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The identification of bedforms has an important role in the study of seafloor
morphology. The presence of these dynamic structures on the seafloor represents
a hazard for navigation. They also influence the hydrodynamic simulation models
used in the context, for example, of coastal flooding. Generally, MultiBeam
EchoSounders (MBES) are used to survey these bedforms. Unfortunately, the
coverage of theMBES is limited to small areas per survey. Therefore, the analysis of
large areas of interest (like navigation channels) requires the integration of
different datasets acquired over overlapping areas at different times. The
presence of spatial and temporal inconsistencies between these datasets may
significantly affect the study of bedforms, which are subject to many natural
processes (e.g., Tides; flow). This paper proposes a novel approach to integrate
multisource bathymetric datasets to study bedforms. The proposed approach is
based on consolidating multisource datasets and applying the Empirical Bayesian
Kriging interpolation for the creation of a multisource Digital Bathymetric Model
(DBM). It has been designed to be adapted for estuarine areas with a high
dynamism of the seafloor, characteristic of the fluvio-marine regime of the
Estuary of the Saint-Lawrence River. This area is distinguished by a high tidal
cycle and the presence of fields of dunes. The study involves MBES data that was
acquired daily over a field of dunes in this area over the span of 4 days for the
purpose of monitoring the morphology and migration of dunes. The proposed
approach performswell with a resulting surfacewith a reduced error relative to the
original data compared to existing approaches and the conservation of the dune
shape through the integration of the data sets despite the highly dynamic fluvio-
marine environments.
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1 Introduction

Bathymetric data acquired byMultiBeam EchoSounder (MBES) can be used for multiple
applications, the primary purpose being to produce nautical charts. These datasets with high-
resolution and accuracy can also be used to study the seafloor morphology, to inspect
underwater engineering structures, and for the maintenance in navigation channels by
dredging operations (Debese et al., 2016). In this context, the identification of the underwater
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sedimentary structures and their dynamics from a DBM (Digital
Bathymetric Model) is crucial to ensure safe navigation. Underwater
dunes have shown to be hazardous bedforms due to their significant
dimensions and their mobility on the seafloor. Hence, they represent
a risk to safe navigation since shipping routes necessarily pass over
dune fields and sand banks, especially nearshore to access harbors
and in navigation channels (Ogor, 2018). The study of underwater
dunes frequently involves a large area of interest for which a single
bathymetric dataset is not sufficient. Indeed, the swath of the MBES
is relatively narrow and the speed of the vessel relatively low (e.g.,
Five knots) which limits the covered surface per survey day. In
addition, the depth variations over an area of interest may require
various data acquisitions with a variety of vessels and sensors. This is
particularly the case in shallow waters. Therefore, the study of these
bedforms in large areas of interest requires the integration of multi-
survey bathymetric datasets to produce a general DBM, particularly
when studying the formation and migration of bedforms. These
complex processes involve not only the bedforms themselves but the
surrounding area. In such context, specific areas within a general
DBMmay require frequent updates in zones that are highly dynamic
(e.g., field of dunes). This can be achieved by substituting the most
up to date dataset within the general DBM to accurately represent
the surface of the highly dynamic zones within the general DBM.

The integration of different bathymetric datasets to generate a
generic seafloor surface is a complex issue. Indeed, such integration
can be an intricate task, particularly in shallow waters for which
bathymetric data are scarcer, acquisitions can be hazardous
(Hogrefe et al., 2008) and there is a high dynamism related to
the sedimentary structures present on the seafloor (Gesch and
Wilson, 2001; van Dijk et al., 2012; Lefebvre et al., 2016). An
additional issue is the absence of consistent vertical reference
surfaces between disparate data sources, which stems from
varying orthometric and tidally referenced datum. These issues
are compounded by numerous technical challenges when
merging heterogeneous bathymetric data collected with different
types of survey instruments, varying sounding densities over a single
large region and uneven sounding uncertainties. Data gaps at the
coastal zone, or variations in horizontal and vertical reference
systems are also problematic (Quadros, et al., 2008; Eakins and
Grothe, 2014). Previous studies (e.g., Yin et al., 2008) have shown the
integration process can significantly degrade the vertical and
horizontal accuracy of the seafloor surface compared to the
original source data and can result in artifacts caused by
misclassification of feature types, reducing the usefulness of the
generated surface for cartographic and geomorphologic
applications. Thus, there is a need for methods to seamlessly
integrate multisource, bathymetric datasets that overcome the
stated challenges and problems while resulting in a surface with
accuracy and uncertainty consistent with the intended uses, and
without coverage gaps. Such a surface would be beneficial for a
multitude of applications such as the study the hydrodynamics of
water bodies, sedimentary structures, marine habitats and to provide
additional information to engineering activities in marine context.

Multisource bathymetric integration has been studied
extensively, mostly in the context of building navigation charts
(CHS, 2012). Although they are carefully built, these charts have
inherent concerns regarding their quality, especially because they are
built from a jigsaw of bathymetric data within the region of interest.

As such, approaches to integrate and represent in a surface the
multisource soundings are highly regulated by IHO standards (CHS,
2012). While there are many such approaches, they are often site
specific and do not apply for all areas. For instance, the approach
proposed by the National Oceanic and Atmospheric Administration
(NOAA, 2007) for coastal mapping involves a large resolution
mapping greater than 5 m and is adapted to tidal environments.
On the contrary, the approach proposed by Falcão et al. (2016) is
highly suitable for smaller, non-fluvial rivers. It has shown inherent
success for particular use cases but failed in representing detail
information and at the same time minimizing the noise in
bathymetric data (Buttner, 2007). One of the key steps in the
continuous integration of bathymetric data is interpolation. The
use of kriging has shown to be a reliable statistical tool in the
interpolation of multisource datasets (Zhang et al., 2015). The
authors showed that non-predictive dynamic kriging methods
produce results that are better suited than other traditional
interpolation methods for the study of the seafloor when it has
sedimentary structures and microtopography. Still, multisource data
sets have inherent differences and may produce unsatisfactory
results even with the use of non-predictive kriging methods. As
such, Danielson et al. (2016) proposed a new methodology in which
bathymetry data is combined using non-predictive kriging methods
to produce a combined bathymetry model. However, the proposed
approach did not consider spatial and temporal differences from
varying multisource data sets. Therefore, to our knowledge, there are
currently no multisource bathymetric data integration methods in
the literature that are adapted to the fluvio-marine context of the
Saint-Lawrence River and that allow the production of adequate
seafloor surfaces for dune migration monitoring. In this paper, we
propose a new approach to fill this gap. It reconciles the uneven
sounding density, resolution and uncertainty over the datasets. In
addition, it relies on an adapted kriging method in order to obtain a
seamless surface with a reduced error relative to the original data
compared to existing methods. This approach is applied using
historical bathymetric datasets to produce a seamless surface of
the overall studied area within which dune fields are integrated using
bathymetric time-series collected during a dedicated campaign.
Furthermore the proposed results demonstrate the suitability of
our solution for the extraction of underwater dunes, both small and
large, in a highly dynamic environment and without artefacts in the
continuity of the data boundaries. In addition, they confirm the
conservation of the dune shape through the integration of the data
sets, thus providing informative morphological descriptors on the
environment.

The paper is organized in three sections. The first section is a
description of the study area as well as the data which outlines the
importance of the study of the seafloor morphology for the Saint-
Lawrence River and its challenges particularly within the region of
Quebec City. In the second section, a methodology is proposed to
integrate and interpolate multisource MBES data for the study and
analysis of bedforms. The third section presents the results of the
integration and interpolation of this multisource data as well as the
segmentation and characterization of underwater dunes.
Furthermore the quantitative and qualitative analysis of the
performance of the approach is discussed as well as its
application to analyze the bedforms present in the study area.
The last section presents some conclusions and perspective about
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further studies along the Saint-Lawrence River as well as other fluvial
environments.

2 Data and methods

2.1 Study area

The Saint-Lawrence River is the river with the second largest
discharge in North America with an average annual flow of
12.600 m3/s and a watershed of more than one million square
kilometers (Hudon and Carignan, 2008). The estuary of the
Saint-Lawrence River is a highly dynamic environment with a
length of 400 km with the width ranging from a few kilometers
near Quebec City to a width of over 25 km 70 km downstream
(i.e., Île aux Coudres). The seafloor depth ranges down to 60 m but
includes large shallow regions of depths less than 10 m. The
dimensions are such that the conditions prevailing upstream
(i.e., near Quebec City) are typically estuarine and those
downstream are typically marine. The study area is located
on the estuary of the Saint-Lawrence River, specifically within
the CMQ (Communauté Métropolitaine de Québec, Eastern
Canada). This area is characterized by a fluvio-marine regime
with the salinity intrusion in the Saint-Lawrence with
significant turbidity at zones of transition (i.e., mouths of
different rivers, such as Saint-Charles and Chaudière). This
region of the river is characterized by a complex seafloor
topography with different physical agents being responsible
for the high dynamism, such as tide, waves, wind, ship
waves, and ice (Drapeau, 1992). The huge convergence effect
of estuary in our study site amplifies tidal signal and increase its
asymmetry with ebb tide longer than flood tide. The study area
also involves significant variation in the bed surface
morphology from fine sand less than 2 μm to large rocks

greater than 1 m with a distribution of aquatic plants (Matte
et al., 2018). The studied area spans over 80 km and can be
observed in Figure 1.

Flooding is a major concern on the Saint-Lawrence River with
potential for significant risks to public safety as well as a negative
economic and social impact. This project is part of a research
consortium called OSIRISQ, funded by the Réseau Québec
Maritime and working with the CMQ, to help define flooding
zones along the Saint-Lawrence River. To map and assess
flooding risks, a hydrodynamic model has been devised. To
develop a reliable hydrodynamic model, a detailed representation
of the terrain and channel morphology is a critical component. Due
to the complex nature of the topography of the Saint-Lawrence and
its strong effect on the hydrodynamics of the river, it is necessary to
have a reliable and computationally efficient (with regard to the
hydrodynamic model) digital elevation model of the bed of the river
from the available data.

The existing models of the Saint-Lawrence River have evolved
through the availability of bathymetric data. However, the DBM of
the Saint-Lawrence River remains highly understudied. Although
there is not a significant amount of research published specifically in
the development of the DBM on the Saint-Lawrence River, there
have been some hydrodynamic models that have been developed
with the most recent by Matte et al. (2018). Most of these models
have been limited to bathymetric data at a very coarse resolution.
Therefore, in order to build a detailed representation of the terrain
and channel morphology for the hydrodynamic model, a
compilation of bathymetric data over the whole study area was
completed. Principally Canadian Hydrographic Service Non-
Navigational (NONNA) Bathymetric Data data (https://data.chs-
shc.ca/dashboard/map), which is a compilation of all the data
sources made available by the Canadian Hydrographic Service
(CHS), has been used for this purpose. It represents the largest
source of openly available bathymetric data in Canada. Within the
study area from Quebec City to Île aux Coudres the NONNA data
set includes 1,344 multibeam and single beam bathymetry records

FIGURE 1
Studied area of the Saint Lawrence River estuary between
Quebec City and Île aux Coudres.

FIGURE 2
Surface covered on the data acquisition in Summer of 2022 on
the fluvial estuary of the Saint-Lawrence River.
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from 1990 to 2022. This compilation is distributed as a 10 m × 10 m
grid in which each cell proposes the most recent and the shallowest
bathymetric data point selected from the entire database.

A recent study has shed light on the high impact of the bedforms
on hydrodynamic modelling (Danielson et al., 2016). To study such
impact of the bedforms on the seafloor surface, dedicatedMBES data
is usually necessary to produce a high resolution DBM. This is why
we conducted a MBES bathymetric campaign in July 2022 to
generate a high resolution DBM of bedforms in the studied area.
The primary purpose was to enhance the hydrodynamic model for
the use in the prediction of flooding risks of the Saint-Lawrence
River within the region of the Community Metropolitan of Quebec
(CMQ). As such, one particular zone in the region of Quebec City
was selected for the presence of highly dynamic field of dunes. The
secondary purpose of the campaign was to observe and characterize
the temporal evolution of the dunes.

The data was acquired from 10th July to 21 July 2022 with a
hydrographic system consisting of a Kongsberg EM2040 MBES, an
Applanix POS-MV320 and two GNSS antennas (Trimble
GA830 and 540AP) embedded in the Louis-Edmond-Hamelin
vessel. The region of interest is shown in Figure 2. In this region,
the seafloor was surveyed repeatedly once a day between 9:00 a.m.
and 12:00p.m. over a period of four consecutive days. Data from the
NONNA database used for the hydrodynamic model was integrated
into the Summer 2022 surveys in order to improve the final DBM,
notably by filling in data gaps and completing the surface in the areas
surrounding the survey.

2.2Multisource bathymetric data integration
proposed approach

This approach notably considered the different times of
acquisition, in addition to the varying density of the datasets.
The devised integration approach overcomes this heterogeneity of
the bathymetric point clouds and provides a combined interpolated
surface suitable for the study of bedforms. The main steps involved
in the proposed integration approach are presented in Figure 3.

The first step was dedicated to the dataset preparation. It aimed
to select the soundings from different datasets according to a pre-
defined criteria and to transform the selected data into a uniform
horizontal and vertical reference system. The second step was
dedicated to the DBM creation and the integration of the
soundings into the surface while considering the overlap between
datasets. The third and last step concerned the development of a
seamless surface that preserved the information about the bedforms
and the microtopography present on the seafloor. The accuracy of
the multisource DBM was also addressed in this third step. The
following sections provide more details about the three steps of the
proposed approach. Following which the underwater dune
extraction from the multisource DBM is described in Section 2.3.

2.2.1 Dataset preparation
The data preparation was completed by two independent

processes. The first process consisted of the selection of the
soundings from data that was acquired at different times over the
same area. The selection criteria relied on the data uncertainty, the
period of the survey or the density of the dataset (Danielson et al.,
2016). Eakins and Grothe (2014) proposed that the most recent and
the highest resolution soundings may be chosen. This criterion was
considered in our approach to maintain the details of the bedforms,
which could be misrepresented due to temporal changes between
datasets. To create a coherent DBM using multisource data, the
overlap among data sets was evaluated, as well as situations where
the soundings of one dataset may supersede another. Preference was
given to a more recent collection or a collection with a more
advanced sensor since it may represent the surface more
accurately than a combination of points from both datasets.
Generally, recent data is more accurate resulting in a better
representation of the seafloor surface. To accomplish this, a GIS
database index was created of all the available data indicating their
spatial extents. Information such as the date of the survey and the
type of equipment used in addition to the global error of each dataset
was integrated into the GIS index. With these parameters integrated
into the index of each individual data source, the most recent and
most accurate data sources were prioritized in overlapping areas.

FIGURE 3
Main steps of the proposed integration approach of multisource bathymetric data.
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The second process aims to standardize the horizontal and
vertical reference system of the datasets. Although this issue is
well studied, the vertical reference remains a great source of error
in the creation of multisource DBM (Eakins and Grothe, 2014). Even
though the CHS establishes the relationship between tidal and
orthometric datums by surveying benchmarks at tide gauge
stations, there are discrepancies between surveys due to various
errors inherent to the bathymetric survey process. As such to correct
this discrepancy in vertical references, all the data was first
reprojected in the same horizontal and vertical datum, namely,
UTM19NAD83 (CSRS), CGVD28 (HT2.0) for the study area. Then,
the vertical reference was adjusted to a uniform surface. The method
proposed by Gesch and Wilson (2001) is used for this purpose. It
involves the use of tidal separation surfaces, a solution developed by
the CHS specifically for the conversion of elevation data from one
tidal datum to another (Milbert and Hess, 2001). Such
transformation ensures that individual datasets do not introduce
vertical reference errors that may cause artefacts in the surface
misrepresenting the bedforms.

2.2.2 Bathymetric data integration
The second step of the proposed approach started with the grid

selection for the surface representation. It addressed the
determination of the grid structure, the cell size and the
mechanism to select the points contributing to each cell. The
grid design has a great impact on the DBM. The seafloor surface
generated from the same MBES data considering either a structured
grid or a non-structured grid may be drastically different. A
structured grid usually has a uniform grid cell with a rectangular
shape. The depth value is attached to the nodes (i.e., corners) or at
the center of each cell. On the contrary, an unstructured grid, such as
a Triangulated Irregular Network (TIN), has grid cells with a
triangular shape. In these structures, the depth values are
attached to each node of the triangles. In the proposed approach,
a structured grid, namely, a raster surface, was used. Indeed, a TIN is
commonly used for bathymetric studies due to the flexible structure
and size (Danielson et al., 2016). However, TIN surfaces can be a
source of artefacts which is a strong drawback for the underwater
environment as it is very difficult to validate the origin of artefacts in
theMBES point clouds. Structured surfaces (i.e., raster) are therefore

used to avoid these artefacts. The cell resolution needs to be well
estimated in the generation of a structured grid to ensure that
sufficient detail is represented in areas with an irregular topography
(i.e., shoreline, dunes) and in areas of uniform depth (Eakins and
Grothe, 2014). Furthermore, the cell size of the grid needs to
consider the density of the bathymetric data and its uncertainty
value (CHS, 2012). In addition, the size of the bedform being
mapped must also be considered to ensure that the grid size is
smaller than the feature. This can be particularly challenging as this
may vary throughout the surface. A multiresolution surface is a
potential option, but this type of surface can create significant
problems for statistical analysis as the sample size density would
not remain uniform throughout the area and would become more
challenging. Therefore, a regular gridded surface is the most relevant
choice for the representation of DBM since this surface is complete
and coherent for the entire study area (Danielson et al., 2016). In our
approach, the grid resolution considered was 1 m since the acquired
datasets are significantly dense with a minimum density of
1 point/m2.

Once the grid was created, the differences in characteristics
among the multisource datasets (i.e., density, resolution,
uncertainty) needed to be addressed and harmonized. Such
differences may stem from the data acquisition methods or
temporal changes in the seafloor surface (e.g., Seasonal changes,
evolution of the seafloor surface). Different approaches are proposed
in the literature for combining multiple data sets into a single,
continuous surface (Gesch andWilson, 2001; Danielson et al., 2016).
These include stitching (Gallant and Austin, 2009), the least cost
method (Melles et al., 2011) and many others that provide results
that would be suitable for the purpose of the study (Danielson et al.,
2016). In the framework of the proposed approach, we chose the
feathering method (Steed and Rankin, 2003), whose principle is
described in Figure 4. This method was well suited for the study of
bedforms as it maintained the integrity of the form in individual
surfaces when integrating surfaces with different resolution. It
provided a smooth transition between multiresolution and
multitemporal datasets that is common in areas with highly
fluctuating terrain and highly dynamic areas. In this method,
each dataset was delimited on the grid to produce a buffer with
its size proportional to the extent of the data. This buffer was then

FIGURE 4
Main steps involved in the feathering method to combine heterogeneous datasets.
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used to select the survey lines encompassed within overlapping
regions. The overlapping survey lines were then used to extract
alternating lines from abutting datasets to produce a combined
dataset.

2.2.3 Bathymetric data interpolation
The third step of the proposed approach concerns the data

interpolation. The selection of an appropriate method was
important to obtain a smooth surface, without artifacts and
misrepresented features. There are many interpolation techniques
for gridding elevation data, including spline, inverse distance
weighting (IDW), natural neighbors, triangulation, and kriging,
all of which create significantly different surfaces when built from
the same data source (Eakins and Grothe, 2014; Maune and
Nayegandhi, 2019). The interpolation method provides consistent
results when the data characteristics (e.g., density, uncertainty) are
uniform. On the contrary, if the data characteristics are uneven the
interpolation method is key to ensure that each dataset is best
represented in the DBM. In the proposed approach, the multisource
bathymetric data was interpolated using an Empirical Bayesian

Kriging (EBK) method (Zhang et al., 2015). The EBK method
was an excellent choice in interpolating between varying
bathymetric data sets for the following reasons: It uses an
intrinsic random function, which is useful in rectifying spatial
trends in the input data inherently present in temporal changes
between datasets. In addition, the EBK method is a non-stationary
kriging method, which predicts the semivariogram (i.e., a function
computing the differences between soundings at varying distances)
based on the local data. The EBKmethod achieves this by estimating
the error in the underlying semivariogram through repeated
simulations. As such, the kriging value estimated for each cell
was best suited for representing the soundings related to the cell.
In this work, we used the same approach as Danielson et al. (2016) to
implement the EBK method.

2.2.4 Estimating the error of themultisource digital
bathymetric model

The estimation of the error of multisource DBM is highly
unexplored. Although the errors associated with each
individual dataset is representative of the error in the data
source, they are not representative of the error of the DBM
that is produced through the integration of these data sources.
The spatial distribution of the error in the integration of the
multisource bathymetric data is very challenging to determine.
As such, assessments of the accuracy of DBM tend to result in a
single measure of how closely the DBM depth values represent
the real depth. Different statistics associated to the accuracy can
be considered, such as Root Mean Square Error (RMSE) and
standard deviation of the error (Carlisle, 2002). Although these
values summarise elevation errors in a DBM as a single value
and are highly useful in determining the overall accuracy of the
DBM, there is an interest in defining this error spatially across
the DBM through an error surface (Canters et al., 2002). The
representation of the spatial distribution of the errors of the
DBM through an error surface may be a critical factor in the
interpretation of the results. This is the reason why we have
included the elaboration of this error surface as the last step of
our approach.

One way to assess the accuracy of the DBM is to use the
cross-validation technique. This is a geostatistical approach
aiming at comparing predicted values in the model to actual
observed values. The comparison is done by removing one data
location at a time and predicting the associated data value
(Danielson et al., 2016). The predicted and actual values at
the location of the omitted point are compared, and this process
is repeated for all points in the dataset. Cross-validation error is
typically represented as RMSE and can be an excellent
representation of a global uncertainty of the DBM (Gesch
and Wilson, 2001). However, to interpret the spatial
variability of the surface, the error must be modelled across
the entire surface. Cross-validation provides error estimation
only in some locations. The predictive uncertainty that is
computed with the EBK method can be considered as the
error associated with the uncertainty of the surface as
pioneered in Burrough and McDonnell (1998). As such, the
error of the DBM resulting from the proposed approach was
represented by the error surface of the residuals of the EBK
associated to the modelled surface.

FIGURE 5
Approach for the automatic segmentation and characterization
of dune objects from a DBM. Adapted from Cassol et al. (2022b).
Reproduced under CC-BY-4.0.
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2.3 Underwater dunes extraction from
a DBM

The presence of underwater dunes in the Estuary of the Saint-
Lawrence River is intimately related to the fluvio-marine context of

this area. Once the bathymetric data was processed and the DBM
was properly generated, the underwater dunes were extracted from
this surface using different approaches (e.g., Debese et al., 2016; Di
Stefano and Mayer, 2018; Ogor, 2018). Cassol et al. (2021; Cassol
et al., 2022a) proposed an automated segmentation and

FIGURE 6
The dune object segmented and characterized. In (A), the dune object on the seafloor with its salient features, crest line (magenta) and troughs (red).
In (B), the dune object is identified on the DBM grid and segmented considering the salient features. (C,D) schematize the extraction of morphological
descriptors with the depth and width of the dune object [cf. (C)] and the orientation of the underwater dune measured from the north [cf. (D)]. Adapted
from Cassol et al. (2022b). Reproduced under CC-BY-4.0.

FIGURE 7
Root Mean Square Error (RMSE) between measured and predicted values in the DBM surfaces using four multisource approaches: the first one
dedicated to rivers (Falcão et al., 2016); the second one dedicated to coastal areas (NOAA, 2008); the third being our approach without the integration
step; the fourth one being our proposed approach.
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characterization approach for underwater dunes in the fluvio-
marine context of the Saint-Lawrence River. This approach
considers only the bathymetric information of the seafloor.
Multi-modal approaches considering grain-size, current and tide
as well as acoustic backscatter information may be further discussed
in the paper. Unlike existing approaches, the latter does not involve
any manual intervention to delineate bedforms, which limits
subjectivity, cumbersomeness and sources of error in the analysis
of the surface. The approach segments and characterizes the
underwater dunes using OBIA (Object-Based Image Analysis),
image processing and landform ontologies from a regular gridded
DBM. The main steps of this approach are presented in Figure 5.

The segmentation and characterization approach considered
that the underwater dunes could be identified on the seafloor by
three salient features, namely, the crest line, the stoss trough and the
lee trough. The crest line is the linear feature located in the higher
zone of the dune. This feature is the upper bound of both sloping
sides of the dune (i.e., Stoss and lee sides). The stoss and lee troughs
represent the boundary of the dune objects, being also represented
by linear features. These troughs bound the stoss and lee sides,

respectively. A morphometric analysis of the seafloor was first
carried out using the Geomorphon algorithm (Jasiewicz and
Stepinski, 2012) to identify the three salient features. Then, the
troughs were matched with their corresponding crest lines. This
matching was done by searching the troughs nearest to the crest
lines. The search is conducted in the orthogonal direction of the crest
line orientation with a predefined range distance limit. Afterwards,
the dune object was created by aggregating the pixels located in the
area between the crest line and the troughs. Mathematical
morphology and image processing are used to extract and better
delineate the dune object. The result is the dune object identified by
the same label as its crest line. Once the dunes had been segmented
from the DBM, a characterization of these objects could be done
calculating a series of morphological descriptors. These descriptors
consider the dune object segmented itself as well as its salient
features. The main descriptors considered in the characterization
were the dune orientation, depth, width, height, stoss, and lee angles,
stoss and lee widths and the symmetry index of the dunes. More
details about the segmentation approach and the estimation of the
morphological descriptors can be found in, respectively, Cassol et al.

FIGURE 8
Combined multisource DBM generated with our proposed approach considering the four datasets [cf. (Panel A)] and cross section profile through
the field of dunes [cf. (Panel B)].
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(2021) and Cassol et al. (2022b). Figure 6 schematizes the
segmentation and characterization approach from a DBM.

3 Results and discussion

This section presents the results and a discussion of the
application of our proposed approach to generate a
multisource DBM. This surface is generated considering the
acquired data mentioned in the previous section as well as the
existing historical NONNA data of the study area. The evaluation
of the approach is completed using both qualitative and
quantitative methods. The qualitative methods are consisting
of creating cross sections and comparing the bedforms as well
as investigating the presence of artefacts from the combined data
sets. While as the quantitative analysis is based on the mean error
and standard deviation of the residuals, i.e., RMSE of the
combined surfaces. Since the analysis is based on evaluating
the performance of the integration of the datasets and not the
error of the individual datasets, the RMSE is a good quantitative

indicator for the performance of the approach. This indicator is
then used to compare with other existing approaches found in the
literature for combining multisource bathymetric data. The
discussion is based on evaluating the performance of the
proposed approach in two ways. The first consists in a
comparison between existing approaches and ours, while the
second consists of a spatiotemporal analysis of the seafloor
with the segmentation and characterization of underwater
dunes. Furthermore, the discussion demonstrates that the
extraction of these bedforms from the combined surface
provided by our approach allows the interpretation and
analysis of the seafloor morphology over time.

3.1 Multisource DBM and quantitative
performance analysis

To assess the performance of our approach, we compared it with
two approaches in the literature dedicated to multisource DBM
creation. The first approach proposed by Falcão et al. (2016) was

FIGURE 9
Differences in depth between the first and fourth day of the July 2022 with close-ups in (A–C) campaign and a cross sectional profile through the
field of dunes showing their displacement throughout the 4 days.
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devised for rivers. The second approach proposed by the NOAA
(2007) was devised for coastal areas. We included an additional
comparison involving our approach but without the integration step
(i.e., feathering) prior to the interpolation of the bathymetric data.
This step permits to tackle spatial and temporal differences among
datasets. This is the major and significant difference between our
methodology and the one proposed by Danielson et al. (2016), which
only considers spatial differences.

The comparison among the four approaches concerned the
error surface produced after the integration of the historical data
from NONNA and the July 2022 datasets. As we do not have any
ground truthing data, given the dynamism of the environment, the
goal was not to determine the approach that offers a minimal error
with respect to the seafloor. Rather, it was to estimate the approach
that proposed the most coherent integration between the different
sources. In this context, the use of the error surface was relevant.

FIGURE 10
In (A), the combined multisource DBM generated with historical and July 2022 datasets. In (B–D) the cross-sectional profiles of the combined DBM
with NONNA data in red and the July 2022 data display the significant differences in the existing and historical dataset while maintaining a continuity
between the data boundaries.
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Indeed, the error surface is representative of the deviations
(i.e., Variations) between the soundings and the DBM surface. It
is therefore a tangible indicator of the representativeness of the
surface produced with respect to the datasets that participated in its
construction.

Figure 7 synthesizes the results of the comparison. The
performance of the combined multisource DBM was evaluated
for two different contexts: Shallow water (i.e., depths below
20 m), and deep water (i.e., Deep water representing above
20 m). The differentiation of these two contexts is justified by the
fact that the hydrodynamics of the Saint-Lawrence River is
significantly different at varying depths specifically below and
above 20 m (Drapeau, 1992; Matte et al., 2018).

In Figure 7, it can be observed that there is a significant
reduction in the mean error in the deep-water context using the
proposed methodology. This represents an improvement of about
25% compared to the average error of the approaches dedicated to
rivers and coastal areas respectively. In shallow waters, the
approach proposed by Falcão et al. (2016) produced the best
mean error followed by our approach. Thus, overall, our
proposed approach can be considered the most successful in
reconciling the variations between the different data sets,
involving a depth diversity like in the estuary of the Saint-
Lawrence River. In terms of standard deviation of the mean
error, we again observe that, in shallow waters, the approach
proposed by Falcão et al. (2016) is the best followed by our
approach. However, the latter shows an increase of the standard
deviation in the deep-water context. This could be related to the
greater dune migration in the deeper zone, as will be illustrated
later. As such, it can be inferred that the selection and integration
criteria of the proposed approach, involving the most recent
soundings, yield a larger standard deviation of the mean error
of the multisource DBM. However, the resulting DBM surface is
more representative of current state of the dunes on the seafloor as
a result of such criteria.

When comparing the proposed approach with and without the
use of grid selection as well as feathering, the contribution of this

integration step in the process is obvious. The mean error has been
significantly improved in shallow water and evenmore in deep water
(about 34%). Likewise, the standard deviation of the mean error has
decreased with a fair margin (40%). This integration step allows the
temporal differences between datasets to be consolidated prior to the
interpolation of soundings. This step also ensures that overlapping
area between datasets are integrated maintaining the morphological
form of bedforms. In addition, it minimizes artefacts introduced by
the interpolation and the presence of seam lines in the multisource
DBM which will be illustrated in the next section.

3.2 Spatial and temporal differences in
acquired bathymetric data

The multisource DBM generated with our approach,
considering the 4 days of acquisition, can be observed in
Figure 8A. No apparent artefacts along the seam lines of the
individual datasets can be observed. A cross section profile has
been selected through a field of dunes, shown in Figure 8B. In this
profile, the characteristic shape of the dunes and their sequence
along the profile are observed. The integrity of the form and position
of the dunes is preserved.

In order to analyze, in more detail, the integration of the
spatiotemporal differences, we have studied their range and
significance. Figure 9 shows the differences between the
individual data sets (i.e., 11th, 12th, 13th, 14th July respectively).
More specifically, the surface was computed by subtracting the
individual DBM of the first (i.e., 11th July) and last day
(i.e., 14th July) of the survey campaign. The elevation difference
highlighted in the figure for three areas involving diverse fields of
dunes is intimately related to the high dynamism of the Estuary of
the Saint-Lawrence River. The datasets exemplified in the July
2022 campaign are representative of the spatial and temporal
changes occurring in the study area (Matte et al., 2018).

We can observe that there are differences between the first day of
acquisition (i.e., 11th July) and the last day (i.e., 14th July) as
presented in the cross-section profile of Figure 9. Such spatial
and temporal differences are attributed to the migration of the
dunes. A migration rate of these dune objects up to a meter has been
observed in different zones of the DBM. These spatiotemporal
differences highlight the significant challenge in producing a
multisource DBM that is representative of the area and
furthermore an analysis of the underwater dunes. To further
illustrate the multitemporal capability of our approach, we
computed the DBM considering only the historical data from
NONNA. This was compared to the DBM combining the
historical data from NONNA and the July 2022 datasets.
Figure 10A shows the combined DBM and three cross sectional
profiles all extracted from the two respective DBM (cf. Figures
10B–D).

As expected, the cross-section profiles in Figures 10B, C display
significant depth gaps between the two DBM given the high
dynamism of this area. However, with our integration approach,
wemanaged resolve these gaps at the interface between the historical
data and the July 2022 data. In addition, Figures 10B, C show that the
detailed form of the underwater dunes, are maintained in the
combined surface. Such achievement comes from the higher

FIGURE 11
Illustration of dune objects segmented from the multisource
DBM. The individual dune objects are identified by a unique random
color in the ellipses which indicate their location on the seafloor
surface.
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resolution of the July 2022 datasets compared to the historical data.
Thus, our approach permits to incrementally update an existing
DBM, emphasizing the most recent soundings while maintaining a
continuity between existing and new data (cf. Figure 10D).

3.3 Segmentation and characterization of
dunes from a multisource DBM

The dunes in the multisource DBM (cf. Figures 9, 10) were
segmented and characterized with the approach previously
described. The result of this segmentation is illustrated in
Figure 11 for some regions of interest. In total, 164 dunes were
extracted from the multisource DBM.

In Figure 11, it is possible to observe larger dunes segmented in
the center of the DBM (cf. Black ellipse area) while small dunes are
observed in the north and south zones (cf. Magenta and red ellipses).
The segmentation and characterization approach used to extract
dunes form the multisource DBM consider the salient features of
these objects. These features are identified on the seafloor from a
morphometric analysis. Therefore, the performance of the
segmentation approach is intimately related to the DBM grid
resolution and the capacity of identification of the salient
features. To analyze the performance of the segmentation and
characterization of the dunes, a ground truth was built manually
segmenting dunes from the multisource DBM. Therefore, three
measures were computed to assess the performance, namely, the
true positive, false positive and false negative rate. A true positive is
considered when a minimum of 50% of the segmented dune
coincides with its area in the ground truth. A false positive is
considered when the area of the segmented dune coincides less
than 50% in the ground truth or this structure does not have a
related dune in the ground truth. A false negative is when the

segmentation approach fails to segment a dune existing in the
ground truth (adapted from Nguyen et al., 2020). From the
multisource DBM, 87.2% of the dunes were well segmented and
characterized with 12.2% of false positive and 0.6% of false negative.
The false positive is essentially associated to the presence of residual
salient features without the presence of a dune object. This results
from the combination of different bathymetric datasets to generate
the multisource DBM, which tends to neglect smaller dunes (cf.
Figure 12). Only one dune was not identified (i.e., false negative)
since it was partially surveyed over the 4 days of acquisition.
Consequently, with more than 87% of the dunes well segmented
and characterized, the multisource DBM has preserved these
underwater structures and their morphological descriptors.

In Figure 12A, the cross-section profile shows the small dunes
are merged in the multisource DBM. Consequently, the
segmentation approach failed to extract dunes in this area, since
the salient features are less crisp than in the single source DBM of
14th July. This segmentation failure is not seen for the larger dunes
located in the center of our study area (cf. Figure 12B). Indeed, they
have prominent salient features well delineate in both DBM, namely,
the multisource and single source (i.e., 14th July). In addition, the
dynamic of these larger structures differs from the smaller dunes of
the study zone. They have an erosion-deposition regime without
traction in the seafloor. Thus, there is no significant displacement
observed from 1 day of acquisition to the next, favoring the
maintenance of their salient features during the integration of
multitemporal data. These dunes have been characterized using
morphological descriptors. Their values are displayed as histograms
in Figure 13.

According to the orientation of the dunes (cf. Figure 13A),
their migration direction can be assessed as being approximatively
36.5 (i.e., Median value), which is coincident with the main current
of the Saint-Lawrence River. The dunes have a depth ranging from

FIGURE 12
Cross-section profile through the dune fields. On the left, [cf. (A)], a profile extracted through the small dunes in the south of the study area (1-1′). On
the right, [cf. (B)], a profile extracted through the larger dunes in the center of the study area (2-2′). In black, the profile of the multisource DBM and in red
the profile considering only the data acquired on July 14th.
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19.3 m to 45.7 m (cf. Figure 13B), with a median depth value of
25.2 m. The height of dunes ranges from 7 cm to 5 m (cf.
Figure 13C), with a median value of 0.86 m. They have a width
varying from 6.9 m up to 100 m (cf. Figure 13D) with a median
value of 29 m. As for the asymmetry index of the dunes
(i.e., comparison between lee and stoss sides of the dune), the
median value is 1.37 (cf. In Figure 13E). Considering these values
for the morphological descriptors, the dunes of the study area are
preponderantly medium and large dunes, as suggested by the
dunes classification in Ashley (1990).

The quality of the DBM has an essential role when analyzing
bedforms, especially in highly dynamic zones such as the fluvial
estuary of the Saint-Lawrence. Based on a quantitative and
qualitative analysis performed in this section, our proposed
approach to generate a multisource DBM has proven to be
adequate to analyze the bedforms present in the seafloor
surface, even in highly dynamic zones. As mentioned above
the morphological description of the larger dunes (cf. Figure 10,
Figure 11B) in the DBM generated have been preserved, but to
study small and medium dunes, the resolution of the

FIGURE 13
Histograms of morphological descriptors values [cf. (A–E)].
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considered surface must be adjusted. Although the resolution
of 1 m has proven to be adequate to preserve the presence of
these structures in the multisource DBM as well as to segment
and characterize them. However, this resolution is intimately
related to the uncertainty of the data acquisition (CHS, 2012).
As such when studying small and medium dunes in highly
dynamic areas, the individual daily surfaces may be considered.
Therefore, to study different classes of dunes, a multisource
DBM generated through a multiresolution approach may be
considered. A multi-modal approach can also be considered to
improve the segmentation and characterization of bedforms.
Such an approach may consider the acoustic backscatter data
(Masetti et al., 2018), current velocity, tidal information, and
grain size. This information can be related to the hydrodynamic
and environmental factors, as suggested by Le Bot (2001) and
Kenyon (1970), to better model the seafloor surface and its
dynamism.

4 Conclusion

The data and furthermore the DBM in this study was
produced for hydrodynamic modelling and for flooding
studies as well as an analysis of the dunes present in the
study area. As such, the aim of the study was to develop an
approach that would produce a DBM using multisource data
sets that would be suitable for these applications. A visual
analysis of the results shows that the approach is successful
in producing a multisource DBM that represents the area and
does not introduce artefacts due to spatial and temporal
differences. This is further successfully tested by using this
DBM to conduct an analysis of the bedforms present in the
study area. In addition, a comparative analysis of the existing
approaches for river and coastal environments through the
variation of produced DBMs shows that this approach is the
most suitable for the estuary of the Saint-Lawrence River. As
such this study shows that this approach not only allows users to
analyse the seafloor (i.e., morphology, topography) but in
addition allows temporal studies to be conducted by
integrating historical and existing data sets. Our proposed
approach to generate a multisource DBM can be extended to
other sections of the Saint Lawrence River. In addition, it can
also be extended beyond the study of bedforms. A multisource
DBM is directly related to the production of digital twins of the
global seafloor as a part of the Seabed 2030 project of the
Nippon foundation. As such our approach can be used to
help generate digital twins that best represent the seafloor in
highly dynamic zones across the globe.
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