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For aerosol, cloud, land, and ocean remote sensing, the development of accurate
cloud detection methods, or cloud masks, is extremely important. For airborne
passive remotesensing, it is also important to identify when clouds are above the
aircraft since their presence contaminates the measurements of nadir-viewing
passive sensors. We describe the development of a camera-based approach to
detecting clouds above the aircraft via a convolutional neural network called the
cloud detection neural network (CDNN). We quantify the performance of this
CDNN using human-labeled validation data where we report 96% accuracy in
detecting clouds in testing datasets for both zenith viewing and forward-viewing
models. We present results from the CDNN based on airborne imagery from the
NASA Aerosol Cloud meteorology Interactions oVer the western Atlantic
Experiment (ACTIVATE) and the Clouds, Aerosol, and Monsoon Processes
Philippines Experiment (CAMP2Ex). We quantify the ability of the CDNN to
identify the presence of clouds above the aircraft using a forward-looking
camera mounted inside the aircraft cockpit compared to the use of an all-sky
upward-looking camera that is mounted outside the fuselage on top of the
aircraft. We assess our performance by comparing the flight-averaged cloud
fraction of zenith and forward CDNN retrievals with that of the prototype
hyperspectral total-diffuse Sunshine Pyranometer (SPN-S) instrument’s cloud
optical depth data. A comparison of the CDNN with the SPN-S on time-
specific intervals resulted in 93% accuracy for the zenith viewing CDNN and
84% for the forward-viewing CDNN. The comparison of the CDNNswith the SPN-
S on flight-averaged cloud fraction resulted in an agreement of .15 for the forward
CDNN and .07 for the zenith CDNN. For CAMP2Ex, 53% of flight dates had above-
aircraft cloud fraction above 50%, while for ACTIVATE, 52% and 54% of flight dates
observed above-aircraft cloud fraction above 50% for 2020 and 2021,
respectively. The CDNN enables cost-effective detection of clouds above the
aircraft using an inexpensive camera installed in the cockpit for airborne science
research flights where there are no dedicated upward-looking instruments for
cloud detection, the installation of which requires time-consuming and expensive
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aircraft modifications, in addition to added mission cost and complexity of
operating additional instruments.

KEYWORDS

neural network, cloud mask, cirrus, camera, polarimeter, aerosol

1 Introduction

For passive remote sensing of aerosols from aircraft, the
importance of detecting and masking for clouds below the
aircraft is well-known, but the impact of high-level clouds above
the aircraft is often ignored. In fact, above-aircraft cloud
contamination by thin cirrus or supercooled liquid water clouds
can significantly impact aerosol optical and microphysical property
retrievals (Stamnes et al., 2018). For airborne passive remote sensing
of aerosol, cloud, and surface properties, it is critical to carry
instruments on the aircraft that can detect the presence of above-
aircraft clouds. A recent study reveals that below-cloud aerosols
share properties similar to those without overlying clouds, but the
large fraction of below-cloud aerosols indicates a likely significant
impact of above-aircraft cirrus on the aerosol direct radiative effect.
This significant impact is due to 50% of the total aerosols being
located below thin-cirrus clouds (Hong and Di Girolamo, 2022).
Our paper studies the possibilities of detecting such above-aircraft
clouds from upward-looking cameras mounted in the cockpit and
on top of the aircraft by processing the images using convolutional
neural networks.

Cloud mask improvements can lead directly to better remote-
sensing retrieval products by improving their coverage and
increasing their accuracy, e.g., distinguishing snow-covered
terrain from clouds (Chen et al. (2018); Stillinger et al. (2019). If
cloud masks are highly accurate, retrievals of snow grain size and
water droplet effective radius can be properly applied to the scene
without biases caused by contamination. ACTIVATE, CAMP2Ex,
and future airborne research flight campaigns that rely on passive
remote sensing can benefit similarly from accurate cloud masks.

Camera-based cloud masks can be used to validate satellite-
based cloud masks by providing fine spatial resolution ground truth
validation data. Such satellite cloud masks have been generated by
passive instruments such as the MODIS and ASTER instruments,
and from lidars like CALIOP. Frey et al. (2008) describe how
MODIS cloud masks, such as MOD35 and MYD35, are tested
and evaluated across different case environments in field data
(e.g., nighttime vs. daytime, land vs. ocean, and Sun glint) to
assess where improvements can be made. Studies have shown
weaknesses in the ability of the MODIS cloud masks to detect
optically thin clouds such as thin cirrus. Thin-cirrus clouds do not
have high visibility within MODIS imagery but are able to be
detected by coincident lidar measurements from the CALIOP
instrument (Sun et al., 2011).

Machine learning and specifically neural networks are
increasingly recognized as useful research tools that can help
solve problems in cloud detection and remote sensing. An and
Shi (2015) describe the advancement of cloud detection capabilities
and outline a process of training neural networks to detect clouds by
supplying satellite-based imagery that is human-labeled to indicate
the presence of clouds. The neural networks were able to learn to

detect the presence and location of clouds on a pixel-by-pixel basis.
Further progress was made by Johnston et al. (2017) using a different
internal network structure and hyperparameters to help optimize
the correct learning of cloud imagery. Johnston et al. (2017) used
binary confusion matrix characteristics, such as true positive and
true negative classification success against a testing dataset, to
evaluate neural networks in detecting clouds, which we will
similarly adopt in this study.

We introduce a cloud detection neural network (CDNN)
algorithm to detect the presence of clouds above aircraft using
data from the Aerosol Cloud meTeorology Interactions oVer the
western Atlantic Experiment (ACTIVATE) and the Clouds, Aerosol,
and Monsoon Processes Philippines Experiment (CAMP2Ex) flight
campaigns. These NASA flight campaigns relied on aircraft with
mounted sensors to retrieve readings on cloud and aerosol
properties. From the ACTIVATE and CAMP2Ex flight
campaigns, we use camera data taken from mounted cameras on
an aircraft that view surrounding clouds and atmospheric imagery.
The mounted cameras are positioned to capture imagery from the
forward-, nadir-, and zenith-viewing directions of the aircraft.

For the CAMP2Ex flight campaign, flights took place in the
regions surrounding the Philippines in 2019 to study aerosol–cloud
properties using remote and in situ instruments onboard the
aircraft. The research flights sampled a wide variety of aerosol
types and loadings, from smoke to marine aerosol, and a wide
variety of cloud types from shallow cumulus and thin-cirrus clouds,
while also experiencing the complex meteorology of the local
monsoon season. Camera data that were used for the CDNN
project from the CAMP2Ex flight campaign were sourced from
the P-3 aircraft, capturing imagery from three cameras looking in
the forward-, nadir-, and zenith-viewing directions, respectively.
CAMP2Ex did have an additional aircraft, the Lear Jet aircraft, that
flew during the campaign but did not have mounted cameras that
were used for the CDNN project.

The ACTIVATE flight campaign captured airborne camera
images during flights in 2020, 2021, and 2022 (Sorooshian et al.,
2019). ACTIVATE research flights fly over the western North
Atlantic Ocean area from January to June, each flight year with
some exceptions such as flights in August–September 2020. A high-
flying King Air aircraft made remote-sensing measurements, while
the low-flying HU-25 Falcon conducted in situ measurements.
These two planes fly in vertical coordination to simultaneously
observe aerosol and cloud properties in the same atmospheric
column. Camera data used for the CDNN project were recorded
on the King Air aircraft, capturing data in the forward- and nadir-
viewing directions of the aircraft. Since there was no dedicated
zenith-viewing camera in the ACTIVATE flight campaign, the
forward-viewing camera was angled to allow the partial capture
of above-aircraft clouds.

The CDNN is trained and tested in a manner roughly similar to
the work of An and Shi (2015) and Johnston et al. (2017) but is
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applied to the imagery that is taken from aircraft flight campaigns
and not satellite imagery. Convolutional neural networks have been
used in the past with aircraft imagery for different purposes than
cloud detection, such as object detection of vegetation and assessing
housing damage from natural disasters (Pi et al., 2020). The CDNN
is applied to the camera data to generate cloud masks that flag when
clouds are observed in the image. We compare these camera-based
CDNN above-aircraft cloud masks from a forward-viewing camera
and a zenith-viewing all-sky camera to a cloud mask generated from
downwelling irradiance collected by the prototype hyperspectral
total-diffuse Sunshine Pyranometer (SPN-S) instrument to validate
the CDNN approach (Norgren et al., 2021).

The CDNN project is a novel approach to cloud masking that can
provide an affordable and adaptable way to create cloud masks for
airborne remote sensing. The advantage of using a camera to detect
clouds is that it is cheaper to install and operate than current upward-
looking instruments. Studies have shown that neural network models
can provide advancements in cloudmasking for satellite remote sensing.
Based on the performance outlined in this study, the CDNN is proposed
as a possible inexpensive solution to above-aircraft cloud masking for
future airborne research flights where no other solution is afforded or
possible. The CDNN is adaptable in that it can in the future also be
applied to nadir-viewing imagery for the development of below-aircraft
cloudmasks, taking advantage of the large observing area and fine spatial
resolution provided by modern cameras.

The methodology used to develop the CDNN is provided in
Section 2. The CDNN is validated against human-labeled test data
and SPN-S cloud optical depth (COD) sensor data in Section 3. We
report CDNN cloud masks averaged over flight time in Section 4 for
both the ACTIVATE and CAMP2Ex flight campaigns. We conclude
with remarks on the capability of forward-looking and upward-
looking cameras to detect above-aircraft clouds in Section 5.

2 Methodology

The CDNN is a 2-dimensional convolutional neural network
created to detect cirrus and high-level clouds from airborne-based
camera images. Convolutional neural networks can be used to detect
objects within static frame imagery of footage to ultimately create
indicators for object presence (Sharma et al., 2018). Similar work has
been carried out to create convolutional neural networks to detect
clouds by taking in images from ground-based imagery and
classifying them based on the presence and hue/opacity of the
clouds (Zhang et al., 2018).

Our CDNN is able to output binary classifications in the presence of
clouds within aircraft imagery. The CDNN operates by running a
trained model against each image of the camera data, which generates a
decimal probability P that indicates the likelihood of a cloud being
present within the image. After probabilities are generated for each
image, we then convert them into a Boolean of either “1” for true when
P ≥ .5 or “0” for false when P < .5. A value of “true” represents a cloud
or clouds are present within an image, while “false”means the image is
clear. It should be noted that this probability only indicates whether a
cloud is found somewhere within the image, so this is performed on an
image-by-image basis rather than a pixel-by-pixel basis.

A framework using TensorFlow 2 (Abadi et al., 2016) was developed
to train neural network models that follow the naming convention of

[training dataset].[sample mode]

.[target].[network].[optimizer]

.[batch size].[learning rate]

These naming attributes include the following hyperparameters
that can be used to adjust the training.

1) Training dataset: The set of labeled images to train on
(e.g., setD and setU).

2) Sample mode: The ratio of true to false (e.g., cloudy to non-
cloudy) labels to use for training on the binary-classified data (e.g.,
min indicates a ratio of 1:1 (balanced) and max indicates a ratio of
M:N (unbalanced), where M and N represent all samples within the
dataset for each binary label of true and false classifications.

3) Target: The user-defined label to select for training (e.g.,
cirrus_clouds, cloud_shadows, cas, and white_caps).

4) Network: This denotes the underlying structure of the neural
network, which includes layers, the number of neurons,
activation functions, image augmentations, and image size
(e.g., deep-full, deep-full-squared, and second-features-deep-full).

5) Optimizer: The TensorFlow 2 minimization function in
charge of updating the neural network during training (e.g.,
adam and rmsprop).

6) Batch size: The number of images being considered when
updating the neural network (e.g., 10, 50, and 200).

7) Learning rate: This indicates how rapidly the values learned by
the neural network must be adjusted (e.g., 1e-3, 1e-4, and 1e-5).

The final hyperparameter that needs to be chosen is the number of
epochs. The training is broken into discrete steps called epochs. Each
epoch refers to one iteration of the training process that involves a
minimization process to find the optimal neuron weights and biases.
The entire dataset is used to recompute the weights and biases for each
epoch, but the full dataset is broken into batches according to the batch
size—this is to reduce the memory requirements and improve learning.
Additionally, there is one fixed hyperparameter: the loss function, which
is set to binary crossentropy.

2.1 Labeling and dataset creation

The CDNN models are trained on aircraft camera data from the
NASA ACTIVATE and CAMP2Ex missions. The video footage is
captured from the cameras as listed in Table 1. The cameras are
mounted at the forward-, nadir-, and zenith-viewing regions of the
aircraft. It should be noted that while we have also trained and tested
nadir-viewing CDNN models, the results and performance of these
models are not discussed in this study and will be left for future work.

The raw video footage is divided into either the training or testing
datasets based on the number of original video files. For some of the
research flights, there are multiple video files for a single day, such that a
single research flight day may have video files that are present in both
the training and testing datasets. However, there is absolutely no overlap
in frames between the training and testing datasets, which ensures that
there is no bias when testing the model’s performance. The video
footage from ACTIVATE 2020 and CAMP2Ex 2019 is used to create
the datasets, as shown in Table 2. Then, each of the individual frames
from the videos is saved, constituting the data that make up the training
and testing datasets.
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All frames are manually labeled by hand using a binary classifier
to assess whether a given tag is present in the imagery. Each frame
can have one of three labels.

1) Present: The tag exists within the image.
2) Missing: The tag does not exist within the image.
3) Unknown: As the frames are human-labeled, there are some cases

that cannot be definitively categorized, so we choose to keep them
separate.

The reason for theUnknown label is to ensure that no incorrect data
are used for training or testing the model, as the model may otherwise
learn unintended features in the imagery. Therefore, all frames labeled as
Unknown are dropped from the training and testing data.

2.2 Detection of above-aircraft clouds with
forward-viewing CDNN

The model that is trained to detect forward-viewing clouds is
named:

setD.min.cirrus_clouds

.deep-full.adam.200.1e-5, epoch58

Going forward, this trained neural network will be referred to as
the forward CDNN.

The forward CDNN is trained on setD using data from both
the NASA ACTIVATE and CAMP2Ex flight campaigns as specified
in Table 2. The data are labeled to identify the presence of above-
aircraft clouds using the cirrus_clouds tag. This binary true/
false classifier simply identifies if there are any clouds present or not
in the image. Using the min sample mode, the labeled data consist of
23,009 cloudy cases and 23,009 clear cases for a total of
46,018 samples. This leads to a one-to-one ratio of the binary
label classifications, resulting in a balanced dataset. The forward
CDNN is tested on setK as specified in Table 2, using the same tag
as setD. All the labeled data are used for testing, which consists of
7,112 cloudy cases and 8,127 clear cases for a total of 15,239 samples.
The reason for using all frames via the max sample mode is that we
would like to use all available labeled data that can be tested.

Some of the images that form setD and setK are cropped to
ensure that above-aircraft clouds are featured. This crop encourages
the neural network to focus on learning about the presence or

TABLE 1 Airborne cameras are used in the NASA ACTIVATE and CAMP2Ex campaigns. This table indicates the different camera models used in the ACTIVATE and
CAMP2Ex flight campaigns. We report the time periods that different camera models collected images during eachmission, but it should be noted that these dates
may include test flights and thusmay differ from the official dates for each campaign. Entries with an asterisk indicate the cameras that recorded data used to train
and test our CDNNs.

Mission Collection time period Camera model Viewing direction

ACTIVATE 10-02-2020–30-09-2020 GoPro Hero6 Black* Forward

ACTIVATE 03-02-2021–17-06-2021 Axis F1005-E w/o lens* Forward

ACTIVATE 27-02-2020–02-04-2021 Garmin VIRB Ultra Nadir

ACTIVATE 13-05-2021–10-12-2021 Axis F1005-E w/o lens Nadir

ACTIVATE 15-01-2022–17-06-2022 Axis F1005-E with lens Nadir

CAMP2Ex 03-08-2019–09-10-2019 Samsung SNB-9000s* Forward

CAMP2Ex 03-08-2019–09-10-2019 Samsung SNB-9000s Nadir

CAMP2Ex 24-08-2019–05-10-2019 All-sky camera* Zenith

TABLE 2 Dataset information is used to train and test the forward CDNN and zenith CDNN. The sections denoted with a * represent the number of labeled frames
where a given tag is present. For setD and setK, this is for the cirrus_clouds tag, which is associated with the forward CDNN. For setU and setV, this is for the
cas tag, which is associated with the zenith CDNN. The Used Frames section does not contain an Unknown column since all frames that are not explicitly known
are dropped from the training and testing datasets. Additionally, the Used Frames section specifies the number of frames that are used during training via the
min samplemode and testing via the max samplemode. The datasets have a superscript of either R to label training data or E to label testing data. For the research
flight dates, while theremay be an overlap in the days between training and testing sets, there is zero shared footage. The reason for this is that there are multiple
videos taken on certain research flight days.

Source flight data *All available frames *Used frames

Dataset ACTIVATE 2020 CAMP2Ex 2019 Present Missing Unknown Present Missing

setDR 10-2, 13-2, 15-2, 17-2, 27-2, 28-2, 29-2, 01-3, 02-3, 06-3,
08-3, 09-3, 11-3

30-8, 08-9, 23-9, 25-9, 07-10 23,009 45,615 5,562 23,009 23,009

setKE 14-2, 29-2, 02-3, 08-03 23-9, 25-9, 05-10 7,112 8,127 467 7,112 8,127

setUR — 29-8, 19-9, 21-9, 23-9, 25-9,
27-9

1,036 1,035 470 1,035 1,035

setVE — 16-9 178 37 241 178 37
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absence of cloud features rather than unrelated features such as the
nose of the plane or an overlaid timestamp. All crops are performed
relative to the top left corner of each image since our cropping
algorithms initiate the coordinates (x,y) = (0, 0) as the origin in the
top left of each image. Cropping is only performed on CAMP2Ex
imagery, as we found that cropping does not improve performance
for ACTIVATE footage. For setD, we use a crop of x = [386, 3453]
and y = [75, 1800] to capture the above-aircraft clouds. Then, for
setK, we use a more precise crop of x = [390, 3450] and y = [75,
1000] to better target and test against just the clouds above the
aircraft. Example images with cropping for CAMP2Ex are shown in
Figure 1.

The forward CDNN is built on the deep-full network. Input
images are constrained to a height of 288 pixels and a width of
512 pixels, where input images of sizes outside of this range will be
scaled proportionally. Scaling is performed within the function
preprocessing.image.load_img, from TensorFlow 2’s
Keras library, where we use the default parameter of nearest
neighbor interpolation for scaling (Olivier and Hanqiang, 2012).
The red, green, and blue layers are fed independently into the first
layer, resulting in a complete input size of (288, 512, 3). We
artificially inflate the amount of training data by applying so-
called “augmentations” to the images at random before they are
passed into the neural network. Augmentations represent a random
combination of some or all of the following operations on an image:
1) zooming in toward the center, 2) flipping both vertically and

horizontally, and 3) adjusting the contrast (or brightness). By
applying these augmentations, it helps prevent static portions of
the image, such as a part of the plane, from interfering with the
neural network’s learning. We define the augmentations that are to
be used in the model’s network. The CDNN code calls the
underlying TensorFlow 2 image augmentation functions:
random_brightness, random_zoom, random_flip_

left_right, and random_flip_up_down.
The deep-full network has an architecture with six

convolutional layers. Convolutional layers are the layers of a
network that apply a kernel or filter to an image to extract
spatial features from imagery, such as cloud imagery features in
our case (O’Shea and Nash, 2015). The convolutions have a
monotonically increasing feature count of 32, 32, 64, 64, 128, and
128 to allow further expansion of cloud imagery characteristics.
Each convolutional layer is followed by a (2, 2) pooling layer to cut
down on the number of pixels. Pooling layers are used to remove the
remaining pixels from the border of an image after a convolutional
layer is applied to reduce the image size for the next layer. Then,
during training, a 20% dropout is used after each pooling layer to aid
in the learning of unique features. Dropout allows us to limit
overfitting in our datasets by randomly removing neurons and
their prior connections to make sure that outlier patterns are not
given a higher weighting in output features (Srivastava et al., 2014).
After the convolutional layers are applied, the pixels are flattened
into a single, one-dimensional array. The remaining two hidden
layers are dense, fully connected layers with respective neuron
counts of 128 and 64. Dense layers are connected to prior layers
to be able to map to our output, indicating an ultimate weight and
reporting whether there are clouds present (O’Shea and Nash, 2015).
Both of these dense layers are followed by a 50% dropout rate during
training. The final classification outputs from a singular neuron that
has a sigmoid activation function. We tested many different network
structures, changing the number of convolutional layers, number of
features, dropout size, and pooling size, and ultimately decided on
the aforementioned structure due to the features that were seen
within the layers after applying them to imagery.

The following remaining hyperparameters for the forward
CDNN are passed in during training. The optimizer is adam,
and the loss function is binary_crossentropy. A batch size
of 200 images is used to maximize the use of the available system
memory. The learning rate is set to 1e-3 (.001), which is
TensorFlow 2’s default rate. We tested the forward CDNNs using
different learning rates but did not find an improvement in the
model’s accuracy.

2.3 Detection of above-aircraft clouds with
zenith-viewing CDNN

The model that is trained to detect zenith-viewing clouds is
named.

setU.min.cas.deep-full-square

.adam.200.1e-5, epoch83

Going forward, this trained neural network will be referred to as
the zenith CDNN.

The zenith CDNN differs from the forward CDNN in that it is
trained to detect clouds from an all-sky camera that observes a 180°

FIGURE 1
Examples of forward-viewing imagery from the CAMP2Ex
campaign. The top image is a part of setD, while the bottom image is a
part of setK. The images are cropped to remove the nose of the plane,
remove the timestamp, and to focus on clouds positioned above
the aircraft (white outline). The top image has a cirrus_clouds tag
that is labeled as Present, while the bottom image is labeled as
Missing.
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field of view (FOV). The zenith CDNN is trained on setU using
data from only the CAMP2Ex flight campaign since the ACTIVATE
flight campaign does not include a zenith-viewing all-sky camera, as
specified in Table 2. The data are labeled to identify the presence of
clouds, aerosols, and smoke using the binary classifier cas tag. We
list both aerosols and smoke separately since they have different
visual characteristics, such as smoke being dark and opaque, whereas
aerosols are relatively lighter and more transparent in appearance.
Using the min sample mode to obtain a balanced dataset, the labeled
data consist of 1,062 cases where the tag is present and 1,062 clear
cases for a total of 2,124 samples. The zenith CDNN is tested on
setV as specified in Table 2, using the same tag as setU. All the
labeled data are used for testing, which consists of 178 cases where
the tag is present and 37 clear cases for a total of 215 samples.

In comparison to Section 2.2, the zenith datasets have fewer
labeled images than the forward datasets because the zenith all-sky
camera data are captured approximately every 15 seconds, while the
forward imagery is captured at 30 frames per second (FPS) for
CAMP2Ex and two FPS for the ACTIVATE. The difference in frame
rates means that the zenith-viewing data have much fewer images
for a single flight in comparison to the forward-viewing data. Even
though the zenith CDNN is trained on a smaller dataset than the
forward CDNN, the model is still able to detect clouds with high
accuracy.

The CAMP2Ex zenith-viewing camera is an all-sky camera that
records images at 3096×2080 pixel resolution. The sides are
pillarboxed with black pixels that encapsulate the circular 180°

FOV. The images within setU and setV are cropped to
1280×1280 at the approximate center of the frame using the crop
x = [908, 2188], y = [400, 1680], with respect to the top left corner of
each image, as previously stated. This crop is used to minimize the
impact of clouds near the edge of the camera view that are not
directly above the aircraft while preserving the ability to view clouds

that are within a 60° FOV. We additionally remove the black space
on both sides of the frames of the zenith data that can be partially
seen. The 60° FOV implies that we should apply the zenith CDNN
only when the solar zenith angle (SZA) is less than 60° to ensure the
Sun is above the aircraft. An example image with our specified crop
is shown in Figure 2.

Specular artifacts and noise can exist in the zenith all-sky camera
data due to glare from the Sun, debris on the lens, or specular
reflections. To minimize the impact of these artifacts, we augment
the training data similarly to how it is performed for the forward
CDNN by flipping and scaling the brightness. The zoom
augmentations are not used for the zenith CDNN since we wish
to look for clouds in the entire image that spans 60° FOV. Other
artifacts include reflection attributes within the all-sky camera data,
as shown in Figure 3. These types of artifacts will be referred to as
“reflective artifacts.” Blocking reflective artifacts are reflective spots
that hide objects within a frame of the video. The black reflections
are typically surrounded by a halo of light from similar specular
reflections seen as glare from the Sun. These artifacts are thought of
to be caused by reflections off the aircraft’s body into the lens of the
camera. All artifacts remain in the training and testing data.

The zenith CDNN is built on a network similar to that described
in Section 2.2, but with minor changes to adapt to the needs of our
zenith data and model functionality. The network is called deep-

full-square since it has the same exact network structure as
deep-full but with a newly defined square ratio (1:1) and not a
16:9 ratio. Effectively, the only difference in network structure is that
the first layer has an input size of (1280, 1280, and 3). This change is
needed to allow us to properly apply convolutions without losing
data in our imagery since it has an NxN crop (1280×1280 for setU).
Additionally, we removed the “zoom” augmentation for our imagery
to better train for the holistic image and not center a crop toward a
reflective artifact.

The remaining hyperparameters for the zenith CDNN are
passed in during training. The optimizer is adam, and the loss
function is binary_crossentropy. A batch size of 200 images
is used to fit within the amount of memory that is available on the
node used to train the network. The learning rate is set to a constant

FIGURE 2
Example of the cropped all-sky camera zenith-viewing imagery,
from CAMP2Ex flight 21-09-2019. The images are cropped to remove
clouds near the edge of the camera and the black border on the
image.

FIGURE 3
Example of the reflective artifact (red box) seen in the all-sky
camera and zenith-viewing imagery, from CAMP2Ex flight 27-09-
2019.

Frontiers in Remote Sensing frontiersin.org06

Nied et al. 10.3389/frsen.2023.1118745

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1118745


1e-5, which has been determined by testing with incremental
values between [5e-6,1e-2].

3 Validation

After training our forward and zenith CDNN models, we then
validate them with various methods to understand their
performance. We split our validation methods into two
categories: 1) validation using our human-labeled testing dataset,
and 2) validation against the cloud mask product from the SPN-S
instrument. First, we test the statistical accuracy of the CDNN
models by generating binary predictions on testing datasets and
generating related plots indicating the models’ accuracy. After
selecting the best-performing CDNN models, we can then
compare their predictions against an SPN-S cloud mask to
further validate the usefulness of the CDNN. After these
comparisons, we investigate and discuss the components that
contribute to the inaccuracies between the CDNNs and the SPN-
S and discuss what can be implemented to minimize these impacts.
We, at last, discuss factors that can contribute to inaccuracies in the
zenith and forward CDNNs.

3.1 Camera data testing

To ensure that the CDNN cloud mask can predict the presence
of clouds accurately, we validate this against human-labeled testing
datasets. As part of this analysis, we generate a receiver operating
characteristic (ROC) curve and a binary confusion matrix to better
understand the performance of the CDNN models.

3.1.1 ROC curve
Figure 4 shows a line plot that shows the performance of a binary

classification problem. Contained within the plot is an ROC curve

that represents the success of the CDNNs against the testing datasets
described in Section 2.2 and Section 2.3. The ROC curve
demonstrates the rate at which a classification method, in this
case, our CDNN models, performs better than a random binary
classification, represented by the red dotted line (Hoo et al., 2017). In
general, the closer the ROC point of inflection is to the top left of the
graph, the better the model can distinguish between the label’s
binary classes since it indicates that the model has a much larger true
positive rate. Conversely, when the inflection point of the curve
approaches the random classification line, it indicates that the model
is no better than a random binary classification.

The ROC curve is a helpful tool to analyze the success of a
particular classification method since the ROC curve can indicate
how well a model is able to make a classification better than a
random approach. Since both of our curves are very closely aligned
in the top left of the graphs, we can conclude that ourmodels are able
to distinguish clouds much better than a random classifier.

3.1.2 Confusion matrix
We next investigate the CDNN models using a confusion

matrix, which is another method, similar to ROC curves, for
indicating how well a model can classify data using validation
data (Sokolova and Lapalme, 2009; Johnston et al., 2017).
Confusion matrices are particularly useful to help understand the
ways in which a model tends to misclassify data, providing insight
into when or why the model is providing inaccurate results.
Understanding when and why the model classification is
incorrect allows us to understand the flaws and biases of our
neural network models. If there are clear-cut situations where the
model performs poorly, additional training data can label these
features, which should allow a future model to learn to ignore or
classify them.

Figure 5 shows the performance of our forward CDNN and
zenith CDNNmodels against their respective testing datasets using a
binary confusion matrix. True positive (TP) and true negative (TN)

FIGURE 4
CDNNROC curves. ROC curves for the forward CDNN and zenith CDNNmodels. The forward CDNN is tested against setK, and the zenith CDNN is
tested against setV. The (blue) curve demonstrates the rate at which our CDNN classifies clouds better than a random binary classification. The (red)
dotted line represents a baseline random binary classification for cloud detection, where the classification represents a random assignment as to whether
a cloud is present or not. “Area under the curve” (AUC) represents the total accuracy of the CDNN in accounting for all true positive and negative
classifications.

Frontiers in Remote Sensing frontiersin.org07

Nied et al. 10.3389/frsen.2023.1118745

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1118745


both signify the model is correct in its cloud mask prediction: when
the model indicates clouds are present or not present, it is correct in
its classification compared to the human-labeled testing datasets. A
false positive (FP) occurs when the model predicts that there is a
cloud present but the human-labeled testing datasets mark it as not
cloudy. For false negatives (FN), the model indicates that there are
no clouds, but the human-labeled testing datasets mark it as cloudy.

3.2 Above-aircraft cloud testing with the
SPN-S

Both the forward and zenith CDNN models can detect above-
aircraft clouds for each type of camera. By detecting clouds in the
forward zenith imagery of the aircraft, we can investigate when and
where clouds impact the solar irradiance that would be measured by
the SPN-S instrument. The next step in the validation process is to
measure the accuracy of the CDNNs against the SPN-S, an
instrument that can also be used to detect above-aircraft clouds,
to quantify how well the CDNNs are able to detect clouds, with the
caveat that there are also uncertainties associated with the
capabilities of the SPN-S to detect above-aircraft clouds, for
example, when the clouds are optically thin.

For the CDNN and SPN-S comparisons, we first describe how
we generate an SPN-S cloud mask that detects above-aircraft clouds
by using a threshold on the cloud optical depth (COD) that is
retrieved by the SPN-S instrument. After the generation of the SPN-
S cloud mask, we validate the CDNN cloud masks using two
different comparisons to the SPN-S cloud mask. We first make
time-based comparisons between the forward and zenith CDNN
cloud masks and the SPN-S cloud mask, allowing us to understand
how often these values are in agreement at a high sampling

resolution. After we investigate the frame-to-frame agreement
between the two cloud masks, we can then assess the cloud
masks of CDNN models and the SPN-S on a statistical basis by
computing the total cloud coverage per flight date or flight-averaged
cloud fraction for both the CDNNs and the SPN-S. We also report
the flight-averaged cloud fraction for the ACTIVATE and
CAMP2Ex flight campaigns in Section 4. In this assessment of
flight-averaged cloud fraction, we can identify the research flight
dates that can have the largest discrepancies and investigate the
corresponding imagery for possible factors that cause issues in either
the forward or zenith CDNNs.

We note that in order to compare the forward CDNN and zenith
CDNN with the SPN-S data, we need to perform a crop to only view
above-aircraft clouds in the corresponding CAMP2Ex footage. For
the forward CDNN, we crop the forward footage as described in
Section 2.2 for setK. For the zenith CDNN, we crop the zenith
footage as described in Section 2.3 for setU and setV. We, at last,
note that when comparing with the SPN-S, we use all camera images
available in our analysis, even if the frame is labeled as Unknown.
Thus, the human labels are not taken into account when comparing
against SPN-S data. This choice was made to allow the CDNN to
make predictions against all images for which we have SPN-S data
and to ensure that we do not introduce a bias from our human labels
in the comparisons. However, a cloud detection bias is possible
within our validation analysis against the SPN-S for flight dates that
are included in our training sets (setD and setU).

3.2.1 SPN-S cloud mask
We validate the CDNN cloudmask against a cloudmask derived

from the SPN-S-retrieved above-aircraft COD at 870 nm (Norgren
et al., 2021). We use a constant COD threshold greater than .15 to
indicate the presence of above-aircraft clouds; otherwise, the

FIGURE 5
CDNN confusion matrices. Binary confusion matrices for the forward CDNN and zenith CDNN models. The forward CDNN is tested against setK,
and the zenith CDNN is tested against setV. We use the term Truth as the label for our human-labeled testing dataset and Prediction as the label for the
CDNN model’s prediction for cloud presence. The grid view demonstrates how CDNN models detect clouds both correctly and incorrectly against
human-labeled data. Finally, we define accuracy as ((Cloud Not Present Match) + (Cloud Present Match)) / (Total Entries in Testing
Dataset).
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observation is assumed to be cloud-free. We select this threshold
value by trial-and-error from the range (.01, .25) that best fits the
zenith CDNN flight-averaged cloud fraction and the human-labeled
testing dataset for the zenith-viewing all-sky camera. We found that
compared to the SPN-S COD at 500 nm, the COD at 870 nm
resulted in a better agreement for flight-averaged cloud fraction
compared to the zenith CDNN.

We filter for SZA <45° to ensure that the Sun is in the FOV
of the all-sky camera images and to avoid issues with large
solar zenith angles. We note that after this filtering, there is not
an equal number of samples for each flight date due to
differences in the day of the year, the geographical location,
and the local times of the research flights. We also filter for
altitude >4.5 km to ensure that the SPN-S COD retrievals
correspond to above-aircraft clouds and not significant aerosol
loading.

The resulting SPN-S above-aircraft cloud mask is compared
against the forward CDNN and zenith CDNN cloud masks to
quantify CDNN accuracy on time-based retrievals and flight-
averaged cloud fractions. The comparisons between the forward
CDNN, zenith CDNN, and SPN-S cloud masks are tabulated in
Table 3.

3.2.2 Time-based comparisons of CDNNs and
SPN-S cloud masks

Now that we have binary cloud masks for SPN-S COD data, we
can make comparisons to the binary cloud masks from the forward
CDNN and zenith CDNN. By comparing these CDNN cloud masks
to the SPN-S, we can interpret how well the CDNN is able to detect
clouds in comparison to a mounted instrument. We compare both
CDNNs to the SPN-S cloud masks on a time-relevant scale to ensure
cloud presence is indicated correctly. The comparison methods for
the forward CDNN and zenith CDNN masks to the SPN-S cloud
masks differ slightly due to their differences in the temporal
availability of data.

Zenith CDNN cloud masks are compared to the SPN-S cloud
masks by finding values of the zenith cloud mask that are within ±7 s
of any SPN-S value. Since the zenith footage has many unpredictable
time skips from data point to data point and the SPN-S sensor
retrieves readings every 15 seconds on average, there were very few
instances of exact matches of time values for retrievals in both. Due
to the difference in available data, we extrapolate the SPN-S values
by ± 7 s to ensure that we capture a window of possible retrievals for
each SPN-S retrieval without overlapping SPN-S retrievals. We
additionally check and ensure that only one comparison is made

TABLE 3 CAMP2Ex 2019 flight-averaged cloud fractions. Flight-averaged cloud fractions for each CAMP2Ex flight. The CDNN flight-averaged cloud fraction values
reflect howmuch of the flight imagery contained observable above-aircraft clouds from each camera and SPN-S. The SPN-S cloudmask is produced using the COD
at 870 nm to create a Boolean filter where COD > 0.15 indicates the presence of cloud; otherwise, it is assumed there is no cloud present. We filter for SZA < 45° to
ensure that the all-sky image crop used for the zenith CDNN includes the Sun. Blank entries indicate missing data. We interpolate the forward and zenith CDNNs
and SPN-S onto a common grid, such that we average over the same time interval in each case, that is, only when data from all instruments are present.

Research Date Forward Zenith Forward vs. SPN-S SPN-S vs. SPN-S vs.

flight CDNN CDNN zenith forward zenith

RF1 24-08-2019 .71 .76 −.05 .77 +.06 +0.01

RF2 27-08-2019 .70 .58 +.12 .36 −.34 −.22

RF3 29-08-2019 .62 .62 .00 .60 −.02 −.02

RF4 30-08-2019 .87 .48 +.39 .40 −.47 −.08

RF5 04-09-2019 .59

RF6 06-09-2019 .87 .81 −.06

RF7 08-09-2019 .41 .33 −.08

RF8 13-09-2019 .11

RF9 15-09-2019 .80 0.75 +.05 0.58 −.22 −.17

RF10 16-09-2019 .54 .60 −.06

RF11 19-09-2019 .57

RF12 21-09-2019 .28 .12 +.16 .11 −.17 −.01

RF13 23-09-2019 .18 .25 −.07

RF14 25-09-2019 .11 0.10 +.01 .02 −.09 −.08

RF15 27-09-2019 .19 .11 +.08

RF16 29-09-2019 .85 .83 +.02 .90 +.05 +.07

RF17 01-10-2019 .18 .11 +.07

RF18 03-10-2019 .14 .11 +.03 .10 −.04 −.01

RF19 05-10-2019 .19 .14 +.05 .06 −.13 −.08
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for any data value in either the zenith CDNN or SPN-S cloud masks
to ensure that we do not have any bias in any data points. As shown
in Figure 6, the zenith CDNN experienced 93% accuracy, indicating
high accuracy in above-aircraft cloud detection for the
zenith CDNN.

Forward CDNN cloud masks are compared to SPN-S in a far
simpler manner by comparing every value of the SPN-S data to the
correlated time values in the forward data. We are able to compare
many more data values since the forward CDNN cloud masks
contain data entries for every second within the available
forward-viewing camera data. With many more data points, we
are able to conduct more direct comparisons throughout the
CAMP2Ex flight campaign. However, since the forward camera
views above the aircraft imperfectly, there are many cases when
there are no clouds in the forward camera, but there are clouds
blocking the SPN-S directly above the aircraft, and vice versa,
providing a larger margin of error due to this viewpoint
discrepancy compared to the zenith camera. We note that, as we
stated before in Section 2.2, the cloud masks that we create are
generated on cropped camera data to increase focus on above-
aircraft clouds but are not able to eliminate clouds in front of or on
the horizon of the scene entirely. With the sources of error in mind,
we are still able to achieve 84% accuracy when comparing the
forward CDNN cloud masks with the SPN-S cloud masks, a
lower but still relatively high accuracy in comparison to the
zenith CDNN.

3.2.3 Flight-averaged cloud fractions from CDNNs
and SPN-S

After we analyzed the accuracy of our time-relative comparisons
for SPN-S and CDNN cloudmasks, we next generated a summary of
both retrievals over the span of the CAMP2Ex flight campaign. The
summary calculation that we create is a flight-average cloud fraction

that scales between [0.0, 1.0], where 1.0 indicates that there were
above-aircraft clouds present in the entire flight and 0.0 indicates
that there were no above-aircraft clouds present in the entirety of
that flight. We generate flight-averaged cloud fractions to better
understand the flight campaign’s cloud coverage and to identify
dates to further analyze understanding errors based on camera
imagery. Understanding the causes of errors in forward and
zenith imagery will allow us to understand what can be
improved for our CDNNs and the instruments that we use on
the aircraft. The case study analysis of the imagery error between the
SPN-S and CDNNs is captured in Section 3.2.4.

We calculate the forward, zenith, and SPN-S flight-averaged
cloud fractions by taking the cloud masks for each and averaging all
retrievals for the selected flight. We choose to use all data points, not
just those that were correlated to each other within the extrapolated
15-second window or at exact time points relative to the SPN-S, as
described in Section 3.2.2, to understand how well the SPN-S and
CDNNs can interpret cloud coverage during a flight. This analysis
gives us an indication for the CAMP2Ex and future missions on
whether the zenith all-sky camera is able to capture enough data
points to create a correct flight-averaged cloud fraction. We finally
analyze if the forward-viewing camera exceeds the zenith all-sky
camera in accuracy due to the better availability of data points.

The retrievals for SPN-S, forward, and zenith flight-average
cloud fraction are shown in Table 3. In summary of this table,
we calculate that the mean flight-averaged cloud fraction agreement
on all available flights for the zenith CDNN and SPN-S is .07,
indicating that the values on average are .07 off of each other. For the
forward CDNN, we calculated that the mean flight-averaged cloud
fraction agreement on available flights was .15. Themeans of average
error indicate that the zenith CDNN, even though it has minimal
data points, is still able to outperform the forward CDNN in cloud
detection when compared to the SPN-S.

FIGURE 6
CDNN–SPN-S confusion matrices. Binary confusion matrices were created by comparing forward CDNN and zenith CDNN cloudmasks with SPN-
S cloudmasks. The “Truth” binary values indicate the SPN-S cloudmask, whereas the “Predictions” indicate the CDNN cloudmask predictions. The figure
shows the accuracy of the forward and zenith CDNNs against the SPN-S cloud masks that we generate, and where the error is based on false positive or
negative results.
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3.2.4 CDNN and SPN-S sources of error
After calculating the accuracy for time-relevant cloud masking and

flight-averaged cloud fraction for all CAMP2Ex 2019 data from the
zenith CDNN, forward CDNN, and SPN-S cloud masks, we make a
point-by-point comparison to understand why and when there were
discrepancies between the two cloud masks on the following research
flights: 15-09-2019, 16-09-2019, 29-09-2019, and 05-

10-2019. We find that the discrepancies for the zenith CDNN
primarily occur when optical aberrations in the zenith all-sky camera
data are present, such as dust particles or water droplets on the camera
lens, camera out-of-focus issues that blur the cloud texture, and
automatic gain changes that lead to extreme brightness changes and
cause the clouds to blend in with the sky. Such optical aberrations appear
to cause the neural network tomisclassify the data. Although the training
dataset for the zenith CDNNdid include imagery of such features, which
is likely why the model does not fail in every instance, the issues caused
by these optical aberrations can vary, and there was likely insufficient
data to train the neural network to recognize clouds in all such cases.

We also experienced similar issues in the early forward CDNN
models, but training on larger datasets appears to have helped negate
such issues. We are unable to create a similar solution for the zenith
CDNN since we currently have a limited amount of zenith data due to
its lower frame rate. Increasing the frame rate and testing whether it is
possible to pick a single gain and disable the auto-gain setting may help
improve the cloud detection capabilities of the all-sky camera images
using the zenith CDNN. The other issue we found that contributed to
the zenith CDNN detecting clouds in the all-sky image when they were
not present in the SPN-S is the zenith reflection artifact. The texture of
this spectral reflection, depicted in Figure 3, is similar to the texture of
clouds and, therefore, appears to signal a cloud is present in the internal
feature layers of the neural network. For this particular artifact, we
observed images of clouds and sky present in the location of the
reflection artifact, and if the aircraft’s pitch, roll, and yaw were

consistent from frame to frame, the reflection artifact did not move
at all, indicating that it is in fact due to a reflection.

These visual aberrations in the all-sky imagery impact the
performance of the CDNN, and due to the smaller amount of
available data, we have not been able to completely train out
these issues. Despite these issues, we find that the zenith CDNN
still performs highly for above-aircraft cloud mask purposes in that
it is capable of capturing flight-averaged cloud fractions to within an
average error of .07 of the SPN-S cloud mask, as shown in Figure 7.

Similarly, if we look at possible issues with our forward CDNN
when compared to SPN-S retrievals, the forward CDNN primarily
has errors due to the viewpoint of the camera. As partially discussed
in Section 3.2.2, the forward camera data overlook a large,
widespread viewpoint, as shown in Figure 1, that requires
cropping to ensure only above-aircraft clouds may be visible. If
the crop was not created, there would be much larger inaccuracies in
our forward CDNN; however, the cropping we use in the camera
data is not perfect. When the aircraft experiences different pitches,
rolls, and yaws, below-aircraft clouds may become visible within the
crop. If we were to limit the crop to a smaller, more specific crop of
above-aircraft clouds, we would risk and expose issues of not
observing clouds that would become above-aircraft still, causing
further errors. Related to the cropping conflict, the camera viewing
angle causes discrepancy for forward-viewing camera data because
the camera is angled primarily forward for CAMP2Ex, limiting the
view of above-aircraft clouds. The ACTIVATE mission is able to
view clouds from the forward-viewing camera better since the
camera is slightly angled upward but does not contribute to our
reported SPN-S compared accuracy since the ACTIVATE does not
have an SPN-S mounted on the aircraft.

In summary, we find that both of the CDNNs can successfully
detect the presence of above-aircraft clouds compared to the SPN-S
cloud mask. In the future, the performance of the zenith CDNN can

FIGURE 7
CAMP2Ex 2019 SPN-S vs CDNN flight-averaged cloud fraction. Zenith CDNN flight-averaged cloud fraction compared with SPN-S on a per
CAMP2Ex research flight basis. Red dots indicate the zenith CDNN flight-averaged cloud fraction, whereas the blue dots represent the SPN-S flight-
averaged cloud fraction. Flight-averaged cloud fractions are generated by averaging all zenith CDNN or SPN-S cloud mask values, described in Section
3.2.3. The green line presents the absolute error of the flight-averaged cloud fraction between the two different retrieval methods.
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likely be further improved by training using additional all-sky
camera data from future NASA flights. We make the following
recommendations that may also improve the CDNN performance of
above-aircraft cloud detection using all-sky camera data: 1) test
capturing images at a higher frame rate of one frame per second
rather than every 15 seconds; 2) test whether it is possible to find a
single gain setting to eliminate auto-gain issues; 3) test whether it
would be beneficial to regularly clean the camera lens after each
flight; and 4) identify the source of the specular reflection artifact,
whether it is from an instrument or the aircraft.

3.3 Forward CDNN vs. zenith CDNN for
above-aircraft cloud detection

We also compare the forward and zenith CDNN predictions
with each other. Comparing these two predictions allows us to both
understand the flight-averaged cloud fraction within an entire flight
from both viewing points on the aircraft and test how often above-
aircraft clouds are observable with the forward-viewing camera
mounted inside the cockpit rather than the all-sky camera, which
is mounted externally on top of the aircraft. The forward-viewing
camera can see the entire horizon (and below), while the zenith-view
has a limited view of the horizon. Despite this difference, we still find
that the cloud mask between the two cameras is well-correlated
(Table 3). Most flight dates have very similar flight-averaged cloud
fraction values, with one major discrepancy occurring on 30-08-

2019.
To quantify how well the zenith CDNN and forward CDNN

values correlate, we make a similar comparison as in Section 3.2.4,
where we make point-by-point predictions from both models and
investigate the causes of the error. From this exercise, we can
confirm that the differences are primarily due to the fact that the
forward camera can see more of the horizon and, therefore, can see
clouds ahead out of the plane, even after the crop is applied, as
shown in Figure 1. This issue can be exacerbated when the aircraft
makes turns, which can result in the forward-view seeing clouds that
will not eventually be above the aircraft and subsequently not be
detected by the zenith all-sky camera. Additionally, we must also
consider that we do not have data points for every second of the
zenith-viewing all-sky camera and must thus assume that the flight-
averaged cloud fraction goes unchanged between its sampling rate of
15 seconds. This assumption decreases the zenith-viewing accuracy
when there are small or broken clouds above but close to the aircraft,
for which there are no images but would be captured in the forward
view. Last, if there are clouds behind the aircraft that nonetheless are
above the aircraft and block or scatter light from the Sun, the
forward-viewing camera will be unable to detect them, while the
zenith-viewing all-sky camera can. These are some of the factors that
cause the discrepancies in the data comparisons, yet the two CDNN
models nevertheless have good agreement to within a mean absolute
error of 0.09 on a point-by-point basis.

4 Cloud-masking results

Cloud masking is vital due to the adverse effects that cloud
contamination has against remote-sensing capabilities of aerosol

properties and surface or ocean properties. Assessments of the cloud
masks developed for moderate bandwidth spectroradiometers such
as MODIS identify a need to further validate satellite cloud masks.
Since the airborne cloud mask products created by the CDNN are
useful for the passive airborne remote-sensing instruments, and
because they have the potential to be used for the validation of
satellite cloud masks, we applied the forward CDNN and zenith
CDNN to all camera data available from the ACTIVATE and
CAMP2Ex flight campaigns and created cloud mask products
that can be used for validation or comparison purposes.

These above-aircraft CDNN cloud mask products can provide
cloud detection ground-truth data for the assessment of ASTER and
MODIS cloud masks (Tonooka and Tachikawa, 2019; Sun et al.,
2011). Our current forward CDNN and zenith CDNN above-
aircraft cloud masks can be compared to high-level cloud masks
generated by MODIS and ASTER. In order to make full
comparisons to the MODIS and ASTER total atmospheric
column or low-level cloud masks, we also need to evaluate the
performance of the CDNN below-aircraft cloud mask. Thus, future
CDNN research would involve evaluation of the nadir-viewing
CDNN capabilities in detecting below-aircraft clouds on a pixel-
by-pixel basis with comparisons to ASTER and MODIS.

The archived cloud mask products contain the value “−9999” if
there is no available camera image for a given timestamp. For
example, if the camera was shut off or rebooted during a flight
or if it is capturing images at less than one frame per second. To
account for the zenith all-sky camera and SPN-S sensor, the zenith
CDNN and SPN-S cloud mask are extrapolated over the difference
in timestamps to allow for indirect comparisons when data points
are not available in both datasets.

4.1 CAMP2Ex CDNN cloud masks

Table 3 and Figure 7 report and display the zenith CDNN flight-
average cloud fraction of the research flights for CAMP2Ex. The
CAMP2Ex flight campaign was able to observe different cloud and
aerosol types, as we described in Section 1.

The goal of the CDNN cloud masks is to provide information on
when above-aircraft clouds may be present that can scatter and
absorb sunlight and that then impact the passive aircraft remote-
sensing instruments. The SPN-S measures the downwelling
irradiance and can also be used to derive COD (Norgren et al.,
2021). As we describe in Section 3.2, we use the top-mounted SPN-S
sensor onboard the aircraft for CAMP2Ex to validate the presence of
above-aircraft clouds that could impact passive remote sensors on
the aircraft.

By analyzing our CDNN flight-average cloud fraction, we can
interpret the cloudiness of the CAMP2Ex flight campaign. For
CAMP2Ex, using cloud masks from the zenith CDNN, seven out
of 19 flight dates have above-aircraft cloud fractions that are about
10%–14%, while 10 flight dates have above-aircraft cloud fractions
over 50%. If we compare this to the forward CDNN cloud masks, six
out of 15 flight dates have above-aircraft cloud fractions of 11%–

19%, and eight of the 15 flight dates have above-aircraft cloud
fractions over 50%. Last, for the SPN-S COD cloud masks that we
used in Section 3.2.3, four out of the 12 available flight dates have an
above-aircraft cloud fraction that is below 12%, and five out of the
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12 flight dates have an above-aircraft cloud fraction that is
above 50%.

4.2 ACTIVATE CDNN cloud masks

Figure 8 shows the CDNN results from the entirety of the
ACTIVATE mission. We used the forward CDNN to create
cloud mask predictions for the forward-viewing camera with
crop to specifically view above-aircraft clouds. From these data,

we computed the CDNN flight-averaged cloud fraction for each
remote-sensing research flight from the first two years of
ACTIVATE. As stated before, the camera angle for the forward-
viewing camera was slightly different between 2020 and 2021 due to
different cameras being installed, thus resulting in slight differences
in the FOV of above-aircraft clouds. Although this change may have
some effect on the CDNN’s cloud detection capabilities for clouds
that are directly above the aircraft, we expect little impact due to this
change since the view changes are rather similar to each other.
Changes in the camera position can affect the cloud prediction

FIGURE 8
ACTIVATE CDNN flight-averaged cloud fraction. In the aforementioned figure, we show the flight-averaged cloud fraction results for 2020, 2021,
and 2022 ACTIVATE flight campaigns. Data points are generated by using the forward CDNN to generate cloud masks for each available research flight
date’s camera data. Section 2.2 shows how images from ACTIVATE camera data are cropped to the top section of the forward-viewing camera to focus
on above-aircraft clouds only. Data-points for each date are generated by calculating the (# of Cloudy Images) / (Total # of images). We
should note that some dates contain data from two research flights if there were two flights in a single day. Additionally, dates denoted with a * are test
flight dates from 2020 that occurred before the 2-14-2020 launch of ACTIVATE research flights.
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results for above-aircraft clouds, depending on how the tilt impacts
the up-looking field of view, but can often be accounted for by
cropping the topmost part of the image.

In ACTIVATE 2020, using the forward CDNN to generate cloud
masks, we observed that six out of 25 flight dates had an above-aircraft
cloud fraction below 20%, and 13 out of 25 flight dates had above-
aircraft cloud fractions above 50%. For ACTIVATE 2021, using the
same forward CDNN to create cloud masks, there were three out of
37 flight dates had above-aircraft cloud fraction of 20% or below, and
20 out of 37 flight dates had an above-aircraft cloud fraction above 50%.
Last, for ACTIVATE 2022, there were six out of 47 flight dates had an
above-aircraft cloud fraction of 20% or below, and 20 out of 47 flight
dates had an above-aircraft cloud fraction above 50%.

Cloudmasks, such as those generated by the CDNN, can potentially
help validate satellite-based cloud masks, including for high-level and
low-level clouds. To attempt to validate or create comparisons for our
CDNN cloud masks with satellite data, a viewing angle correction may
be needed to ensure that comparisons are one-to-one. Viewing angle
correction of the camera instruments can correct issues in
corresponding cloud masks to geographic coordinates, since forward
or zenith-viewing clouds could be positioned offset of the plane. Cloud
masks can additionally be used to study the impact of above-aircraft
cloud contamination on aerosols and surface or ocean properties. Such
related studies can further compare CDNN cloud masks and passive
remote sensing instruments, similar to the comparisons we perform in
Section 3.2.

5 Conclusion

Airborne passive remote sensing can be significantly impacted by the
presence of above-aircraft clouds since they will attenuate and scatter the
Sun’s light and thus contaminate retrievals of aerosol and surface or
ocean properties. The CDNN algorithm allows NASA aircraft equipped
with forward- and/or zenith-viewing cameras to detect the presence of
these above-aircraft clouds. Detecting these above-aircraft clouds allows
passive remote-sensing retrieval algorithms to choose whether to filter
out cases containing above-aircraft clouds, develop corrections for the
presence of above-aircraft clouds, or help ensure that clouds do not have
an impact on the retrieval products of interest. This above-aircraft
detection capability is thus vital for any aircraft carrying passive
remote sensors that may be impacted by above-aircraft clouds. We
report that the forward-viewing and zenith-viewing CDNNs have
accuracies of approximately 96% compared to the human-labeled
validation data from the ACTIVATE and CAMP2Ex flight
campaigns. The CDNN models can be readily implemented to
produce above-aircraft cloud mask products from all NASA airborne
cameras and are fast enough to also be applied in near real-time.

There are limitations to the current cloud detection capabilities
of the CDNN. If future missions apply the CDNN to additional or
future airborne campaigns, there may be a need to extend the
training of our models for the new imagery. This extended
training may be necessary to accommodate different camera
models or viewing geometries from the aircraft. Such changes
may lead to decreased performance in cloud detection, which we
do not account for within our study, but which can readily be
explored later on upon such application.We do note that in the early
stages of our research, we trained models using only ACTIVATE

data and attempted to apply those models to CAMP2Ex but found
that the CDNN struggled with cloud detection. While this indicates
there can be limitations in the current CDNN for applications to
new airborne camera datasets, we would expect that as additional
camera data from more airborne campaigns are included in the
CDNN training set, these performance limitations would be
reduced.

In assessing the ACTIVATE and CAMP2Ex flight campaigns
with our CDNN retrievals, we observed that ACTIVATE 2020 had
52%, ACTIVATE 2021 had 54%, ACTIVATE 2022 had 42.6%, and
CAMP2Ex had 53% of flight dates with an observed above-aircraft
cloud fraction of 50% or more. The large cloud fractions during the
flight campaigns indicate the prolonged presence of clouds during
these flights, which could cause potential impacts on passive remote
sensing. Overall, the takeaway is that a significant fraction of each
flight contains scenes with above-aircraft clouds that can
contaminate passive remote sensing retrievals of aerosol and
surface/ocean properties. With an understanding of the impact of
passive remote sensing due to above-aircraft clouds, the CDNN
approach to cloud masking provides a low-cost computational
approach to the detection of above-aircraft clouds.

For future airborne field campaigns with passive remote-sensing
instruments, we recommend at minimum a zenith-viewing all-sky
camera to detect the presence of above-aircraft clouds, but
preferably also an upward-looking sensor such as an SPN-S.
However, a forward-viewing camera is still helpful for above-
aircraft cloud detection compared to no camera but based on the
small amount of zenith-viewing data that we have, we find that the
all-sky camera provides a larger increase in capability. This
recommendation for a zenith all-sky camera is supported by our
comparisons of CDNN and SPN-S time-specific cloud mask
comparisons and mean flight-averaged cloud detection. The
forward and zenith CDNNs were able to achieve accuracies of
84% and 93% when compared to the SPN-S cloud mask at time-
specific intervals. We observed from the flight-averaged cloud
fraction that the zenith CDNN had a mean error of .07 when
compared to the SPN-S flight-average cloud fraction, while the
corresponding averaged error of the forward CDNN was .15. We
further discovered that the averaged error between the forward
CDNN and zenith CDNN flight-averaged cloud detection was .09, in
which 73.3% of the flight-averages were over-estimated for the
forward CDNN in comparison to the zenith CDNN.

It would be informative to investigate further improvements in the
all-sky zenith-viewing data, such as increasing the frame rate, increasing
the image resolution, minimizing reflective artifacts from the aircraft
body and/or other instruments, and setting the camera to use a constant
gain. Such investigations may allow for improved CDNN cloud mask
products, but until such capability is proven, it would be ideal to fly the
all-sky camera with additional upward-looking sensors such as the
SPN-S. Last, it would be possible to investigate the possibility of using a
forward-view camera in the cockpit, that is, mounted such that it is
angled upward to target above-aircraft clouds. This change may allow
for above-aircraft cloud detection without modifying the aircraft to
mount an upward-looking all-sky camera or SPN-S sensor. Tilting
upwardmay allow forward-viewing cameras to have a better view of the
nearby above-aircraft clouds and a lower rate of false detections of
clouds that are too far away from the plane to impact its local radiation
field. The CDNN framework allows for easy re-training of new camera
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data, and an upward-tilted forward CDNN above-aircraft cloud mask
can then be validated against zenith CDNN and SPN-S cloud masks.
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