., 2016; Churnside et al., 2017;
Churnside and Marchbanks, 2019), and float surveys (Bittig et al.,
2021). Second, by using ocean color data derived from optical imagery
satellites such as the MODerate-resolution Imaging
Spectroradiometer (MODIS), in which a gridded bbp product is
created (Mélin, 2011; Blondeau-Patissier et al., 2014). Both of these
methods have paved the path of bbp monitoring over the last 20 years.

While in situ sampling and passive sensors are able to provide bbp,
they are not without drawbacks. In situ measurements via ship and
aircraft are costly and the network of ARGO floats is limited in its
spatial coverage. Likewise, MODIS derived bbp can only be collected in
the daytime and can have errors associated in excess of 50% (Hostetler
et al., 2018; Jamet et al., 2019). These drawbacks gave rise to a new era
of bbp collection: LiDAR based satellites (Hostetler et al., 2018; Bisson
et al., 2021). The Cloud-Aerosol LiDAR and Infrared Pathfinder
Satellite Observation (CALIPSO) satellite was launched in
2006 with the primary goal of measuring the properties of clouds
and aerosols in Earth’s atmosphere using LiDAR (Winker et al., 2009;
2010). However, over the 15 years lifespan of the satellite, secondary
uses were identified including its ability to obtain bbp, which was first
done a decade ago (Behrenfeld et al., 2013). Since then, numerous
studies have been done using CALIPSO and other LiDAR based
satellites as a way of collecting bbp (Lu et al., 2014; 2016; 2020;
Behrenfeld et al., 2016; 2019; Bisson et al., 2021).

Most studies which have obtained bbp from CALISPO have done
so on the global oceans, though there have been studies done on a
more localized scale (Dionisi et al., 2020). To date however, none have
been done in a large freshwater environment. This is likely due to the
spatial resolution of CALISPO satellite tracks, which are spaced at
≈ 150 km apart. On the global oceans this is an acceptable resolution
for binning the data into 2° by 2° boxes, such as in Behrenfeld et al.
(2019). However on study regions similar in size to the Great Lakes,
this would be ineffective as one bin would span the entire basin of a
lake. Another likely reason that CALIPSO has not been used to study
large lakes is the need for high resolution (in both time and space)
wind speed measurements, which play a large roll in the calculation of
bbp (Behrenfeld et al., 2013; Hu and Zhai, 2016).

Inland, freshwater lakes can also be optically complex (case 2,
(Morel and Prieur, 1977) when compared to marine environments
(case 1, (Palmer et al., 2015). This stems mainly from differences in
concentrations of optically active constitutes (OAC) compared to
sections of the global oceans (Morel and Prieur, 1977; Gons et al.,
2008; Mouw et al., 2015). Likewise, the specific biological makeup of
phytoplankton assemblages can differ substantially between
freshwater and marine environments (Elser and Hassett, 1994). In
addition, changes in the vertical distribution of particulate
assemblages can vary substantially on freshwater lakes when
compared to their marine equivalent (Scofield et al., 2020). These
phenomenon present their own set of challenges and are unique to the
freshwater remote sensing world.

Drawbacks aside, CALIPSO does make passes over some of the
worlds largest freshwater lakes, specifically Lake Michigan in the
United States. While it is impossible to map trends across the
entire lake using CALIPSO, it is possible to map trends across
individual, satellite flyover tracks. In the scope of Great Lakes
ecosystem, bbp is important to the monitoring of overall lake
health. Decreases in bbp over a 14 year period on Lakes Michigan

and Huron have been tied to the effect of dreissenid mussels,
phosphorus abatement, and climate change on the lakes (Yousef
et al., 2017). In addition, bbp has been monitored and used on the
lakes as a metric to assess particulate assemblages and better regulate
optical signal remote sensing. As the fishing industry on the Great
Lakes is upwards of a $7 billion per year trade, being able to remotely
sense/monitor the health of the ecosystem through bbp would be
extremely valuable (Roth et al., 2012).

Because of high resolution wind speed forecasting obtained from
the National Oceanic and Atmospheric Administration (NOAA)’s
Great Lakes Coastal Forecasting System (GLCFS) (NOAA, 2022), we
are able to obtain bbp from CALIPSO across the lake. Likewise, because
of both NOAA cruises over the last decade and because of recent
advances in using MODIS to obtain bbp (Shuchman et al., 2013), we
are able to compare the results obtained from CALIPSO to others
sampled over similar time periods and locations. Here we show a
method of obtaining LiDAR derived bbp on large, freshwater lakes and
the challenges associated with it. We then compare these results to
both in situ values and results obtained through passive sensors. We
close by speculating on the roll that LiDAR obtained bbp can play in the
future of Great Lakes remote sensing.

2 Materials and methods

2.1 CALISPO bbp

Data used in deriving bbp from CALIPSO comes from NASA/
CNES’s LiDAR Level 1B profile data, Version 4–10 product
(Winker et al., 2009). For the majority of this assessment, we
followed Behrenfeld et al. (2013), implementing changes that
have come about over the last decade to improve the reliability
of the results (Lu et al., 2013; 2014; 2021b; Bisson et al., 2021). A
schematic of how bbp is derived from CALIPSO is shown in
Figure 1. For the scope of this analysis, bbp refers to the
backscatter sampled at 532 nm. At every point along the
satellite track, the co-polarized and cross-polarized channel
returns are extracted. A cross-talk correction between the two
channels is implemented and the transient response from the
surface is removed (Lu et al., 2014; 2021b). The corrected signal is
then used to calculate a depolarization ratio (δt) between the two
channels for the first three bins below the surface of the water.
Following this, a series of filtering is done to eliminate signals that
would result in a contaminated result. Implementation of this
filtering is as follows, as was done in Dionisi et al. (2020):

1) Removal of signal that is, flagged as saturated in the data
product.

Lu et al. (2018) implemented a signal saturation flag to the
CALIPSO data product. Here, we only consider data that is, not
saturated in any way, and ignore data that is, flagged as possibly
saturated or certainly saturated as this signal would not yield reliable
results.

2) Removal of signal that had cloud coverage.
Clouds are identified though two sources. First, if the water surface

peak from the LiDAR return is not within 120 m of the actual surface
(derived from the Digital Elevation Model (DEM) flag on the
CALIPSO data), then the signal is considered to be polluted by
clouds. Second, if the integrated attenuated backscatter (IAB) for
the entire LiDAR return is greater than a threshold value
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(0.017sr−1), then the signal is considered contaminated by clouds
(Dionisi et al., 2020).

3) Removal of the signal where the depolarization ratio (δt)
exceeded 0.5.

Realistic values of the depolarization ratio (δt) certainly would be
below 0.5 (Dionisi et al., 2020). As such, all data returns with a
depolarization ratio greater than 0.5 are not considered.

4) Removal of the signal where the wind speed is less than 2 m/s
and greater than 9 m/s.

Low wind speeds (less than 2m/s) result in signal saturation and
high wind speeds (greater than 9m/s) result in turbid waters. As each
of these cases would result in an unreliable signal, they are therefore
not considered.

After preliminary filtering of the signal, we were able to start the
calculation of bbp. This was done through the use of parameters taken
from Behrenfeld et al. (2013), Bisson et al. (2021), and though two

dynamic variables. A listing of the constants and values are shown in
Table 1. The first dynamic variable used in deriving bbp is the diffuse
attenuation coefficient for downwelling irradiance (Kd), which is
obtained from MODIS optical imagery. Specifics surrounding the
acquisition of Kd are shown in Section 2.2. We chose to directly use the
MODIS derived Kd measurements rather than using the empirical
relationship for Kd in Bisson et al. (2021) because we are analyzing a
freshwater environment. As such, the relationship betweenMODIS Kd

and the depolarization ratio (δt) may be different. However, it is likely
that using either method will result in a very similar result, as the Kd

used in Bisson et al. (2021) is still derived from MODIS via an
empirical relationship.

The second and most important dynamic variable in the
derivation of bbp from CALIPSO is water surface wind speed (v).
Wind speed is used in deriving wave height (Cox and Munk, 1954; Hu
et al., 2008), which is directly used in calculating bbp from the

FIGURE 1
A schematic of how bbp is obtained using the CALIPSO LiDAR. Briefly, the CALIPSO LiDAR profiles the water using two channels. A depolarization ratio (δt)
is then calculated from the return, which is then further turned into bbp following the method outlined in the text.

TABLE 1 A listing of the constants used to derive bbp from CALIPSO channel returns. Further information on the derivation can be found in Behrenfeld et al. (2013).

Variable name Variable value Reference

Below-surface depolarization ratio (δw) 0.1 Voss and Fry (1984), Kokhanovsky (2003)

CALIOP’s off-nadir pointing angle θ) 3° Winker et al. (2009)

Water surface transmittance t) 0.98 Gilman and Garrett (1994)

CALIPSO to MODIS wavelength conversion (b(π)/bbp) 0.32 Bisson et al. (2021)
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depolarization ratio (δt). For every point along the CALIPSO tracks,
we used a dynamic wind speed obtained from NOAA GLCFS
(NOAA, 2022). The high temporal resolution of the wind speed
model allowed us to have wind speed measurements down to the
same hour of each CALIPSO flyover. High winds will result in
waves that make the water too turbid to obtain reliable bbp
measurements and low wind speeds can result in signal
saturation (Behrenfeld et al., 2013). As such, we implemented
a filter by removing all measurements that had a wind speed
greater than 9 m/s and less than 2 m/s (Dionisi et al., 2020), as is
shown in the pre-processing steps. Thus, we can now define bbp as
a function of the depolarization ratio (δt), wind speed v), the
attenuation coefficient for downwelling irradiance (Kd), and the
combination of previously defined constants C) following the
relationship shown in Behrenfeld et al. (2013) as:

bbp � C p f δt, v, Kd( ) (1)

2.2 MODIS bbp and Kd

Level 2 MODIS imagery intersecting Lake Michigan was
downloaded through the NASA Ocean Biology Processing Group
(OBPG; https://oceancolor.gsfc.nasa.gov/). Each image was processed
using the Color Producing Agents Algorithm (CPA-A; Shuchman
et al. (2013)) in order to derive estimates of chlorophyll-a
concentration, suspended minerals concentration, and CDOM
(Colored Dissolved Organic Matter) absorption. Using these three
estimates, bulk absorption and bulk backscatter coefficients were
derived for the following MODIS bands: 412, 443, 488, 531, 547,
and 667 nm. At the same bands, bbp was computed from the bulk
backscatter by removing the backscatter due to pure water (coefficients
derived from Morel et al. (1974). The diffuse attenuation coefficient
(Kd) at the above wavelengths was estimated using a method outlined
in Lee et al. (2005), which uses the bulk absorption and backscatter
coefficients as well as the solar zenith angle.

Yearly average images were also computed for both bbp and Kd.
First, daily average images were generated by computing the mean of
overlapping pixels within all satellite images from a given day. The
yearly average images were then computed as the mean of all daily
images within that year.

2.3 In situ bbp

In situ bbp was sampled by the National Oceanic and Atmospheric
Administration’s Great Lakes Environmental Research Laboratory
(NOAA GLERL). This was done primarily in the spring (March-
May) and summer (June-August), with a scattering of samples in the
fall (September- November), at several stations on Lake Michigan
between 2015 and 2019. Observations of bbp were derived from data
collected by a WET Labs BB9 sensor, which measures volume
scattering coefficients at 9 wavelengths (412, 440, 488, 510, 532,
595, 650, 676, and 715 nm). During sampling, the BB9 is mounted
in a package along with other sensors including a WET Labs ac-s, Sea-
Bird CTD, and WET Labs fluorometer. Packaging these sensors
provides concurrent measurements of salinity, temperature, and
absorption which are necessary for processing BB9 data to bbp. The

package was deployed vertically through the water column using a
crane.

Using the WAP software package (WET Labs), ac-s, CTD, and
BB9 data were converted from binary data to text files, and BB9 data
were processed to bbp using protocols outlined in Zaneveld et al.
(2003). First, the total volume scattering function (βt) is corrected
using the coincident total absorption (at) measurements from the ac-s
after having been re-sampled to the BB9 wavelengths. Next, the
volume scattering function of the water (βw) was calculated
according to Boss and Pegau (2001), utilizing the coincident CTD-
measured temperature and salinity. The particulate fraction of the
volume scattering function (βp) is calculated as the difference between
βt and βw. bbp is then computed according to the following equation
using a χ factor of 1.1 (Sullivan et al., 2013):

bbp � 2π p χ p βp (2)

Finally, the bbp data is binned to 1 m with the vertical profiles then
averaged between 0 and 50 m below the water surface.

2.4 Study regions

For the scope of this assessment, we chose to limit our study to
only Lake Michigan rather than any of the other Great Lakes. This was
done purposefully for a two main reasons. First, the way the CALISPO
flyovers were oriented coincided very well with the geometry of the
lake. For Lake Michigan, the satellite had two unbroken and
intersecting day/night tracks that spanned a few degrees of latitude
(Figure 2). This match up allowed us to effectively preform our
analysis even with the limited spatial coverage of the CALISPO
satellite. Secondly, the distribution of in situ sampled bbp values
was the highest in Lake Michigan. This distribution of samples

FIGURE 2
A map showing the location of the CALIPSO daytime (red),
nighttime (black), and in situ (blue) measurement locations across Lake
Michigan.
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along similar lines of latitude to that of the CALIPSO tracks allowed us
to compare our derived product effectively. A map of both of the
CALISPO tracks used in this survey along with the locations of all in
situ sampling stations is shown in Figure 2.

3 Results

3.1 Yearly average bbp on Lake Michigan

As a first test of the ability to derive bbp from CALIPSO, we
computed an average bbp across the entire lake for every year in the
data record. We did this for both the daytime and nighttime CALIPSO
tracks. To ascertain how this value compared to other measurements
of bbp, we took a yearly average bbp for the MODIS data at the same
location as the CALIPSO data. In conjunction with CALIPSO and
MODIS, we also calculated a yearly average bbp for the in situ data
across the entire lake. We compared the three metrics in Figure 3A
(daytime) and Figure 3B (nighttime). AsMODIS is unable to sample at
nighttime and as there is no documented nighttime bbp samples on
Lake Michigan, the nighttime bbp from CALIPSO is compared to
daytime measurements.

Our results for the daytime flyovers showedmore yearly variability
in the CALIPSO bbp than the MODIS bbp (Figure 3A). However, over
the course of the 15 year period, there was no discernible trend in bbp

(p-value > 0.05). The 95% confidence bounds for the CALIPSO bbp
were similar to that of the MODIS derived results, and much smaller
than the bounds on the in situ sampling. These results also held for the
nighttime CALIPSO results (Figure 3B). However, the nighttime
results are systematically lower for every year in the record when
compared to their daytime counterparts and the MODIS/in situ data.

3.2 Seasonal bbp across Lake Michigan

Both cloud cover and high wind speeds limited the return rate of
usable CALIPSO data and therefore did not allow us resolve seasonal
trends across the lake on a yearly basis. However, because trends
across the 15 years time period of the CALIPSO, MODIS, and in situ
data were largely unchanged (relative to the standard error of the in
situ measurements), we felt justified in combining the entire time
record into a seasonally divided data set and then evaluating this data
set spatially across the lake. We did this for both the daytime and
nighttime measurements. To start, the daytime measurements across
Lake Michigan are shown in Figure 4A. These results are divided up
into four seasons: Spring (March through May), Summer (June
though August), Fall (September though November) and Winter
(December through February).

At a first order evaluation, for the spring, summer, and fall we see
very good coherence between all three methods of collecting Daytime

FIGURE 3
(A) Yearly bbp daytime average across Lake Michigan for CALIPSO (red), MODIS (black), and in situ (blue). (B) Yearly bbp nightime average across Lake
Michigan for CALIPSO (red), MODIS (black), and in situ (blue). Here, MODIS and in situ values are still sampled in the daytime. Error bars for (A) and (B) represent
95% confidence. Intervals. Here, MODIS derived values are different across the lake because the daytime and nighttime CALIPSO tracks differ spatially.
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bbp (Figure 4A). In the winter, we see a much larger divergence
between measurements, which is not surprising in that the MODIS
result is not well calibrated for winter. This could be related to one or
more of the following potential issues. First, the CPA-A, which is used
to generate the MODIS bbp estimates, is calibrated based on in situ
measurements throughout the lakes (Shuchman et al., 2013).
However, because our in situ dataset does not include any
measurements collected in winter, it is unclear how suitable the
current calibration is during the winter season. Second, the
CALIPSO result may also be influenced by ice in the lake. With
these issues in mind, CALIPSO may be able to supplement non-
existent winter sampling campaigns if validation of the result
could be performed. The nighttime measurements from
CALILPSO again show systematically lower response across all
sections of the lake when compared to the daytime sampled
results (Figure 4B). The usable data retrieval rate of the
nighttime measurements was also nearly an order of
magnitude higher then that of the daytime (7% vs. 1%).

Also of note is the lack of CALIPSO daytime data between 42.5°

and 43.5°latitude. This likely is a direct result of the optical complexity
of the waters of Lake Michigan in this region. Satellite optical imagery
frequently shows the existence of sediment plumes in this part of the
lake (Lohrenz et al., 2004; Vanderploeg et al., 2007), which may be

resulting in a CALIPSO return that is, flagged as contaminated (for
one or more of the previously shown filtering steps). Likewise, this part
of the CALIPSO track is mostly nearshore, which further increases the
optical complexity of the water and may result in further signal loss.
This is also related to the large variability of in situ values in these
optically complex waters, which are likely to have more variability in
their bbp relative to portions of the lake that are more spatially
consistent.

3.3 Comparison of CALIPSO vs. MODIS
daytime bbp

To a higher level analysis of the daytime results, there is some
smaller scale divergence across the lake between the CALIPSO and
MODIS measurements. This is especially prevalent in the spring time
(Figure 4A). Taking the in situ values as being ground truth, we next
compared the daytime CALIPSO and MODIS bbp results to the their
closest measurement spatially on a seasonal basis, taking a median
percent error for each season and instrument. We did this for both the
spring and the summer separately (when in situ measurements were
available) and then also combined the results across all seasons
(Figure 5).

FIGURE 4
(A-D) Daytime, seasonal measurements for CALIPSO (red), MODIS (black), and in situ (blue) values of bbp. (E-H) Nighttime, seasonal measurements for
CALIPSO (red), MODIS (black), and in situ (blue) values of bbp. Once again, MODIS and in situ values are still sampled in the daytime. Large variations in situ
values can be partially attributed to differences in sampling longitude.
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We found that CALIPSO derived bbp showed better agreement
relative to the in situ sampling than the MODIS derived bbp. This was
especially true in the springtime where the CALIPSO bbp had a median
percent error of 7% and the MODIS bbp had a median percent error of
27%. In the summer, both instruments were nearly the same in their
performance, with the CALIPSO (14% error) only sightly
outperforming the MODIS (15% error). Finally, taken together
regardless of season, CALIPSO (8%) was closer to in situ values
than MODIS (18%).

4 Discussion

4.1 Weather dependent return rate of
CALIPSO

Our results indicate that CALIPSO can retrieve a reliable bbp
signal on a large, freshwater lake. However, deriving trends with a
higher resolution than yearly across the entire lake or seasonally
across the entire data record is impractical using the CALIPSO
data. This is due to a weather dependent return rate of usable
CALIPSO backscatter data across the lake. For daytime
measurements, the amount of good measurements after filtering
is around 1%. This improves substantially for the nighttime
measurements where the amount of usable data climbs to
approximately 7%. However, even at 7% retrieval, the
limited spatially coverage of CALIPSO prevents a more in
depth analysis.

Reasons for the low usable data percentage of CALIPSO on the
Great Lakes stems mostly from two sources. First, average wind
speeds on Lake Michigan are generally around 6 m/s, with values
varying both spatially and temporally (Li et al., 2010). Due to turbid
waters at high wind speeds and to signal saturation at low wind
speeds, a range of wind speeds of between 2 m/s and 9 m/s is
required in order to reliable derive bbp from CALIPSO (Behrenfeld

et al., 2013). Many of the CALIPSO flyovers on Lake Michigan
take place when the wind speed is greater than the maximum
allowed wind speed, resulting in a considerable loss of data. The
second major source of data loss comes from the cloud coverage on
the great lakes, where the percentage of cloud free days is less than
50% (Ju and Roy, 2008). Clouds prevent reliable retrieval of
the signal from CALIPSO and therefor result in a null
measurement.

A final note on the return rate of usable data from CALIPSO is the
substantially higher retrieval rate in the nighttime hours to that of the
daytime hours (7% vs. 1%). This is likely due to the behavior of clouds
on wind speeds on Lake Michigan between the daytime and the
nighttime. In the daytime, temperature gradients between the lake
and the land produce high winds, an effect which may be diminished
in the nighttime when temperature gradients are much less steep
(Laird et al., 2001). This could result in both less cloud coverage and
lower wind speeds on the lake in the evening hours, resulting in a
higher data usability rate.

4.2 Substantial day/night difference in
CALIPSO bbp

As the usable data retrieval rate for nighttime measurements is
higher for CALIPSO, it would be advantageous to use nighttime
measurements of bbp to further monitor the Great Lakes. However,
our results indicate that there is a substantial offset in nighttime bbp
across all years (Figure 3B) and seasons (Figure 4B). This offset is
sometimes more than 50% lower than the closest daytime
measurement. Theory on the open ocean suggests that the
nighttime measurement should be intrinsically 10% lower due to
the diurnal size differences in particulates (Kheireddine and
Antoine, 2014; Behrenfeld et al., 2019). This difference could be
exacerbated in the freshwater ecosystem where zooplankton and
phytoplankton are stoichiometricly distinct compared to their

FIGURE 5
(A) Spring, (B) Summer and (C) Total percent error in CALISPO (red) and MODIS(black) for daytime measuremnts of bbp.
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marine equivalent, and therefore could have much different and more
amplified diurnal difference to their combined back-scattering (Elser
and Hassett, 1994).

The challenge with validating the nighttime CALIPSO
measurements is the lack of other sources of nighttime bbp to
compare it to. MODIS can only sample in the daytime as it is an
optical instrument and there has not yet been any effort to sample
bbp in the nighttime across the Great Lakes. Because all current and
future LiDAR based satellites will sample in the nighttime, and
because the retrieval rate of usable data for nighttime
measurements is nearly an order of magnitude better than
daytime measurements, future sampling efforts across the Great
Lakes should be gauged to have a nighttime component. This would
serve to validate any future spaceborne LiDAR derived bbp
measurements.

4.3 CALIPSO bbp as compared to MODIS bbp

Our results indicated that daytime derived CALIPSO bbp aligned
better with the in situ sampling when compared to MODIS derived
bbp. This was especially true in the springtime where CALIPSO
measurements were more than 20% closer to the in situ values than
MODIS measurements. However, in the summer months CALIPSO
was only slightly closer than MODIS, with a difference between them
of less than 1%. This result is in line with previous studies on the
global oceans, where CALIPSO performed better than MODIS when
compared to in situ data gathered by the network of ARGO floats
(Bisson et al., 2021). However, it should be noted that in situ
sampling is quite variable and further analysis would be needed
to further examine the performance of the CALIPSO measurements
to MODIS measurements. For example, in situ measurements of bbp
on Lake Michigan are taken only periodically (usually twice a year)
and only at one particular section of the lake. These sampling
campaigns also are done via shipborne collection, which are
intrinsically time consuming. To set up a more consistent and
more efficient sampling campaign, it would be advantageous to
establish a system of floats (similar to the open ocean) that could
collect in situ values of bbp regularly throughout the year. This would
vastly improve the analysis.

The difference in reliability between the spring and summer for
MODIS is likely due the summer biasing of the bbp derivation from
optical imagery. MODIS derivered bbp is calculated, in part, by
using in situ values to calibrate the method. Most of the in situ
sampling that is, used to calibrate the MODIS derived product
comes from summertime measurements. This results in a heavy
biasing towards the summer months which yields a summertime
MODIS bbp that aligns better with in situ measurements and a
springtime MODIS bbp that diverges. Moreover, there is very little
difference in coherence between seasons for CALIPSO because
CALISPO derived bbp is independent of in situ sampling
campaigns.

4.4 The future of CALIPSO and LiDAR in large
lake monitoring

Here, we derived bbp from a spaceborne, LiDAR based,
satellite on a large freshwater lake. We found that bbp derived

in this manner matches well with in situ sampled and MODIS
derived bbp values. We also found that the LiDAR derived values
tend to be closer than the MODIS derived values when compared
to the in situ values, however variability in the in situ sampling
may be biasing this relationship. That said, the practicality of
CALIPSO derived bbp is limited on the Great Lakes due to three
main reasons:

1) The weather dependent retrieval rate of daytime measurements
is less than 1%, which makes monitoring small scale trends nearly
impossible.

2) The spatial coverage of CALIPSO is limited in the scope of the
Great Lakes, where the satellite only makes a few flyovers across repeat
tracks.

3) CALIPSO, after 15 years in service, is nearing the end of its
usable life and therefor further data that will be acquired by the
satellite is likely minimal.

With these drawbacks in mind, the usability of CALIPSO
derived bbp on the Great Lakes likely lies in it ability to
supplement in situ measurements, which are used to validate the
gridded bbp MODIS products. Previously, we stated that CALISPO
was more in line with in situmeasurements than MODIS, especially
in the springtime. This is due to summer biasing which is related to
the heavy summer distribution of in it situ measurements.
However, CALIPSO derived results may be able to serve as
proxy “in situ” bbp values. This would greatly supplement
current sampling efforts and improve MODIS derived bbp
products.

Even with CALISPO coming to an end, the future of
spaceborne LiDAR derived bbp on the Great Lakes is still
bright. Recent studies on the global have used a new
LiDAR based satellite that was launched in 2018, ICESat-2, to
calculate bbp both as an along track variable and as a function of
water depth (Lu et al., 2020; 2021b; a). With considerably
higher spatial coverage than CALIPSO and the ability to profile
bbp at depth, ICESat-2 could provide valuable information about
water quality on the Great Lakes. With that in mind, we believe
that spaceborne LiDAR will be a major component of monitoring
efforts on the Great Lakes over the next 10 years.
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