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This research investigates Land Use and Land Cover (LULC) changes in the Porto
Alegre Metropolitan Region (RMPA). A 30-year historical analysis using Landsat
satellite imagery was made and used to develop LULC scenarios for the next
20 years using a Multilayer Perceptrons (MLP) model through an Artificial Neural
Network (ANN). These maps analyze the urban area’s expansion over the years and
project their potential development in the future. This research considered several
critical factors influencing urban growth, including shaded relief, slope, distances from
main roadways, railway stations, urban centers, and the state capital, Porto Alegre.
These spatial variables were incorporated into the model’s learning processes to
generate future urbanization scenarios. The LULC historical maps precision showed
excellent performancewith a Kappa index greater than 88% for the studied years. The
results indicate that the urbanization class witnessed an increase of 236.78 km2

between 1990 and 2020. Additionally, it was observed that the primary
concentration of urbanized areas since 1990 has predominantly occurred around
Porto Alegre and Canoas. Lastly, the future forecasts for LULC changes in 2030 and
2040 indicate that the urban area of the RMPA is projected to reach 1,137.48 km2 and
1,283.62 km2, respectively. In conclusion, based on the observed urban perimeter in
2020, future projections indicate that urban areas are expected to increase by more
than 443.29 km2 by 2040. The combination of remote sensing data and Geographic
Information System (GIS) enables themonitoring andmodeling themetropolitan area
expansion. The findings provide valuable insights for policymakers to develop more
informed and conscientious urban plans, aswell as enhancemanagement techniques
for urban development.
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1 Introduction

Changes in land use and land cover (LULC) are related to human activity, which tends to
reside in cities in search of jobs, educational opportunities and access to better health services.
Thus, due to economic growth, urbanization increases rapidly. Loss of natural areas and global
climate change are just a few examples of environmental problems caused by LULC changes
(Meraj et al., 2022). The transitions in built-up areas expansion could significantly impact the
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population’s quality of life (Ashaolu et al., 2019). Therefore, it is crucial
to conduct urban expansion simulations.

There are various models available to simulate future scenarios,
including regression models (Hu and Lo, 2007), cellular automata
(Chen et al., 2016), and Markov chain models (Arsanjani et al.,
2011), among others. The advancement of computational
technology has enabled the integration of machine learning
algorithms into studies involving cellular automata (CA) models.
Algorithms such as Artificial Neural Network (ANN) (Li and Yeh,
2002), Support Vector Machine (SVM) (Yang et al., 2008), and
Genetic Algorithm (GA) (Li et al., 2013) have been utilized to tackle
challenges associated with parameter optimization in CA models.
These methods optimize the model parameters to achieve the best
possible results, effectively addressing simulation challenges related
to multiple spatial variables.

However, there are different CA Models variants created to
simulate urban sprawl change, such as SLEUTH (Clarke et al., 1997),
the dynamic urban evolution model (Batty, 1997), the multicriteria
decision analysis with cellular automato (MCDA-CA) (Wu and
Webster, 2000), the multi-agent simulation model (MAS-CA)
(Ligtenberg et al., 2001), the Voronoi-CA model (Shi and Pang,
2000), and the Markov-CA model (Vaz et al., 2014). This study
conducted the urban sprawl simulation and the future LULC
scenarios for the Porto Alegre Metropolitan Region (RMPA)
using CA through the Modules of Land Use Change Evaluation
(MOLUSCE) plugin within the QGIS software.

With a user-friendly and intuitive interface, MOLUSCE
incorporates the Markovian-based probability matrix potential
transition logic and a dynamic simulation framework based on
Artificial Neural Networks (ANNs), Logistic Regression (LR), Multi-
Criteria Evaluation (MCE),Weights of Evidence (WoE) models, and
Multilayer Perceptrons (MLP) (Abbas et al., 2021). This study
utilized the MLP model, an ANN type with supervised learning.
They are commonly employed in pattern classification and tackling
complex problems using the error backpropagation algorithm due to
their training rules (Haykin, 2001).

Remote sensing combined with the Geographic Information
System (GIS) has tools well-suited to assess LULC change.
Therefore, understanding regional and temporal LULC changes
benefits scientists, environmentalists, lawmakers, and urban
planners (Guidigan et al., 2019). LULC transition models aim to
predict when and how often such changes will occur. These future
prediction models are widely used by researchers globally and are
highly valuable in understanding past and future LULC change
patterns (Perović et al., 2018). In recent years, spatial-temporal
forecasting models utilizing CA have been developed to predict
LULC change detection. The CA-ANN model, in particular, has
emerged as a reliable tool used by researchers to analyze LULC
changes (Alam et al., 2021). The CA model has been employed in
urban planning studies due to its ability to integrate spatial and
temporal elements of processes seamlessly. It is also utilized to
examine temporal land-use changes and predict future land use
(Saputra and Lee, 2019).

The RMPA is one of the largest urban concentrations in Brazil,
housing approximately 4.4 million inhabitants. It is considered a
significant area to understand the LULC’s historical changes, as it
has experienced substantial urban expansion in recent decades
(IBGE, 2020). Therefore, recognizing and assessing the

environmental impacts arising from these rapid changes is crucial
(Prenzel, 2004). Furthermore, scenario predictions that incorporate
the temporal evolution of the study area are also significant (Bhatta,
2010). Therefore, historical LULC changes from 1990 to 2020 were
conducted in the RMPA since such analyses have not yet been
performed for this metropolitan area. In addition, this study also
aims to predict the LULC for the years 2030 and 2040 using two
different scenarios.

2 Materials and methods

Assessing, observing, and analyzing a LULC change requires
substantial data. The availability of satellite data captured by various
satellite sensors proves advantageous in LULC studies (Mishra and
Rai, 2016). The remote sensing image processing and analysis
methods employed in this study include cloud and noise
removal, spectral indices generation, Random Forest (RF)
classifier parameter tuning, and the generation and accuracy
evaluation of LULC classification maps were conducted in the
Google Earth Engine (GEE) environment. Afterward, an artificial
neural network with a cellular automaton (ANN-CA) was employed
to model future LULC scenarios in the QGIS software. This
approach relied on space-time transition potential matrices of the
LULC classes and independent spatial variables. This study’s
methodological steps will be detailed in the following subsections
and are shown in the flowchart (Figure 1).

2.1 Study area

The Porto Alegre Metropolitan Region (RMPA) is located in the
Rio Grande do Sul state in Brazil (Figure 2). The RMPA was created
in 1973 by Federal Complementary Law 14/73, currently comprises
34 municipalities with 10,335 km2, and is Brazil’s fifth most
populous metropolitan region. The RMPA is a pole of attraction
and integration for political and socioeconomic dynamics.
Previously, this characteristic was primarily observed in Porto
Alegre and the most populous cities, but it has now extended to
the surrounding municipalities. The RMPA experiences significant
economic expansion as many individuals are drawn to the region by
employment opportunities. This flux of people has contributed to
the area’s robust economic growth within the state over the years
(Secretaria de Planejamento, 2020).

2.2 Dataset

In this study, satellite data from Landsat-5 (sensor: TM) for the
years 1990 and 2000, Landsat-7 (sensor: TM+) for the year 2010, and
Landsat-8 (sensor: OLI) for the year 2020 were chosen between June
and October to minimize visual obstruction caused by cloud cover.
These datasets were accessed automatically from the United States
Geological Survey (USGS) database within the GEE platform.

The independent spatial variables for the CA-ANN model for
the future scenarios in this study were constructed using the road,
railway network data, the Porto Alegre capital location, the other
municipality’s downtown locations, and a Digital Elevation Model

Frontiers in Remote Sensing frontiersin.org02

Fontana et al. 10.3389/frsen.2023.1123254

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1123254


(DEM). These spatial variables were integrated into the model to
capture and represent relevant geographical and transportation
features of the study area.

This study’s declivity (slope) and shaded relief data were derived
from the Shuttle Radar Topography Mission (SRTM) Digital
Elevation Model at a 30 m spatial resolution. This data was
downloaded from the NASA Earth Data website (https://search.
earthdata.nasa.gov/) and accessed in June 2022. These data provide
information about the slope and the terrain shade, essential variables
for analyzing LULC changes in the study area. The vector layers of
roads, railway stations, and municipal downtown locations were
obtained from the OpenStreetMap project (https://www.
openstreetmap.org/), an independent mapping collaborative
project which provides freely accessible data.

This study calculated several Euclidian distance maps based on
the vector layers, including the distance to the road, railway
structures, the city’s downtown, and the capital Porto Alegre
(Figure 3). Calculating these distances provides valuable spatial
information and helps analyze the relationship between LULC
changes and their proximity to transportation infrastructure and
urban centers. According to Sajan et al. (2022), road and railway
stations significantly shape the LULC dynamic conditions. These
transportation infrastructure layers can influence LULC changes
and patterns in a given area. The roads and railroads can impact
accessibility, urban expansion, and the spatial distribution of
different land use categories. Therefore, considering their
influence is essential in understanding and predicting future
LULC dynamics.

FIGURE 1
Methodology flowchart.
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2.3 Pre-processing multitemporal satellite
data

Cloud masking was employed to remove both cloud coverage
and their corresponding shadows from each time series
collection. This technique eliminates all contaminated pixels
caused by cloudiness or no-data conditions, ensuring that only
clear and useable data is retained for further analysis (Langner
et al., 2018; Pimple et al., 2018). By eliminating the cloud’s
influence, the accuracy and reliability of subsequent analyses
and interpretations are significantly improved.

Next, the data from multiple sources for each time slot were
combined into specific data stacks using the median filter, a
common technique used in image processing to reduce noise and
preserve spatial data integrity. By applying it, the resulting data stacks
represent the median values of the input data, effectively decreasing the
outlier’s impact and enhancing the dataset’s overall quality.

For the supervised classification process, in addition to the
conventional bands (B2, B3, B4, and B5 for all the Landsat
family sensor collections), spectral indices such as the
Normalized Difference Vegetation Index (NDVI), Normalized
Difference Built-Up Index (NDBI), and Modified Normalized
Difference Water Index (MNDWI) were used.

These spectral indices provide additional information that helps
distinguish different LULC classes. The NDVI is commonly used to
assess vegetation density and health, with higher values indicating
denser and healthier vegetation Eq. 1. The NDBI highlights built-up
areas, with higher values indicating a higher proportion of built-up
surfaces Eq. 2. The MNDWI is sensitive to water bodies, with higher

values indicating the water presence Eq. 3. Although NDWI is
widely used to detect water bodies, MNDWI performs better
when the water body is mixed with vegetation (Xu, 2006).
Therefore, incorporating these indices into the classification
process allows a more LULC comprehensive analysis, capturing
essential characteristics related to vegetation, built-up areas, and
water bodies, which can improve the accuracy and effectiveness of
the classification results.

NDVI � NIR − RED( )
NIR + RED( ) (1)

NDBI � SWIR1 −NIR( )
SWIR1 +NIR( ) (2)

MNDWI � GREEN − SWIR1( )
GREEN + SWIR1( ) (3)

where red (RED), near-infrared (NIR), green (GREEN), and short-
wave infrared (SWIR1) are the satellite’s bands. These three spectral
indices were added as three bands to each image stack. Finally, the
new stacked image was then used in the RF classifier.

2.4 Machine learning algorithms

The LULC classes used in this study were Cropland, Built-up,
Grasslands, Water, Natural Forest, and Planted Forest. Approximately
300–400 polygonal samples were obtained for each class in the
classification process. The samples were divided into two sets: 70%
were randomly selected for model training, while the remaining 30%
were used to validate the LULC maps. These polygons were uniformly

FIGURE 2
Porto Alegre Metropolitan Region (RMPA) location.
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selected across the study area, with the assistance of high-resolutionGoogle
Earth images.

According to Breiman (2001), the RF classification algorithm is
based on an ensemble learning technique that combines multiple
independent decision trees into a single model. Each tree in the RF is
trained on a random dataset subset, where a data subsample is
randomly selected for training. The tree is constructed during the
process by recursively partitioning the dataset into smaller subsets
based on decision rules derived from the data’s features. Each node
corresponds to a question about the data, and each branch
represents a possible answer. This building tree process enables
the model to learn the relationship between the features of the data
and their respective classes. During the classification phase, each tree
is utilized to classify the image independently, and the final
classification is determined by aggregating the results of all the
trees and assigning the most common class to each pixel.

In the remote sensing image classification, two adjustable
parameters are crucial in the algorithm: the decision trees number
to be generated and the minimum number of nodes. These parameters
are considered “floating” because their values can be adjusted based on
the data-specific characteristics and the desired classification results.
Although, studies such as Pelletier et al. (2016) indicate that the change
in parameter values interferes little with the finalmodel outcome. In this
sense, the decision tree value was set as 50.

After generating the classification results, addressing local
noise, commonly referred to as the “salt and pepper” effect, in

the pixel-based classification is recommended. This can be achieved
by applying a smoothing process using a moving window of size
three on the classified image. The smoothing can be performed
iteratively in three iterations using the majority vote rule. Therefore,
this approach was conducted and helped reduce the impact of
isolated misclassifications and improve the overall accuracy of the
classification.

2.5 Accuracy assessment

As Huang et al. (2017) described, a contingency or confusion
matrix was created using 30% of the sample data reserved for validation
to assess the accuracy of the LULC classifications. The confusionmatrix
compares the predicted classes with the actual classes and
comprehensively assesses the classification performance. It consists
of cells representing the counts of true positives and negatives, false
positives and negatives. By analyzing the values in the matrix, various
accuracy metrics can be calculated, such as overall, producer’s, and
user’s accuracies and the Kappa index (K). This evaluation process helps
in understanding the quality and reliability of the classification results
and identifying areas of improvement if necessary.

A confusion matrix is an algorithm built into GEE, which
validates and evaluates the image classification accuracy. With
the confusion matrix, the K and overall accuracy (OA) are
calculated Eqs 4–6:

FIGURE 3
(A) altimetry; (B) slope; (C) shaded relief; (D) distance from Porto Alegre; (E) distance from railway stations; (F) distance from urban centers;
(G) distance from roads.
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OA � ∑n
i�1xii

N
× 100% (4)

PA � xii

x+i
x100% (5)

UA � xii

xi+
× 100% (6)

where N refers to the rows and columns number in the errormatrix, Xii
corresponds to the number of observations in row i and column i, xi+ is
the row i marginal total, and X + i equals the column i marginal total.

The User Accuracy (UA) for each class is assessed by the
proportion of pixels correctly associated with a given class
relative to the total number of classified pixels. Similarly,
Producer Accuracy (PA) is determined by the ratio of correctly
classified pixels to the total number of pixels in the reference data in
each LULC class. Proportional error reduction is determined by
comparing the errors of a classification class to the errors of a
completely random class. Typically, the magnitude ranges
from −1 to +1. The coherence level is considered adequate when
it is greater than + 0.5. The statistics used to evaluate the accuracy of
LULC maps are metrics established in the literature (Jensen and
Cowen, 1999; Congalton and Green, 2009).

The Kappa index is widely used for evaluating the LULC
classification’s accuracy. However, as mentioned in studies such
as Foody (2010), it has certain limitations and considerations that
should be considered when interpreting its results. It measures the
agreement between the observed classifications and the reference
data, considering the agreement that could occur by chance. It
considers the confusion matrix’s diagonal (agreement) and off-
diagonal (disagreement) elements. Usually, the K can be
influenced by class frequency distribution, sample size, and
confusion matrix structure. For example, if a particular class is
highly dominant or rare in the dataset, it may disproportionately
affect the results. Despite these limitations, the K is still widely used
as an indirect indicator of classification accuracy, providing a single
value that summarizes the agreement between the classifiedmap and
the reference data. However, interpreting it with other accuracy
measures and considering the dataset-specific characteristics and
classification process limitations is essential.

2.6 ANN-CA model

This study utilized theMOLUSCE plugin, which operates within
the QGIS 2.18.10 software, to develop future LULC scenarios for the
RMPA region in 2030 and 2040. The prospective model employed
the ANN-CA method, which offers several advantages, including its
ability to handle complex data, exhibit strong prediction
performance, and require minimal pre-processing of input data
(Abbas et al., 2021).

2.7 Correlation between geographical
variables in the CA-ANN

Pearson’s coefficient was estimated to evaluate the linear
correlation between the independent geographic variables,
LULC spatial-temporal changes conditioners. This coefficient

ranges from −1 to +1, where −1 indicates a perfect negative
correlation, +1 indicates a perfect positive correlation, and
0 indicates no linear correlation between the variables. After
calculating Pearson’s coefficient, it was found that the variables
with the highest correlation with each other include the distance
from stations and roads, urban centers and Porto Alegre, shaded
relief and distance from roads, distance from urban centers and
shaded relief.

2.8 Transition potential modeling

To correctly develop future scenarios, preparing the input layers
must demand special attention from the users since the input layers’
inconsistencies in geometry, pixel size, and projection affect the
results. Thus, all dependent and independent variables were set to
contain the exact spatial resolution of 30 m/pixel and
SIRGAS2000 Datum, 23 S UTM zone projection. Among the
simulation models, the ANN seeks to establish a sigmoid
function numpy. tanh, which is responsible for resizing the
intervals of the transition categories to (y 1,1) during the
configuration of the predictive scenarios (Rahman et al., 2017).

This model encompasses the complex dynamic relationships
logic, which has proven to be highly suitable for modeling temporal
transformations in land use as described in the works of Perović et al.
(2018), and six steps support its execution model, the first being the
loading of inputs comprising the LULC layers associated with the
RMPA physical-social characterization layers.

In the next step, the level of correlation between the first period
and the second period are quantified through the consistency values
present in the intersection between the independent variables, which
can be calculated through Pearson’s equation, Crammer’s
coefficient, or uncertainty of the joint information. In the third
step, the quantitative changes in the area of the use and cover classes
between 2000 and 2010 are stipulated, as well as their expansion or
retraction process, represented in km2.

In addition to generating a transition map that is responsible for
guiding the next step, focused on modeling the transition potential,
being the basis for applying the ANN, MLP, which operates the
transition model based on the collection of input variables, guided
by additional parameters provided by the user, aiming to optimize
the ANN training model to obtain the most reliable result regarding
the 2020 usage and coverage scenario, the trial and error process was
adopted in the parameter adjustments during the fourth step, getting
the following optimized parameters: Iteration rate: 1,000, Learning
rate: 0.001, Momentum: 0.03, Neighborhood: 10 px, Hidden layer:
11. The prediction for the 2020 usage and coverage scenario was
performed using the CA simulation stage (Hakim et al., 2019).

After generating the projection map for the year 2020, it was
compared to the observed LULC map generated by the Randon
Forest classifier in the GEE for the same year. This comparison
aimed to evaluate the ANN-CAmodel prediction performance, then
the validation assessment was employed to calculate the Histogram
Kappa (HisK) Eq. 7, Overall Kappa (OvK) Eq. 8, Location Kappa
(LocK) Eq. 9 metrics, and the percentage of correction Eqs 10, 11.
These metrics play a crucial role in determining the model’s
performance.
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HisK � iPmax i − iP E( )
1 − iP E( ) (7)

Where, HisK is the kappa histogram value for the specific class
“i”, iPmax i is the maximum observed proportion of agreement for
the specific class “i”, and iP(E) is the expected proportion of
agreement for the specific class “ i”.

OvK � P A( ) − P E( )
1 − P E( ) (8)

Where, OvK is the overall kappa coefficient, P(A) is the observed
proportion of agreement, and P(E) is the expected proportion of
agreement.

LocK � P A( ) − P E( )
Pmax − P E( ) (9)

Where, LocK is the kappa location coefficient, P(A) is the
observed proportion of agreement, P(E) is the expected
proportion of agreement, and Pmax is the maximum observed
proportion of agreement.

P A( ) � ∑
cPii

i�1( )
,� ∑

cPiTPTi

i�1( )
(10)

PMax � ∑− i � 1( ) ∧c min PiTPTi( )([ ] (11)

Where, Pii is the proportion of units correctly classified for the
specific class “i”, PiT is the proportion of units of class “i” observed
in the reference classification, PTi is the proportion of units of class
“i” observed in the evaluated classification, P(A) is the correction
percentage, “c” is the total number of classes, and PMax is the
maximum possible value of P(A), considering all classes.

Afterward, the spatial similarity and consistency between them
can be assessed by comparing the actual LULC map with the future
scenarios generated by the CA-ANN model. The LoK quantifies
their spatial similarity relationship, indicating how well they align in
spatial distribution. On the other hand, the OvK assesses the
simulation performance, considering both spatial and non-spatial
comparison aspects. Both cases range between 0 and 1, where values
closer to 1 indicate a higher agreement, whereas values closer to
0 show a lower agreement between the compared factors. The
procedures were performed iteratively, using the trial and error
method. Therefore, several calibrations were tested on the model
parameters until the desired accuracy was achieved.

After obtaining the desired accuracy in the validation stage, the
future LULC projection scenarios for 2030 and 2040 began the last
modeling stage. Initially, the value of “n” in the time transition module
was modified to 2 and 3 in the Input tab of the plugin. This adjustment
wasmade to generate predictions when the input was set as 2000 for the
initial year and 2010 as the final year. The ANN spatiotemporal model
transition was conditioned to be equivalent to 10 years, ensuring a
consistent 10-year interval between the predicted years.

2.9 Annual LULC rate change analysis

In order to measure the annual LULC change rate for the
scenarios, the magnitude of change between the years of interest
was calculated as the difference between the end year and the start

year, then divided by the product between the start year and the
period covered Eq. 12 (Muhammad et al., 2022).

ACR 0 /

0( ) � Fy − Iy
Iy × t

× 100 (12)

where, ACR corresponds to the LULC class annual dynamics rate. Iy
and Fy comprise the LULC class area volume quantifications for the
initial and final year, respectively, and t is the time interval.

3 Results and discussions

3.1 LULC’s classifications assessment

Through the “explain” function executed by the GEE cloud
platform, each variable relevance level used for the LULC
classification scenarios was identified. This function assigns
contribution values to the variables based on the classification
results, where higher values indicate greater importance (Yang
et al., 2008). The normalized indices obtained intermediate scores
for all four classification models performed, while a more dynamic
relevance behavior is found in the spectral bands.

The LULC classes used in this study were Cropland, Built-up,
Grasslands, Water, Natural Forest, and Planted Forest. The Random
Forest algorithm was used to classify the LULC features
corresponding to 1990, 2000, 2010, and 2020 years based on
Landsat data and spectral indices. Each class in square kilometers
(km2) for the RMPA is shown in Table 1, which provides a
comprehensive overview of the spatial distribution and LULC
changes over time, spatially illustrated in Figure 4. The results of
the multitemporal statistical analysis of the LULC spatial dynamics
in the RMPA showed that from 1990 to 2020, there was a linear
growth of urban area and cropland, as can be seen in Table 1 which
shows the area estimates and change statistics of LULC classes for
each year under study.

Kappa statistics, producer, consumer and global precision were
used to evaluate the LULC maps derived from the supervised
classification carried out in the GEE for the years 1990, 2000,
2010 and 2020, which reached an excellent average precision of
0.9. The highest overall accuracy and K were found in 1990, with
0.92 and 0.91, respectively. In 2000, 2010 and 2020, the overall
accuracy and K values were 0.90 and 0.88, 0.90 and 0.88, 0.88 and
0.86, respectively. These results are in agreement with those found
by Phan et al. (2020), who used the RF classifier to produce LULC
maps with “moderate” to “high” accuracy, estimating overall
accuracy levels between 0.84 and 0.89, using different satellite
data, normalized indices, and radar data. The results observed by
Talukdar et al. (2020) evaluate the classification potential of several
machine learning and deep learning algorithms RF, SVM, ANN,
Fuzzy Adaptive Resonance Theory-supervised predictive Mapping
(Fuzzy ARTMAP), spectral angle mapper (SAM) and Mahalanobis
Distance (MD), the results indicate that the RF algorithm estimated
the highest accuracy levels, with 0.89.

Therefore, the accuracy values estimated in our classification
for the RMPA can be considered excellent accordingly
(Congalton and Green, 2009). For the commission and
omission errors in 1990, the grassland class suffered the most
pixel mixing with other classes, mainly cropland, reaching 24%
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and 15%, respectively. The same was observed for 2000 and 2010,
with 28% and 17%, and 23% and 11%, consumer and producer
errors, respectively. However, for 2020, the classes that showed
the most pixel mixtures were natural and planted forests, with
consumer and producer errors of 23% and 24%.

That way, the LULC classifications were consistent with the field
reality. Some questions remained open, especially regarding the
more suitable number of samples used in the validation process. In

this study, the volume of samples presented in the confusion
matrixes comprised 30% of the total volume of the samples
collected, reaching from 300 to 400 polygons per class, which is
usually used in other studies such as in Loukika et al. (2021), Pech-
May et al. (2022). However, in other studies, much larger sample
volumes have been used, such as in Yu et al. (2018). Therefore, we
recommend that future studies test the accuracy values with
different sample volumes to generate LULC validation.

TABLE 1 LULC areas from 1990 to 2020 in km2 and annual change rate (ACR) in percentage.

LULC class 1990 2000 2010 2020 ACR (%)

km2 % km2 % km2 % km2 %

Built-up 603.55 5.84 650.08 6.29 742.46 7.18 840.33 8.12 0.94

Cropland 1802.76 17.43 2052.79 19.85 2160.08 20.88 2300.83 22.25 0.72

Water 244.85 2.37 266.83 2.58 261.20 2.53 246.26 2.38 0.02

Grasslands 3799.30 36.73 3937.83 38.07 3313.14 32.03 3134.24 30.30 −0.71

Natural forest 3708.05 35.85 3210.58 31.04 2992.98 28.94 2860.56 27.66 −0.99

Planted Forest 184.43 1.78 224.82 2.17 873.04 8.44 960.69 9.29 2.69

FIGURE 4
Relationship between the 1990–2020 LULC maps.
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3.2 LULC spatial analysis changes between
1990 and 2020

LULC maps for the years 1990, 2000, 2010, and 2020, derived
from Landsat TM/ETM+/OLI datasets and spectral NDVI, NDBI,
andMNDWI indices, served as a basis for assessing the LULC class’s
spatial dynamics in the RMPA. The variations and estimated percent
area are presented in Table 2. Based on these data, it can be observed
that the LULC feature corresponding to the built-up in the RMPA
has undergone steady expansion since 1990, with a 0.9% annual
increase rate.

The most significant built-up area expansion was found between
2000 and 2010, approximately 14.2%, followed by the decade
2010–2020, 13.1%, and 1990–2000, 7.7%. In the last 30 years,
from 1990 to 2020, the overall built-up area expansion was
greater than 39.2%. The cropland area showed the most
significant growth between 1990 and 2000, with a more than
13.8% increase. While in the two following decades, the area
volume increased by 5.2% and 6.5% for the periods 2000 to
2010 and 2010 to 2020, respectively. In general, the cropland
area showed an increase bigger than 27.6% from 1990 to
2020 and 0.7% annual rate.

In contrast, natural forests presented a linear decrease, which
was most apparent between 1990 and 2000, reaching more than
13.4% suppression, followed by the decade 2010–2020, and
2000–2010, 4.4% and 6.7%, respectively. The native forest overall
decrease in the RMPA from 1990 to 2020 was greater than 22.8%
and about a 1.0% annual decrease rate. Although a natural forest
area reduction has been observed over the decades, the suppression
process is still linear, driven by built-up and cropland expansion.
The grassland areas decreased significantly between 2000 and 2010,
equivalent to approximately 15.8%, followed by the
2010–2020 decade, with a 5.4% decrease. However, it showed a
considerable increase of more than 13.4% between 1990 and 2000.
Even though the entire period of 1990–2020 presented a 17.5%
grassland decrease and 0.7% annual decrease rate. Notably, the
grassland areas in the RMPA have been replaced by built-up,
cropland, and planted forest areas.

The water bodies are composed mainly of the Jacuí, Gravataí,
Caí, and Sinos rivers, and in smaller expression lakes, ponds, and
small dams. In this study, the water LULC class has not changed
much over the years, which may be related to the precipitation

volume in the reference years used to select the satellite images.
During 1990 and 2000, the area increased by approximately 8.9%.
However, from 2000 to 2010, there was a decrease greater than 2.1%;
between 2010 and 2020, this decrease is even more significant,
reaching more than 5.7%. In general, the water gain in the
RMPA from 1990 to 2020 was only 0.58%, representing only a
0.02% annual rate increase.

In this study, the LULC class called “planted forest”
indicated the spaces with Acacia, Eucalyptus, and Pinus forest
crops, which are economically important for the Rio Grande do
Sul state and Brazil’s national territory. The most significant
increase occurred between 2000 and 2010, when the planted
forest class more than doubled, followed by the 1990–2000 and
2010–2020 periods, with increases of 21.9% and 10.0%,
respectively. The overall increase in planted forest from
1990 to 2020 more than quadrupled, and the annual growth
rate was around 2.7%. The LULC spatial dynamic transition
evaluation between 1990 and 2020 revealed a remarkable
expansion in impervious surfaces and cropland to the
detriment of forest and grassland (Table 2).

It can be seen that grassland, natural forests, cropland, planted
forests, and water contributed 1.41%, 0.98%, 0.85%, 0.03%, and
0.02% to built-up class increase, respectively. The natural forest,
along with the grassland, were the ones that contributed the most to
the inter-class dynamics between 1990 and 2020. The natural forest
lost about 0.98% of its areas to built-up, 2.34% to cropland, while the
grassland areas received 4.34%, planted forest received 4.47%, and
water body 0.16%. The grassland areas gave up about 1.41% of its
areas to urban Infrastructure, 5.02% to cropland, 0.08% to water,
3.45% to natural forest, and 1.87% to planted forest.

If current trends continue, future LULC scenarios indicate that
built-up will continue to happen in areas as close as possible to Porto
Alegre and municipalities that offer more opportunities. This
population and development concentration is driven by
proximity to downtown, employment opportunities, and
socioeconomic considerations. However, it is essential to conduct
further analysis and consider other factors, such as infrastructure
capacity, environmental sustainability, and urban planning
strategies, to ensure these areas’ long-term viability and balanced
growth since the results showed a decreasing trend in the natural
landscape and an increase in built-up areas in the past and the
future.

TABLE 2 Temporal changes 1990–2020.

LULC class 1990–2000 2000–2010 2010–2020 1990–2020

km2 (%) km2 (%) km2 (%) km2 (%)

Built-up 46.53 7.71 92.38 14.21 97.87 13.18 236.79 39.23

Cropland 250.03 13.87 107.29 5.23 140.75 6.52 498.07 27.63

Water 21.98 8.98 −5.63 −2.11 −14.93 −5.72 1.41 0.58

Grasslands 138.54 3.65 −624.69 −15.86 −178.90 −5.40 −665.05 −17.50

Natural Forest −497.47 −13.42 −217.59 −6.78 −132.42 −4.42 −847.49 −22.86

Planted Forest 40.39 21.90 648.22 288.33 87.65 10.04 776.26 420.89

Frontiers in Remote Sensing frontiersin.org09

Fontana et al. 10.3389/frsen.2023.1123254

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1123254


3.3 Artificial neural network-basedmodeling
(ANN) in LULC change

The transition matrix is critical for monitoring and
understanding the LULC spatiotemporal dynamics. It can
represent the number of pixels changed from one category to
another. The matrix comprises rows and columns representing
the LULC classes at the beginning and end of the studied period.
The diagonal entries in the matrix are composed of each category
stability level, i.e., the number of pixels that remained in the same
category over the period studied. The off-diagonal entries represent
the transitions from one category to another (Muhammad et al.,
2022).

The transition matrix construction approach is especially suited
for situations with a lot of ambiguity or challenges in implementing
input data. From this process, an index is generated that ranks the
landscape from zero to one, producing a consistent result, where
values close to 1 in the diagonal entries represent the category
stability, while values close to 0 indicate that significant changes
during the period analyzed occurred (Sajan et al., 2022).

In the present study, the transition matrix’s applicability was
essential for analyzing changes in the RMPA landscape over time,
allowing the LULC changing pattern identification. The water and
natural forest were the most stable in the first period, with change
probabilities equivalent to 0.857 and 0.731, respectively. In contrast,
grasslands, cropland, and planted forests had their stability levels
reduced to 0.725, 0.660, and 0.468. It is worth mentioning that built-
up presented a stability level of 0.689, and in the cropland and
grassland, the main contributions were 0.047 and 0.027, respectively.
In the second period, water and built-up had the highest stability
levels, 0.835 and 0.824, respectively. The cropland, grassland,
natural, and planted forests had reduced levels of transition
stability, 0.647, 0.656, 0.656, and 0.631, respectively.

The classes that contributed the most to built-up remained
cropland, 0.035, and grassland, 0.031. In the last period, the
transition values for built-up and water were 0.846 and 0.810,
respectively. In contrast, the values for cropland, grassland, natural,
and planted forest were 0.687, 0.674, 0.665, and 0.419, respectively,
similar to the first and second periods. Finally, the LULC classes that
contributed the most to built-up were cropland, 0.038, and grassland,
0.029. During the study period, there was significant pressure on the
natural forest and grassland areas, which had part of their areas
absorbed by other LULC classes. The transition matrix between
1990 and 2000 shows this dynamic, with these being the classes
with the lowest stability, 0.579 and 0.564, respectively.

3.4 Forecasting and validation LULC 2020

Based on the LULC changes in historical data between 2000 and
2010, the CA-ANNmethod was used to project, in the first instance,
the 2020 LULC condition with a 10-year phase extension and one
iteration. Subsequently, the simulated 2020 LULC scenario was
compared to the actual 2020 LULC obtained from the supervised
classification using the RF algorithm (Figure 5) and Table 3. After
the simulated model accuracy validation, the same CA-ANN
framework was used and replicated to estimate the LULC
scenarios for 2030 and 2040, presented in Figure 6 and Table 4.

The estimated model accuracy measurement from the
comparison between the LULC simulation projected for
2020 and the actual LULC for 2020 presented the HisK, OvK,
and LoK of 0.80, 0.65, and 0.80, respectively, and 73.5% of
percentage correctness. These results validate the simulation
model’s suitability for predicting LULC future scenarios for the
RMPA. For example, Muhammad et al. (2022) also used the CA-
ANN approach in the MOLUSCE to analyze future spatiotemporal
changes for Linyi, China, in 2030, 2040, and 2050 and got a LocK of
0.97, an percent of correctness of 65.80%, and an OvK value of 0.48.
Another study for future LULC scenarios of 2030, 2040, and 2050 in
Guangdong Hong Kong Macau, China got a validation OvK of 0.76,
an percent of correctness of 96.25%, and LocK of 0.94 (Abbas et al.,
2021). While in Dehingia et al. (2022), the validation indices were:
HisK of 0.89, OvK of 0.61, and LocK of 0.69, with a 72.81% percent
of correctness to estimate the future condition of 2029 for the
Balikpapan City, Indonesia. In Gao et al. (2023), the future
LULC scenarios in the Greater Yellow River region obtained an
OvK of 0.94, HisK of 0.98, LocK of 0.95, and 96.42% percent of
correctness. Therefore, we can infer that our simulation validation
results are suitable for estimating the future LULC conditions for
2030 and 2040 in the RMPA.

FIGURE 5
Current and projected LULC maps for 2020.
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3.5 Land cover forecast in 2030 and 2040

The future scenario for 2030 and 2040 shows the cropland,
built-up, and planted forests as the main LULC expanding classes
(Table 5). The results indicate that by 2030, the cropland areas
will show an increase of more than 12.0% compared to the
2020 actual scenario, equivalent to a 1.2% annual rate

increase. For 2040, cropland areas are projected to still
increase, reaching more than 42.1% of the 2020 area,
indicating a 2.1% yearly growth rate and a 122.6% increase
compared to the 2030 scenario. In addition, for the 2030 to
2040 period, an annual 2.6% growth rate is projected. Similarly,
the model predicts a linear expansion for planted forest areas,
with a 15.1% expansion for 2030, a 1.5% annual rate, and a 33.9%
increase for 2040, reaching about 1.7% yearly growth concerning
2020. It is worth mentioning that planted forests will increase by
about 16.3% in 2040 compared to 2030, reflecting a 1.6% annual
growth rate between the years.

In turn, built-up areas will also increase in future scenarios,
reaching more than 35.3% in 2030, compared to 2020, reaching a
3.5% annual growth rate, the highest recorded for this time series.
Whereas in 2040, it will present a 52.7% increase indicating a yearly
expansion rate of 2.6%. It is worth noting that despite maintaining a
built-up growth trend in 2040, with a positive annual rate of 1.28%,
this increase was 12.8%, reaching a 63.6% smaller area advance than
that observed from 2020 to 2030.

Regarding the other LULC class’s prediction for 2030 and
2040, the most significant decrease occurred for the natural
forest, which in 2030 will present an area loss corresponding to
20.2% concerning 2020, reaching a 2.0% annual rate decrease.
While in 2040 a loss of natural forest equivalent to 33.9% is
estimated compared to the 2020 scenario, getting a 1.70% yearly
rate loss for the same period. Following the same trend, the
grassland will present a decrease of about 4.6% in its by the year
2030, concerning 2020, keeping a 0.4% annual rate, and for

TABLE 3 Actual and projected LULC for 2020.

LULC class Actual Projected Percent of correctness Kappa

km2 % km2 % Overall Histogram Location

Built-up 840.33 8.12 1032.70 9.98 73.50% 0.65 0.80 0.80

Cropland 2300.82 22.25 2039.72 19.72

Water 246.26 2.38 271.53 2.63

Grasslands 3134.24 30.30 3302.15 31.93

Natural Forest 2860.56 27.66 2837.83 27.44

Planted Forest 960.69 9.29 858.96 8.30

FIGURE 6
Predicted LULC maps for 2030 and 2040.

TABLE 4 Predicted area statistics in 2030 and 2040.

LULC class 2030 2040

km2 % km2 %

Built-up 1,137,484 11.00 1,283,620 12.41

Cropland 2,578,284 24.93 3,270,507 31.62

Water 249,729 2.41 236,851 2.29

Grasslands 2,990,294 28.91 2,375,133 22.96

Natural Forest 2,280,977 22.05 1,890,448 18.28

Planted Forest 1,106,151 10.69 1,286,359 12.44
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2040, a 24.2% reduction related to 2020, indicating a 1.2%
yearly loss.

For the water, an 1.41% area increase is forecast for
2030 concerning 2020, indicating a 0.14% annual gain. In
contrast, for 2040, a loss of 3.8% is estimated, reaching a 0.19%
yearly decrease. According to the future scenarios, the LULC
changes will adversely impact environmental and socioeconomic
structures, mainly with cropland and built-up areas, in contrast with
decreased vegetation and water. Similar trends are found in other
studies worldwide, such as in Muhammad et al. (2022), Padma et al.
(2022), Barwicka and Milecka (2022), Sajan et al. (2022), and Gao
et al. (2023). Therefore, indications that the LULC changes behavior
obtained for the RMPA follow a similar trend to those observed in
other regions around the globe.

Regarding the contribution of LULC in built-up areas for
future scenarios from 2030 to 2040 in the RMPA, there was a
variation of cultivated area, pasture and natural forest of 1.7%,
0.6% and 1.3% for built-up areas, respectively. In addition,
grassland was the class that contributed the most change,
reaching 6.1% for cropland, while the natural forest class
contributed 2.4% for planted forests increase. Therefore, this
study can help formulate a better land use management policy in
the Metropolitan Region of Porto Alegre. Furthermore, the study
demonstrates the ability of the CA-ANN model to develop future
LULC scenarios and understand the spatiotemporal changes. So,
combining satellite remote sensing data with GIS has generated
much interest due to concerns about the LULC dynamics
(Lambin et al., 2001).

4 Conclusion

This research aimed first to determine the spatiotemporal
dynamics present in LULC classes between 1990 and 2020 and
second to develop future LULC scenarios for 2030 and 2040 for
the Metropolitan Region of Porto Alegre (RMPA), located in the
Rio Grande do Sul state, Brazil. Therefore, the Random Forest
algorithm in the GEE cloud processing environment was used for
the first aim to classify LULC conditions for 1990, 2000, 2010,
and 2020 from Landsat, TM, ETM+, and OLI data, respectively,
reaching an excellent global accuracy of 0.92, 0.90, 0.90, 0.88 for
the years under study. Then, the LULC simulation was
successfully estimated and validated for 2020, and the CA-

ANN model was used to develop the 2030 and 2040 future
LULC scenarios in the RMPA in the second aim, reaching a
0.65 overall Kappa index, 0.80 histogram Kappa, 0.80 Location
Kappa and 73.50% percentage of correctness.

Thesethe findings in the validation statistics make it possible
to infer that the model demonstrates good effectiveness in
prospecting the LULC spatial conditions. The future scenarios
regarding LULC changes for 2030 and 2040 highlighted that
built-up, cropland and planted forests will be together the most
representative areas along the RMPA boundaries, reaching
46.6% and 56.4%in 2030 and 2040, respectively. The built-up
stands out as having the highest expansion rate in the area,
reaching 35.3% and 52.3% increase in 2030 and 2040,
respectively. In contrast, in the same period in 2030, natural
forests will lose the largest area, suffering an area decline of
20.26%, followed by the grassland that will lose about 4.6% of its
area in 2020.

In addition, by 2040, the natural forest loss is expected to be
approximately 33.9%, followed by the grassland loss of 24.2%
concerning 2020. Therefore, the present study highlights the
relevance of monitoring the past and developing future LULC
scenarios. Moreover, similar LULC pattern behaviors observed in
the RMPA were also found in other regions of the country and the
world, indicating that the methodology in this study could be
replicated in other metropolitan regions.

The results obtained through modeling and predicting
landscape patterns highlighted the need to consider physical
elements and factors such as development policies and
climatic conditions for a more comprehensive understanding
of the LULC transitional dynamics in future studies. Therefore, it
is suggested that future research incorporate a wide range of
factors and data to deepen the knowledge of the effects of these
elements on landscape patterns. Such more comprehensive
investigations will be crucial to informing land managers and
risk decision-makers, enabling the development of effective plans
to mitigate the climate change impact and promote more
sustainable use of the environment.

Understanding the built-up sprawl effect is essential to plan
and develop better cities. This study took into account significant
factors influencing urban sprawl. The variables used in the CA-
ANN model were critical determinants as they significantly
affected the LULC change mechanism. Based on the results, it
is understood that the factors used were shown to be very

TABLE 5 LULC temporal changes in 2020 and 2040.

LULC class 2020–2030 2020–2040 2030–2040

km2 % ACR (%) km2 % ACR (%) km2 % ACR (%)

Built-up 297.15 35.36 3.54 443.29 52.75 2.64 146.14 12.85 1.28

Cropland 277.46 12.06 1.21 969.68 42.14 2.11 692.22 26.85 2.68

Water 3.46 1.41 0.14 −9.41 −3.82 −0.19 −12.88 −5.16 −0.52

Grasslands −143.95 −4.59 −0.46 −759.11 −24.22 −1.21 −615.16 −20.57 −2.06

Natural Forest −579.58 −20.26 −2.03 −970.11 −33.91 −1.70 −390.53 −17.12 −1.71

Planted Forest 145.46 15.14 1.51 325.67 33.90 1.69 180.21 16.29 1.63
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influential in the way in which urban sprawl occurred and may
continue to occur.
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