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Coral reef health in theU.S. Virgin Islands (USVI) is in decline due to land-based sources
of pollution associatedwithwatersheddevelopment andglobal climate change.Water
quality is a good indicator of stress in these nearshore environments as it plays a key
role indetermining thehealth anddistributionof coral reef communities. Conventional
water quality assessment methods based on in situ measurements are both time
consuming and costly, and they lack the spatial coverage and temporal resolution that
can be achieved using satellite remote sensing techniques. Water quality parameters
(WQPs) such as Chlorophyll a (Chl-a), can be studied remotely using models that
account for the inherent optical properties (IOPs) of the water. In this study, empirical
based standard ocean color algorithm (OC4) and two semi-analytical algorithms, the
Garver–Siegel–Maritorena (GSM) and the Generalized Inherent Optical Properties
(GIOP) model, were evaluated in retrieving Chl-a in the nearshore waters of the USVI.
GSM and GIOP were also evaluated for modeling inherent optical properties such as
absorption coefficient of phytoplankton (aph (443)). Analysis of the results from each
model using a field database from six cruises during May/June and December
between 2016 and 2018, showed that the OC4 performed poorly with R2 of
0.14 and RMSE = 0.15. Effects of suspended particulates and benthic reflectance
most likely contributed to the poor performance of the algorithm. GSM is a slightly
better estimator for aph (443) and Chl-a (R2 = 0.55, RMSE = 0.04; R2 = 0.60, RMSE =
0.09) than GIOP (R2 = 0.52, RMSE = 0.05; R2 = 0.17, RMSE = 0.15). Performance of the
semi-analytical models are limited in estimating particulate back scattering (bbp (443))
alsodue to thebenthic albedoeffects in the shallowwaters. The calibratedGSMmodel
was applied to Landsat 8 OLI satellite imagery spanning 2016–2018 to develop a time
series of the spatial changes in Chl-a concentrations in the coastal waters of the USVI.
The Landsat GSMChl-amodel produced promising results of R2 = 0.45, RMSE = 0.07,
in an environment where signal-to-noise ratio is significantly low.
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1 Introduction

Coral reef communities are some of the most diverse and dynamic ecosystems on Earth.
Warm-water coral reefs support hundreds of thousands of species that provide over 500 million
people with food, income, and countless other ecosystem goods and services (Burke et al., 2011;
Gattuso et al., 2014; Hoegh-Guldberg et al., 2017). Although they are an extremely valuable
resources both ecologically and economically, the abundance of tropical coral reef ecosystems has
declined over the past 30–50 years by at least 50% (Bruno and Selig, 2007; De’Ath et al., 2012;
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Hoegh-Guldberg, 2011; Hoegh-Guldberg et al., 2007; Hoegh-Guldberg
et al., 2017; Hughes, 1994). These critical communities continue to
decline at a rate of 1%–2% annually (Bruno and Selig, 2007). There are
both global and local anthropogenic factors that contribute to this
substantial decrease in coral reef ecosystem abundance.

The number of people visiting Caribbean islands has increased
over the last 40 years in large part because of the scenic attributes of
coral reefs and the clear waters and beaches that typically accompany
them. To accommodate larger numbers of tourists, Caribbean Island
nations are developing what was once natural vegetation at a rapid
pace to build new roads, resorts, and other supporting infrastructure
(Ramos-Scharrón and LaFevor, 2016). This development combined
with the steep, mountainous hillsides typically found on many
Caribbean islands is increasing erosion, sedimentation, and runoff
beyond historic rates (Hubbard, 1987; Walling, 1997).

Terrestrial runoff is comprised of both organic and inorganic matter
transported into the ocean when water from precipitation flows over the
land surface. Runoff has the ability to significantly affect water quality by
altering a water body’s normal biological, physical, and chemical
characteristics. In particular, it can decrease light penetration and
introduce excess nutrients, both of which can be detrimental to coral
growth and health. As little as 10 mg cm2 −1 d−1 of sediment deposition
onto reefs can inhibit the growth of corals (Rogers, 1990) and sediment
contact has been associated with coral disease (Brandt et al., 2013), and
excess nutrients introduced by runoff can cause coastal eutrophication,
stimulating benthic algal production, and facilitating shifts from coral to
algal dominated substrates on reefs (Fabricius, 2005; Furnas et al., 2005;
Weber et al., 2012). Benthic algae can inhibit corals by decreasing the
amount of available sunlight and restricting growth and by
outcompeting juvenile and adult corals for essential space (Bruno
et al., 2003; Smith et al., 2006; Vega Thurber et al., 2014). Further,
excess nutrients have been associated with increasing susceptibility to
coral diseases (Bruno et al., 2003; Vega Thurber et al., 2014) and coral
bleaching (Cunning and Baker, 2013), a breakdown in the symbiosis
between the coral animal and its microalgal endosymbionts. In addition,
eutrophication associated with runoff can also stimulate increasing
abundance of phytoplankton, leading to increased concentrations of
water column Chlorophylls, accessory pigments, and particulate organic
matter, increasing turbidity levels (Furnas et al., 2005).

Indicators of water quality (e.g., Chlorophyll a) can be used to
monitor the biophysical status of the waters as poor water quality is
responsible for much of the coral reef degradation in the Caribbean
(Edmunds and Gray, 2014; Gray et al., 2008; Gray et al., 2012; Smith
et al., 2008). In addition, measures such as Chlorophyll a integrate
inputs of excess nutrients into oligotrophic water better than direct
nutrient monitoring, because tropical phytoplankton are primed for
nutrient uptake and quickly scavenge all but the highest nutrient
inputs (Furnas et al., 2005). This also means that dissolved nutrients
in water samples do not reflect the actual inputs and are often near
detection limits of analytical methods even with excess inputs.
Conventional methods for assessing water quality are also based
on in situ measurements that are both time consuming and costly.
They lack the spatial and temporal coverage that can be achieved
using alternative methods such as satellite based remote sensing.

Satellite remote sensing can monitor water bodies all over the
world using models and algorithms calibrated to in situ
measurements (McClain, 2009; Klemas, 2011; Ali et al., 2014).
These models are used to monitor changes in aquatic

environments in a timely manner over broad geographic regions.
The spatial and spectral resolution of satellite remote sensing
instruments (e.g., Landsat 8 OLI, Sentinel 2A/B MSI) has greatly
improved in recent years leading to advancements in the quality of
remote sensing products in coastal ecosystems.

NASA’s Ocean Biology Processing Group (OBPG) developed
advanced optimization methods such as the Garver–Siegel–Maritorena
(GSM) and Generalized Inherent Optical Properties (GIOP) to
characterize the optical properties of water. This framework is built to
facilitate applications of various semi-analytical (SAA) modeling
approaches that are based on a quantitative description of absorption
α(λ) and back scattering bb(λ), IOP properties of optically active
constituents in water (Gordon et al., 1988). The GSM and GIOP
models are used in this study because they have been shown to
provide robust IOP estimates over a broad range of aquatic
environments (Werdell et al., 2013; Clay et al., 2019; Werdell and
McKinna, 2019; Lewis and Arrigo, 2020). These models differ in their
basis vectors, spectral resolution, and parameterizations from each other.

The goal of the SAA inversion algorithms is to minimize the
difference between modeled and observed Rrs through empirical
and optical closure relationships. Based on the radiative transfer
definition and the optical closure functional relationship
between Rrs and IOPs (Gordon et al., 1988) defined the
following:

Rrs λ( ) � f.u (1)
u � bb λ( )

a λ( ) + bb λ( ) (2)

where f is a function that varies depending on boundary conditions
such as the illumination conditions and volume scattering function.
The IOP coefficients are partitioned into the additive components
(Eqs 3, 4). Further each component is expressed as the product of its
concentration specific absorption spectrum (eigenvector; a*) and its
magnitude (eigenvalue, A and B):

a λ( ) � aw λ( ) +∑Nph

i�1 Aphiaphi
* λ( ) +∑Nd

i�1Adgiadgi
* λ( ) (3)

and

bb λ( ) � bbw λ( ) +∑Nbp

i�1 Bbpibbpi
* λ( ) (4)

where the subscripts w, ph, dg represent the absorption
contributions from water, phytoplankton, non-algal particles
(NAP) plus colored dissolved organic matter (CDOM), and the
subscripts bw and bp represent the backscattering contributions
from water and particulates, and the index I denote each IOP from
1 to N that are included in themodel. Values of aw(λ) and bbw(λ) are
known constants and provided by Pope and Fry (1997), and Smith
and Baker (1981), respectively. The phytoplankton eigenvector,
aphi
* (λ), varies by inversion model depending upon whether it

will be used at global or regional scales. Global models typically
use a more general phytoplankton absorption spectrum that can
characterize many different phytoplankton functional types
(Maritorena et al., 2002; Werdell et al., 2013). However,
regional models use absorption spectra that are specific to
the phytoplankton in that region (Roesler and Perry, 1995).
The spectral shapes of NAP and CDOM absorption (adgi* (λ)) are
represented by exponential decay functions, and because they
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only differ in their exponential slopes, the two components are
typically combined for remote sensing applications.

These are commonly expressed as:

adgi
* λ( ) � expSdg λ−λ0( ) (5)

Where Sdg typically vary between 0.01 and 0.02 nm−1 (Gordon
et al., 1988).

The eigenvector for particulate backscatter is typically
represented by a power function:

bbpi
* λ( ) � λSbp0

λ
(6)

where Sbp defines the steepness of the power law as function of
particle size.

Remote sensing reflectance and the eigenvector are used as the
inputs for inversion models and the eigenvalues for absorption and
backscattering (A and B from Eqs 3, 4) are estimated through
optimization techniques (Roesler and Perry, 1995; Maritorena
et al., 2002; Werdell et al., 2013).

IOPs λ( ) � f−1 Rrs λ( )[ ] (7)
IOP estimates (A and B) can then be used to derive biogeochemical

constituents such as Chlorophyll a (Chl-a) concentrations. Eigenvalues
Bbphi = Aphi, are concentrations of Chl-a.

In this study, the GSM and GIOP are applied to reflectance
measurements to characterize the optical properties of the nearshore
waters of the USVI. The calibrated model was then applied to Landsat

8 OLI sensor data to retrieve and map the spatial and temporal
variability of the water quality using Chl-a as a primary index.

2 Study area

The U.S. Virgin Islands (USVI) are part of the Leeward Islands
in the Lesser Antilles Island chain in the Caribbean which consists of
three main islands: St. Thomas, St. John, and St. Croix as well as
many islets, cays, and reefs (Figure 1). Oceanic water quality in this
region is highly dependent upon weather, wave action, precipitation,
and terrestrial development (Rothenberger et al., 2008). The average
annual air temperatures of 28°C that varies slightly (5–10°C)
throughout the year (Figure 2). The wet season runs from May
to November and is generally dominated by Northeast trade winds
in June and July (Schwartz, 2010). The rest of the year is typically
drier with Southeast trade winds dominating from December to
March (Schwartz, 2010). The average annual precipitation on St.
Thomas and St. John ranges from 75–150 cm and is mostly due to
the orthographic lifting of moist oceanic air over the hilly,
mountainous terrain (Miller et al., 1997). However, the
distribution of precipitation varies considerably within the USVI
with the Western sides of the islands receiving much more rainfall
than the Eastern sides. From May to November tropical low-
pressure systems can form off the west coast of Africa and move
westward across the Atlantic Ocean becoming tropical storms and
hurricanes that can produce high winds and large amounts of
precipitation for the USVI.

FIGURE 1
USVI is east of Puerto Rico in the Lesser Antilles Island chain, with an overview St. Thomas and St. John and the major towns on each island.
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3 Data and method

3.1 In-situ data

In-situ water quality and radiometric data were collected during
four field campaigns: December 2016 June 2016, May-June 2017,
and January 2018 at 17 sampling sites. Each campaign consisted of at
least 7 sampling days and one or more corresponding satellite
(Landsat 8 OLI) overpass days.

The sampling sites for this study are part of the USVI
Territorial Coral Reef Monitoring Project (TCRMP) sites

where coral reef health and benthic substrate metrics have
been measured since 2001 (Table 1). All sites are located
around the islands of St. Thomas and St. John in the
Caribbean Sea. The sampling sites are also representative of
different amounts of anthropogenic impact: low impact sites
(FB, LB, Hind, SW, and NM) are either in deeper offshore
waters removed from land-based influences or are associated
with less disturbed or inhabited watersheds, medium impact sites
(BP, Bot, BB, BI, FC, SV, SH, and SJ) are mid-shelf sites partially
removed from land based sources of pollution or are onshore but
receive from watersheds with moderate levels of development
and high impact sites (H2, CR, CB, and MB) are associated with
extensive harbor activities and/or high-density watershed
development (Figure 3).

Water samples collected at each station were filtered using
ashed, glass fiber filters (0.7 μm GF/F™), the Chl-a was extracted
from each filter following EPA 445 method (Arar and Collins,
1997) and their concentration was measured fluorometrically
using a calibrated bench top fluorometer. Chl-a fluorescence
measurements were also measured in situ using Seabird CTD,
WetLABS ECO meters. Two Satlantic hyperspectral radiometers
(HyperOCR) integrated into a Wetlabs-ac-s optical package were
used to collect down-welling irradiance (Ed (0-)) and upwelling
radiance (Lu(0-)). The radiometers measure radiance between
350 and 800 nm at a 3.3 nm spectral interval and were
resampled to spectral resolution of 10 nm. The data was pre-
processed using instrument calibration files to eliminate noise
(using tilt and velocity thresholds). The subsurface remote
sensing reflectance rrs was obtained by:

TABLE 1 Sampling sites and anthropogenic impact levels.

Location Depth (m) Anthropogenic impact level

Black Point (BP) 9 Med

Botany (Bot) 8 Med

Brewers Bay (BB) 7 Med

Buck Island (BI) 14 Med

Charlotte Amalie Harbor (H2) 7 High

Coculus Rock (CR) 7 High

Coral Bay (CB) 9 High

Fish Bay (FB) 9 Low

Flat Cay (FC) 12 High

Hind Bank (HB) 39 Low

Lameshur Bay (LB) 11 Low

Magens Bay (MB) 7 High

North Megan (NM) 48 Low

Savannah (SV) 9 Med

Sea Horse (SH) 20 Med

South Water (SW) 20 Low

St. James (SJ) 17 Med

FIGURE 2
The seasonal variations in precipitation (cm) and temperature
(˚C) in the USVI (NCDC, Cyril E. King Airport, St. Thomas, USVI).
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rrs λ, 0−( ) � Lu 0−( )
Ed 0−( ) (8)

The ac-s profiler was also used to collect 159 IOPs
measurements that were used to validate inversion models. The
inversion of IOPs is a two-step process in which the IOPs are derived
from the radiance and then biogeochemical parameters are derived
from the IOPs.

3.2 Standard OC4 empirical algorithm

Satellite based sensors provide estimates of Rrs(λ) after
atmospheric correction is applied. The Rrs(λ) is used to estimate
the near-surface concentration of Chl-a based on empirical
relationships. The OC4 is an empirical based blue-to-green band
ratio algorithm that was initially adopted by NASA for SeaWiFS
(O’Reilly et al., 1998; O’Reilly et al., 2000). It is based on a fourth-
order polynomial regression between log-transformed Chl-a and
log-transformed ratio of Rrs(λ), as defined in Eq. 9:

log10 Chla( ) � a0 +∑4

i�1ai log10
max Rrs443;Rrs490;Rrs510( )

Rrs555
( )( )

i

(9)
This algorithm is widely applied using current ocean color

sensors (O’Reilly and Werdell, 2019).

3.3 Semi-analytical algorithms

Lee et al. (2002) developed an algorithm to convert Rrs(λ) to
their subsurface values for retrieving geophysical products:

rrs λ, 0−( ) � Rrs λ( )
0.52 + 1.7Rrs λ( ) (10)

Subsurface remote sensing reflectance (rrs(λ, 0−)) relates to
IOPs by:

rrs λ, 0−( ) � G1 λ( )u λ( ) + G2 λ( )u λ( )2 (11)
where both Gi(λ) vary with environmental parameters such as
illumination, sea surface properties, and bidirectional effects. The
Gi(λ) values are estimated using several different methods such as in
Gordon et al. (1988) where G1 and G2 are spectrally fixed (0.0949 and
0.0794, respectively). SAA models are then solved for u(λ) (Eq. 11) by
inverting u(λ) to estimate the eigenvalues for absorption and
backscattering (A and B from Eqs 3, 4) using the Levenberg-
Marquardt (LM) nonlinear optimization scheme. The LM
optimization converges on a single eigenvalue or solution for A and
B. The eigenvalues are proportional to component concentration (Chl-a).
The optimized eigenvalues (A and B) are representative of the relative
contributions of each absorbing and scattering spectral signature. The two
SAA models employed here (GSM and GIOP) differ in their
parametrization when modeling IOPs. GSM uses a constant value of
0.055m2mg Chl-a−1 for the Chl-a specific phytoplankton pigment
absorption coefficient while GIOP uses aph*(λ) as a function of Chl-a
concentrations (Bricaud et al., 1998). GIOP elements are therefore defined
by specifying eigenvectors for each optically significant constituent
assumed to exist in the regional water column (Werdell et al., 2013).

3.4 Satellite image processing

Level–1ALandsat 8OLI images with less than 20% cloud cover were
acquired from the USGS http://earthexplorer.usgs.gov/data gateway. To
minimize the effects of temporal and spatial mismatches between the
satellite and in situ data, only images that were within the time window
~ ± 2 days of the Landsat–8 overpass was considered. The L2gen
algorithm within SeaWiFS Data Analysis System scheme (SeaDAS
version 7.5) was used to generate Level-2 geophysical products by
applying the default atmospheric corrections and bio-optical
algorithms to the Level-1A sensor data. The atmospheric correction
was done by applying the default Near Infra-Red (NIR) technique
(Gordon and Wang, 1994). The correction is based on the measured
radiances at the twoNIRwavelengths with the assumption that the water
leaving radiances are negligible. IOP products were also retrieved for

FIGURE 3
The locations of coral reef sites around St. Thomas and St. John where samples are collected during this study.
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aph(l), at 412, 443, and 490 nm using the GIOP and GSM algorithm
framework. To ensure spatial data consistency, Level-2 archive variable
values were extracted from the images by running a 3 × 3 average kernel
function surrounding the cloud-free sampling location.

3.5 Validation

Coefficient of determination, R2 and the root mean square error
(RMSE) were employed to assess model efficiency of IOP and Chl-a
estimates. The IOP estimates were compared with in situ
measurements from the WETLabs AC-S and the Chl-a estimates
from the inversion models are compared with the laboratory-based
Chl-a measurements.

4 Results

4.1 Meteorological conditions

4.1.1 Wind speed and direction
The meteorological conditions varied throughout the study

period (Figure 4). Winds speeds ranged from 6–15 m/s and
averaged approximately 10–11 m/s over all sampling dates. The
summer 2016 and 2017 periods had the least variability in wind
speed and averaged 11.3 m/s and 11.1 m/s, respectively. Sampling
days in winter 2016 had an average wind of 10.0 m/s but ranged
from 5.6–14.3 m/s. The summer 2016 study period had SE winds
with the exception of 6/8/16 that had SSW winds. summer

2017 sampling days had very similar wind directions to the
summer 2016 study period except for 5/20/2017, 5/21/2017, and
6/22/2017 that had more ENE winds. The wind direction during the
winter 2016 sampling season was highly variable and ranged from
NE on 12/8/2016 to SE on 12/10/2016.

4.1.2 Precipitation
Precipitation levels throughout the study periods were highly

variable (Figure 5). The summer 2016 and 2017 sampling days
had the highest rainfall totals with 3.9 and 5.0 cm, respectively.
However, all 3.9 cm of rainfall in summer 2016 occurred in 1 day
and was the single highest daily rainfall total measured. Only
1.2 cm of rainfall had occurred the entire month prior to
sampling. The winter 2016 study period only had 1.1 cm of
rainfall that coincides with the beginning of the annual dry
season that runs from December to April. However, the
previous month accumulated 18.9 cm of rain. Daily
precipitation records during September and October of
2017 were unavailable due to Hurricanes Irma and Maria that
hit the USVI on 9/6/17 and 9/25/17, respectively.

4.2 Chlorophyll a

Chlorophyll concentration is measured using the Seabird CTD,
WetLABS ECO meter, aligned closely on the 1:1 line against the
laboratory-based sample measurements, R2 = 0.82 (Figure 6). The
CTD Chl-a measurements had better agreement with laboratory
measured concentrations (R2 = 0.85) than the WetLABS ECOmeter

FIGURE 4
The daily wind speeds and directions for each month in which field sampling occurred. A solid grey line represents the wind speeds, and the wind
directions are shown with blue circles. The particular wind speeds and directions during sampling days are highlighted in red (NCDC, Cyril E King Airport,
St. Thomas, USVI).
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(R2 = 0.80). The laboratory measured Chl-a concentrations ranged
from 0.06 to 0.79 μg/L with an average value of 0.26 μg/L and a
standard deviation (SD) of 0.16 μg/L. The lowest average Chl-a
concentration was measured at the Hind Bank site (HB; 0.10 μg/L)
with a standard error (SE) of 0.02 μg/L.

Sites located offshore of the mainland (HB, SW, BI, SH, SJ) and
those in sparsely developed watersheds (Bot, FB, LB) show lower
measures of Chl-a. Those sites within highly developed watersheds

(MB, BP, BB, H2, CB) had the highest overall Chl-a concentrations.
FC also appears as an outlier with higher amount of Chl-a in the
winter season associated with rainfall. In general, the offshore sites
had lower Chl-a concentrations than nearshore sites. (Figure 7).

Average Chl-a concentrations were greater in winter (Figure 8)
and exhibited higher variability on a site by site and between site
bases. summer 2016 and summer 2017 exhibited similar Chl-a
concentrations, but there were some differences at select sites

FIGURE 5
The daily precipitation (cm) recorded from June 2016 to February 2018. Sampling days are highlighted in red (NCDC, Cyril E King Airport, St. Thomas,
USVI).

FIGURE 6
The correlation between Wetlabs Eco meter [Chl-a] (µg/L) (A), CTD [Chl-a] (µg/L) (B), and combined CTD and Wetlabs Eco meter [Chl-a] (µg/L) (C)
with laboratory measured [Chl-a] (µg/L).
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between the winter 2016–2017 and winter 2017–2018 Chl-a
concentrations. The higher concentrations in winter
2016–2017 could be due to the 18.2 cm of rainfall that fell the
month prior to samples collection.

Chl-a concentrations also varied as a function of depth,
particularly at nearshore sampling sites (Figure 9A). As distance
from shore increased, there was less variation between individual
daily measurements as well as Chl-a concentration with depth
(Figures 9B, C). However, Chl-a profiles at HB in December
2016 showed increased concentration after approximately 30 m
depth.

4.3 Model application

The accuracy of the three Chl-a algorithms was evaluated by
computing the regression indices and statistical indicators
summarized in Table 2.

4.3.1 OC4 model
The global, OC4 algorithm exhibited the worst performance

among the models, as evidenced by the low R2 value (0.13) and
relatively higher RMSE. The model consistently overestimates the
Chl-a concentrations with bias of 0.2 μg/L.

FIGURE 7
Average Chlorophyll a across sampling points.

FIGURE 8
The seasonal average Chl-a concentration (µg/L) by impact levels (High, Medium and Low).
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4.3.2 GSM model
The GSM inversion model (Maritorena et al., 2002) was applied

to 159 Satlantic HyperOCR Rrs measurements and the model results
were compared with in situ total absorption, particulate backscatter,
and Chl-a concentrations (Figure 10). The modeled at (443) ranged
from 0.014 to 0.22 m−1 with a mean of 0.077 m−1 and a SE of
0.003 m−1. Sites H2, CR andMB had the highest average atot(443) of
0.125, 0.122 and 0.108 m−1 with a SE of 0.008, 0.006 and 0.0278 m−1

respectively. This was consistent with in situ atot measurements as
well as the visually observed conditions during sampling. The
H2 site was consistently visually turbid. CR and MB sites are
shallow and were generally relatively more turbid than other
sites. The lowest atot(443) estimates were at offshore sites HB
and NM with mean atot(443) of 0.033 and 0.045 m−1 with SE of
0.003 and 0.009 m−1, respectively.

GSM modeled and in situ atot(443) fits reasonably along the 1:
1 line. However, the GSM inversion model fails at estimating the
IOPs in optically complex turbid waters such as the H2 and MB
sites. GSM-based bbp(443) IOP estimates ranged from 0.001 to
0.011 m−1 with a mean and SE of 0.001 and 0.002 m−2. The GSM
based backscattering values were consistently underestimated,
falling below the 1:1 line. This behavior is primarily attributed
to the influence of bottom reflectance. Figure 10C shows the
correlation plot between modeled and in situ bbp(443)
measurements.

Chl-a estimates from the GSM inversion model ranged from
0.02 to 0.71 μg/L with a mean and SE of 0.3 and 0.02 μg/L
respectively. The Chl-a estimates from the GSM model cluster
along the 1:1 line against the measured values, with R2 =
0.60 and RMSE 0.15. Some overestimated values were at shallow
sites such as BI, CR, and MB.

4.3.3 GIOP model
The GIOP inversion model (Werdell et al., 2013) was also

applied to Satlantic HyperOCR Rrs measurements. The model
results were compared with in situ total absorption, particulate
backscatter, and Chl-a concentrations. The modeled atot(443)
ranged from 0.034 to 0.256 m−1 with a mean of 0.13 m−1 and a
SE of 0.005 m−1. H2 and CR had the highest average atot(443) at
0.23 and 0.21 m−1 with a SE of 0.004 and 0.003 m−1, respectively.
This was consistent with in situ atot(443) measurements as well as
the visually observed conditions during sampling. Consistent with
the GSM model, the lowest atot(443) estimates were at the offshore
HB and NM sites with mean atot(443) of 0.05 and 0.06 m−1 with SE
of 0.002 and 0.01 m−1, respectively. The performance of the GIOP
model against the in situ atot(443) is presented Figure 10A. These
data have a very similar overall dispersion with GSM atot(443)
estimates, also showing turbid sites (H2) as outliers. The majority
of the atot(443) points fall below the 1:1 line suggesting
underestimation by the GIOP model. This may be attributed to
the aph basis vector implemented in the default GIOP configuration.
GIOP bbp(443) IOP estimates ranged from 0.001 to 0.045 m−1 with a
mean and SE of 0.012 and 0.001 m−2. These results significantly
overestimated in situ bbp (443) measurements (Figure 10B) and the
highest average bbp(443) estimates were found at CR and H2
(0.023 and 0.017 m−1) which are expected because they are turbid
and/or shallow. Low estimates were at the offshore sites HB andNM,
consistent with in situ measurements. Chl-a estimates from the
GIOP inversion model are more dispersed relative to in situ data
(Figure 10C). They ranged from 0 to 0.87 μg/L with a mean and SE
of 0.47 and 0.02 μg/L respectively. There was substantial
overestimation at almost all sampling sites but particularly at H2,
where turbidity was high.

FIGURE 9
Chlorophyll a (µg/L) depth profiles for Charlotte Amalie Harbor (A), South Water (B), and Hind Bank (C) from all field campaigns: December 2016
(black), May/June 2017 (red), and January/February 2018 (blue). Note the change in depth scale from the onshore (H2) to the offshore (HB) site.
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4.3.4 Application of GSM to coincident landsat
8 OLI Rrs

The application of the GSM inversion model to site specific
Landsat 8 OLI Rrs produced very similar results to those with
from HyperOCR data. The atot (443) estimates ranged from
0.048 to 0.151 m−1 with a mean of 0.100 and a SE of
0.005 m−1. Similar to the HyperOCR model results, H2, CR,
and MB had the highest atot(443) estimates. The modeled
atot(443) was slightly overestimated (Figure 11A), but
estimates generally fell around the 1:1 line with the exception
of one sample from H2 acquired on 12/12/2016. This is consistent

with other model results where turbid sampling sites did not
follow the same trends as sites with clear and deep water. The
bbp(443) estimates from Landsat 8 OLI data were similar to the
bbp (443) results from the GIOP model where they were severely
overestimated (Figure 11B). However, the bbp (443) estimates
using HyperOCR data and the GSM model were underestimated.
These differences in model results may be due to issues related to
atmospheric correction. The Landsat 8 OLI images were
corrected for the effects of atmosphere using the 2-band
multi-scattering NIR iteration method from Bailey et al.
(2010) to remove non-negligible NIR radiance from the NIR
signal. However, this could have led to overcorrection resulting in
the overestimation of bbp (443). The Chl-a estimates from
Landsat 8 OLI data are very similar to those from HyperOCR
data using the GSM model and closely aligned along the 1:1 line
(Figure 11C) despite the fact that Chl-a signal is inherently low
coupled with the spatial and the slight temporal differences
compared to in situ sampling.

Using the GSM model, maps of aph(443), acdom(443),
bbp(443), and Chl-a concentration are created for each
concurrent Landsat 8 image during the study period: 6/3/16,

FIGURE 10
Comparison of modeled and in situ (A) atot (443) (m

−1) (B) bbp (443) (m
−1), and (C) [Chl-a] (µg/L) sampling sites during all field campaigns using GSM

(first column), and GIOP (second column) applied to in situ HyperOCR Rrs data. The line represents a 1:1 line.

TABLE 2 Regression indices and statistical indicators for the Chl-a estimation in
the USVI.

Algorithm R2 RMSE p-value

OC4 0.13 0.15 <0.0001

GIOP 0.17 0.15 <0.0002

GSM 0.60 0.10 <0.0002
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12/12/16, 5/21/17, 6/6/17, and 6/22/17 (Figure 12). These maps
show the spatial variability of IOPs in the nearshore waters of the
USVI. Generally, IOP concentrations were higher near the shore,
but pixels around clouds and cloud shadows also show high
concentrations in some instances. This is due to pixel adjacency
effects due to contamination from the clouds and their shadows
as opposed to actual IOP concentrations. The highest IOP
concentrations occurred on 5/21/2017 (Figure 12C) and could
be attributed to the 0.3 cm of precipitation that fell the day before.
The lowest concentrations occurred on 12/12/2016 (Figure 12B).
Overall, the IOP maps follow the trends observed in in situ
measurements.

5 Discussion

5.1 Water quality parameters

The WQPs in the nearshore waters of St. Thomas and St. John
varied both spatially and temporally. The variations were influenced
by weather conditions such as wind speed, significant wave height,
and precipitation. The impacts on water quality from these weather
disturbances decreased with distance from shore. In particular,
Magens Bay and Charlotte Amalie Harbor were most susceptible
to weather events and had the greatest variation in water quality as

well as the overall highest average Chl-a concentrations. These
locations receive greater quantities of land-based sources of
pollution than other sampling sites because the watersheds that
feed MB and H2 are some of the most highly developed in the USVI
(Kerrigan and Ali, 2020). Higher Chl-a concentrations in these areas
are likely due to nutrient enrichment from runoff associated with
development within these watersheds. In addition, HB is also a busy
port with cruise ships, ferries, and tourist boats introducing and
resuspending a significant amount of pollutants and sediment in the
Charlotte Amalie Harbor (Kisabeth et al., 2014).

The biogeochemical composition of the nearshore waters of the
USVI are best classified as oligotrophic Case-1 waters (Westberry
et al., 2005), with optical properties much lower than those typical of
turbid Case-2 or optically complex waters (Sathyendranath, 2000;
Gitelson et al., 2008; Moses et al., 2009). However, because Chl-a
concentrations in the USVI vary depending on precipitation and
runoff, the nearshore waters cannot be solely classified as Case
1 waters. The coastal sites such as H2, CR, MB, and FC can be
classified as temporally variable Case 2 waters because of their
optical properties are controlled by a combination of
phytoplankton, and other suspended materials. In contrast, the
optical properties of sites further offshore, such as HB, SW, and
NM, are primarily controlled by phytoplankton.

Laboratory results indicate that there is a nearshore to offshore
gradient in Chl-a concentrations, that follows other water quality

FIGURE 11
Comparison of IOP estimates from the GSM model using Landsat 8 OLI data: total absorption (m-1) (A), particulate backscatter (m-1) (B), and Chl-a
concentration (µg/L) (C).
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trends, such as sedimentation (T. B. Smith et al., 2008). Nearshore
sampling sites (H2, MB, BB, BP, and FC) generally had higher Chl-a
concentrations than offshore sites (NM, SW, and HB). Other studies
have observed these same nearshore to offshore gradients in the
USVI (Ennis et al., 2016; Hertler et al., 2009; Kerrigan and Ali, 2020;
T. B; Smith et al., 2008). (Ennis et al., 2016) divided the southwestern
neritic waters of St. Thomas into three different zones based on
perceived anthropogenic impact, some of which correspond to
sampling sites in the current study. These previous studies found
that Chl-a concentrations were greatest in the areas around
Charlotte Amalie Harbor (H2) and measured lower
concentrations as the distance from developed watersheds
increased. These findings are consistent with our results and
suggest that land-based sources of runoff dissipate as they move
further offshore.

There were discernable temporal differences in Chl-a
concentrations throughout the study period. The seasonal
differences in Chl-a concentrations were due to the annual dry
and rainy seasons in the USVI. The laboratory measured Chl-a
concentrations were higher during the winter sampling campaigns
of December 2016 and January/February 2018. These trends
suggest that excess amounts of precipitation initiated more
runoff than occurs during the summer months causing
increased biological activity and primary production. These
results are consistent with other studies in the USVI region
(Ennis et al., 2016).

5.2 Model applications

5.2.1 Model applications to HyperOCR
As demonstrated in this work as well as in our previous study

(Kerrigan et al., 2019) global, empirical algorithms such as OC4 are
not suitable for bio-optical conditions in the USVI. These algorithms
tend to do perform well in environments where ocean color is
primarily a function of single component phytoplankton, and
signal-to-noise ratio is high. Neither criterion apply to the USVI
coastal waters. The GSM and GIOP inversion models produced
slightly different but promising results in retrieving the WQP in the
shallow waters of the USVI. For atot (443) estimate, the GSM model
performed slightly better (R2 = 0.55, RMSE = 0.04) than the GIOP
(R2 = 0.52, RMSE = 0.05) indicating that the GSM model is more
effective predictor of atot (443) in the USVI. The differences in atot
(443) model estimates is due to the basis absorption vectors used in
the individual models. The GSMmodel uses basis absorption vectors
from the more local, Sargasso Sea which may be responsible for the
slightly higher R2 and lower RMSE produced by model atot(443)
estimates. The absorption basis vector in the default configuration of
the GIOP model is based on a more global cruise-based data from
the Atlantic and Pacific oceans (Bricaud et al., 1998). Both models
produced very poor estimates of particulate backscatter (GSM, R2 =
0.14 and GIOP, R2 = 0.11). The GSMmodel severely underestimated
bbp (443) and in contrast, the GIOP severely overestimated bbp(443)
(Figure 7). The contrast in performances between the two models is

FIGURE 12
The application of the GSMmodel across a scene encompassing St. Thomas and St. John for concurrent Landsat 8OLI overpass days: 6/3/16 (A), 12/
12/16 (B), 5/21/17 (C), 6/6/17 (D), and 6/22/17 (E).
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likely due to inherent differences in the particulate backscatter basis
vectors used in the modelling and the relatively shallow water
conditions with bottom reflectance. The estimates of Chl-a are
also a function of the basis vectors applied in the models, hence
the observed difference in model Chl-a estimates of the GSM and
GIOP. The GSM model performed better (R2 = 0.60, RMSE = 0.09)
than the GIOP model (R2 = 0.17, RMSE = 0.15). The more locally
derived GSM model preformed slightly better than the GIOP with
respect to atot (443) and much better with respect to Chl-a. Both
models performed poorly with respect to bbp (443), although
consistent with the trend, the GSM statistics were slightly better
for the GSM relative to the GIOP. The poor performance of the
GIOPmodel relative to the GSMmodel is primarily attributed to the
definition of a non-fitting, global-based phytoplankton basis vector
used in the GIOP. Low signal-to-noise ratio, bottom signal
interference and non-fitting phytoplankton basis vectors,
specifically for the semi-analytical models, are the most likely
causes of limited performance of the models in the USVI.

5.2.2 GSM application to landsat 8 OLI
The application of the GSM model to Landsat 8 OLI data

collected on days in which field sampling took place had good
statistical correlation to in situ measurements. Chl-a and atot (443)
estimates fell very close to the 1:1 line except for some outliers that
represent sampling sites with high turbidity and clear, shallow
conditions. The GSM based retrieval of Chl-a from Landsat
produced R2 = 0.45, RMSE = 0.07. The limitations in
performance of these models are due to various factors including
smaller sample size that match with Landsat pixels, bottom signal
interference, boundary conditions, and atmospheric correction
errors. The limited number of Landsat 8 scenes (n = 5) during
the study period also likely contributed to the high variance and low
relative correlation coefficients.

The nature of the nearshore waters in the USVI make it an
inherently difficult area for ocean color remote sensing applications.
The optically clear water allows sunlight to reach the seafloor
contributing to the water leaving radiance and Rrs signal
captured by the remote sensing instrument. In the case of the
semi-analytical models tested in this study, they were not able to
differentiate between the bottom signal contributions and the
desired water column reflectance, causing poor performance in
retrieving bbp(443) of the water column constituents. Highly
turbid sites (MB, H2, CB) also limited the performance of the
semi analytical based IOP retrievals due to the non-linear
association of multiple water quality parameters in the water
column.

The optical signature from the water only contributes
approximately 10%–20% of the total radiance signal measured
by the satellite sensor due to the atmospheric path radiance, and
in clear, shallow waters such as those found in the USVI, a
relatively large portion of the 20% is due to bottom reflectance.
This greatly reduces the signal-to-noise ratio of the WQPs.
Previous studies in shallow Case I waters have shown that
attenuation coefficients can be robustly estimated to depths of
approximately 15 m under ideal conditions (Lyzenga, 1981). The
majority of the sampling sites in this study (71%) are at depths
less than 15 m suggesting that benthic albedo is contributing
significantly to the measured Rrs signal.

Because the atmosphere provides such a large contribution to
the Rrs signal measured by the satellite sensor, compensation for
atmospheric effects is essential for robust ocean color retrievals.
In this study, Landsat 8 imagery was corrected for atmosphere
using the dark object subtraction (DOS) method (Chavez Jr,
1988) which assumes that dark objects reflect no light, and any
reflectance from dark objects is due to atmospheric scattering.
The Landsat 8 pixels where sampling sites are located had overall
higher reflectance than in situ reflectance measured using the
HyperOCR. This suggests that the applied atmospheric effects
may not have accounted for all the path radiance. Boundary
conditions at the air-sea interface can also greatly affect the
reflectance signal measured by satellite sensors. These include
wind speed, waves, white caps, and Sun glint. The Landsat
8 imagery used in this study suffered in some areas from
specular reflection. Specular reflection occurs when the angle
of reflection is equal to the angle of incidence causing the sensor
to overestimate actual reflectance values. This could have
contributed to the high reflectance values at sampling sites in
the Landsat 8 imagery of this study.

6 Conclusion

This study characterized the spatial and temporal variability of
WQPs in the nearshore waters of the U.S. Virgin Islands (USVI).
Results indicate relatively low concentrations of Chl-a, that varied
seasonally and due to acute disturbances. The wet and dry seasons in
the USVI area are responsible for small variations in WQPs while
larger variations are mainly due to acute disturbances. Acute
disturbances included precipitation, high winds, waves, and
cruise ships that created large fluxes of nutrient-laden runoff and
resuspended sediments. Sampling sites located within the most
developed watersheds, Charlotte Amalie Harbor, Magens Bay,
and Coral Bay, are most susceptible to these acute disturbances
as compared to sites further offshore. Previous research has
highlighted the correlation between watershed development and
coral reef decline in the USVI (Edmunds and Gray, 2014; Gray et al.,
2008; Rogers, 1990; Smith et al., 2014). In-situ optical and physical
measurements of the water column are closely associated indicating
that ocean color remote sensing is a valuable tool in monitoring
changes in the coastal waters of the USVI.

Three empirical and semi-analytical inversion algorithms,
namely, OC4, GSM, and GIOP model were evaluated to
determine the most robust method for IOP and Chl-a retrievals
for coastal waters of the USVI waters. The statistical parameters show
that the standard OC4 algorithm perform poorly in the USVI with R2 =
0.14 and RMSE= 0.15. Among the semi-analytical algorithms, the GSM
model provides the best retrievals of Chl-a (R2 = 0.45, RMSE = 0.07).
The differences in the inversionmodel results are a function of the basis
vectors defined within the model framework. The GSM model applied
to Landsat 8 OLI imagery showed similar results to the GSM tested on
in situ reflectance measurements with moderate atot (443) and Chl-a
performance (R2 = 0.55 and 0.45, respectively) and poor bbp (443)
performance (R2 = 0.14). In the USVI, the performance of the ocean
color models was also limited due to the contribution of benthic albedo,
turbidity in the water column, and the low signal-to-noise ratio of
the WQPs.
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