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Introduction: Machine learning methods combined with satellite imagery have
the potential to improve estimates of carbon uptake of terrestrial ecosystems,
including croplands. Studying carbon uptake patterns across the U.S. using
research networks, like the Long-Term Agroecosystem Research (LTAR)
network, can allow for the study of broader trends in crop productivity and
sustainability.

Methods: In this study, gross primary productivity (GPP) estimates from the
Moderate Resolution Imaging Spectroradiometer (MODIS) for three LTAR
cropland sites were integrated for use in a machine learning modeling effort.
They are Kellogg Biological Station (KBS, 2 towers and 20 site-years), Upper
Mississippi River Basin (UMRB - Rosemount, 1 tower and 12 site-years), and
Platte River High Plains Aquifer (PRHPA, 3 towers and 52 site-years). All sites
were planted tomaize (Zeamays L.) and soybean (Glycinemax L.). TheMODISGPP
product was initially compared to in-situ measurements from Eddy Covariance
(EC) instruments at each site and then to all sites combined. Next, machine
learning algorithms were used to create refined GPP estimates using air
temperature, precipitation, crop type (maize or soybean), agroecosystem, and
theMODISGPP product as inputs. The AutoML program in the h2o package tested
a variety of individual and combined algorithms, including Gradient Boosting
Machines (GBM), eXtreme Gradient Boosting Models (XGBoost), and Stacked
Ensemble.

Results and discussion: The coefficient of determination (r2) of the raw
comparison (MODIS GPP to EC GPP) was 0.38, prior to machine learning
model incorporation. The optimal model for simulating GPP across all sites
was a Stacked Ensemble type with a validated r2 value of 0.87, RMSE of
2.62 units, and MAE of 1.59. The machine learning methodology was able to
successfully simulate GPP across three agroecosystems and two crops.
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1 Introduction

The use of satellite-derived estimates of ecosystem productivity
have become somewhat commonplace in ecosystem and agricultural
sciences (Huang et al., 2018; Smith et al., 2019; Ai et al., 2020).
Estimating plant growth has utility in a wide variety of ecological
and agricultural applications, including carbon uptake estimates,
yield forecasting, detection of plant pathologies, and detecting
ecosystem changes (Steven, 1993; Kerr and Ostrovsky, 2003;
Pettorelli et al., 2017). These estimates generally take advantage
of the unique way that photosynthesizing plants reflect near infrared
radiation (NIR), which can be easily detected with satellite and aerial
sensors (Badgley et al., 2017; Baldocchi et al., 2020). Large networks
of sites, such as the Long-Term Agroecosystem Research (LTAR)
network, provide unique opportunities to analyze plant productivity
across multiple collaborative sites over a long period of time,
allowing for a better understanding of large-scale spatio-temporal
trends. The LTAR network is a collaboration between 18 long-term
agricultural research sites across the United States established by the
United States Department of Agriculture (USDA) Agricultural
Research Service (ARS) and collaborative land-grant universities.
The overarching mission of the LTAR network is to provide
sustainable solutions for food and fiber production that are
currently facing challenges associated with changing climate and
increasing resource demands. The LTAR network has been
increasingly turning to technological solutions, including remote
sensing, to serve as a large-scale indicator (Spiegal et al., 2018;
Browning et al., 2021) and solve its pressing questions regarding
agricultural sustainability (Kleinman et al., 2018; Boughton et al.,
2021; Goodrich et al., 2021). The LTAR network includes a wide
range of cropping systems, management practices, and land use
histories. Studying the interactions of cropping system and
management with carbon flux can be useful when determining
best management practices in a variety of systems.

One commonly used satellite output is the Moderate Resolution
Imaging Spectroradiometer (MODIS) Gross Primary Productivity
(GPP) product. This output provides a measure of total carbon
uptake via photosynthesis (GPP)—a major component of the carbon
cycle in terrestrial ecosystems. MODIS is a passive sensing
instrument aboard NASA’s Terra and Aqua satellites that collects
spectral data among 36 bands with a temporal resolution of
1–2 days. The MODIS GPP estimate is a pre-processed data
product available via NASA-based platforms (Maccherone, 2021).
The GPP product derived from MODIS data uses a light-use
efficiency-based model that is modulated by biome type. MODIS
classifies all cropland into a single cropland biome. This method
relates GPP to the light-use efficiency of photosynthesizing plants
and the availability of light. The method is common for estimating
GPP using remote sensing from a wide range of sensors beyond
MODIS (Reeves et al., 2005; Running and Zhao, 2015; Huang et al.,
2021).

Remote sensing estimates of GPP, such as the MODIS GPP
product, have a number of advantages compared to ground-based
methods, including lower cost, ease of use, and ability to estimate
GPP in regions where ground-based instruments are impractical.
However, the MODIS GPP estimate is prone to underestimation
due to uncertainties associated with assumptions used in the
method, cloud cover, coarse resolution, and others. Including

the classification of all cropland as a single biome type is largely
due to the limited spatial resolution (Tuner et al., 2006; Sims et al.,
2008; Huang et al., 2018). For instance, a vulnerability of the
MODIS GPP product is that the default scalars used in the
calculation of the maximum light-use efficiency are not well
measured and are lacking a distinction between C3 and C4

photosynthetic pathways (Tuner et al., 2006; He et al., 2013;
Xin et al., 2015; Huang et al., 2021). Moreover, reports of
uncertainty are common among the photosynthetically active
radiation (PAR) absorption calculations used by MODIS (He
et al., 2013; Cheng et al., 2014). Many authors have succeeded
in improving the GPP estimates (more in-line with ground truth
data) by modifying the efficiency parameters and PAR input
parameters (Sims et al., 2008; Gilabert et al., 2015; Huang et al.,
2018; Huang et al., 2021). The process of improving satellite
estimates of GPP requires reliable ground truth data from in-
situ carbon flux measurements.

The most common ground based GPP estimation method is
the eddy covariance (EC) method (Novick et al., 2018; Hermes
et al., 2019; Baldocchi, 2020). The EC method uses two rapid-
response (i.e., 10 Hz) instruments, an infrared gas analyzer
(IRGA) that measures the concentration of the gas of interest
(in this case, CO2), and a sonic anemometer that measures the
vertical wind speed. The covariance of the simultaneous
measurements is gas flux, which in the case of CO2 is the net
ecosystem CO2 exchange (NEE). GPP is then derived from net
ecosystem exchange of CO2 (NEE) using a variety of flux
partitioning methods (Reichstein et al., 2005; Wutzler et al.,
2018). This method is widely used to estimate GPP due to its
continuous measurement style and accuracy; however, the
method has several key drawbacks. The instruments needed
for the EC method are expensive, need regular maintenance,
and require large flat areas with uniform vegetation for optimal
function. Despite these challenges, EC instruments provide a
strong control and an in-situ estimation of GPP. EC data is
widely available through collaborative research efforts, such as
LTAR, and through data-sharing networks, such as AmeriFlux or
FLUXNET (Pastorello et al., 2020; Bond-Lamberty, 2018).

The in-situ GPP data bridges the gap between the EC GPP
estimates and the MODIS GPP products. There have been
numerous successes in bridging this gap using linear regression
both to modify parameters used in the MODIS algorithm and to
modify GPP outputs (Wang et al., 2012; Fu et al., 2014; Xin et al.,
2015). Xin et al. (2015) modified the light use efficiency term using
linear regression and in-situ measurements to modify MODIS
efficiency terms. Kang et al. (2005) improved MODIS outputs
using a cloud correction algorithm. The gap could be more
thoroughly overcome through the introduction of more advanced
modeling methods. Many models have been developed using
MODIS GPP and meteorological data, with machine learning
algorithms becoming more common in recent years (Joiner and
Yoshida, 2020; Jung et al., 2020; Yu et al., 2021). Machine learning is
a method of modeling that uses data to train algorithms that describe
the data and allow for the prediction of new data points. This
method is increasingly being used for simulating CO2 and other
ecosystem gas fluxes (Yao et al., 2017; Knox et al., 2021; Reed et al.,
2021; Shang et al., 2021; Talib et al., 2021). Yang et al. (2007) was
able to improve MODIS GPP estimates using support vector
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machine learning. Similarly, Joiner and Yoshida (2020) estimated
global GPP on a yearly time step using MODIS data and Neural
Network modeling. Cui et al. (2021) used the support vector
machine to improve gap filling and evapotranspiration estimates
of EC data.

Here we construct a simple machine learning method by using
EC data as a ground-truth (dependent) variable. Whereas the
MODIS GPP alongside precipitation, temperature, crop, and
agroecosystem serve as the independent variables. Using these
variables and the AutoML machine learning function of the h2o
package, the objectives of this study are to determine: 1) The
feasibility of utilizing combined datasets across multiple LTAR
sites to estimate GPP using machine learning algorithms, and 2)
establish an estimation of GPP that can be used as part of a carbon
balance proxy, to serve as a supporting indicator of the sustainability
goals of the LTAR network.

2 Materials and methods

2.1 Site and EC data selection

The LTAR network has 18 sites of which 13 are solely or partly
cropland sites (Figure 1). Despite the establishment of EC towers
across the network, many are new, thus limiting the amount of data
collected to date. Of the 13 LTAR cropland EC agroecoregions, three
had enough EC data for use in machine learning algorithms. These
three sites include the Kellogg Biological Station (KBS), the Platte
River High Plains Aquifer (PRHPA), and the Upper Mississippi
River Basin (UMRB) sites (Figure 1; Table 1). All of these sites are
part of LTAR’s Common Experiment, where similar methods and
management practices are used across multiple sites.

The KBS LTAR site is located near Battle Creek, Michigan,
United States (42.4376, −85.3287) and is operated as an LTAR site

FIGURE 1
Spatial locations of the three agroecoregions used in this study, all within the Long-Term Agroecosystem Research (LTAR) network. Created using
the LTAR network shapefile, published under CC0-1.0.

TABLE 1 Information for the 13 LTAR eddy covariance (EC) flux measurements sites. AmeriFlux site ID is provided in parentheses.

Site ID* Location Site management Years AmeriFlux citation

PRHPA 1 (US-Ne1) 41.1651N, 96.4766W No-till maize, irrigated 18 (2002–2019) Suyker (2021a)

PRHPA 2 (US-Ne2) 41.1649, −96.4701 No-till maize/soybean rotation, irrigated 17 (2003–2019) Suyker (2021b)

PRHPA 3 (US-Ne3) 41.1797, −96.4397 No-till maize/soybean rotation 17 (2002–2014; 2016–2019) Suyker (2021c)

KBS 1 (US-KM1) 42.4376, −85.3287 No-till maize 9 (2010–2018) Robertson and Chen (2021)

Previously CRP

KBS 2 - (US-KM1) 42.4805, −85.4448 No-till maize 9 (2010–2018) Robertson and Chen (2021)

Cropped since 1938

UMRB 1 (US-Ro1) 44.7143, −93.0898 Conventional till maize/soybean rotation 12 (2004–2009; 2011–2016) Baker and Griffis (2018a)

UMRB 2 (US-Ro2) 44.7288, −93.0888 Conventional till maize/soybean rotation 2 (2008, 2012) Baker and Griffis (2018b)

UMRB 3 (US-Ro3) 44.7217, −93.0893 Conventional till maize/soybean rotation 3 (2005–2007) Baker and Griffis (2019)

UMRB 4 (US-Ro5) 44.6910, −93.0576 Conventional till maize/soybean rotation 3 (2017–2019) Baker and Griffis (2021)
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through a partnership between USDA-ARS and Michigan State
University (Bean et al., 2021). The average annual temperature is
9.9°C and the average annual precipitation is 1,027 mm. Two EC
towers were established in 2009 and remain in operation. Since
2009 had a different crop system compared to the rest of the years,
2009 data was not used in this study. The EC towers are in two
different fields; one has been cropland since 1938 and the other was
converted from Conservation Reserve Program (CRP) perennial
grassland to cropland in 2009. Both sites are managed as no-till with
continuous rainfed maize (Abraha et al., 2019; Robertson and Chen,
2021). Each EC tower is equipped with a LI-7500 IRGA (LI-COR
Biosciences, Lincoln, NE, United States) and a CSAT3 sonic
anemometer (Campbell Scientific, Logan, UT, United States). Air
temperature and precipitation were determined with ancillary
instruments on the EC tower. Data was processed using the
EdiRe system (University of Edinburgh, Edinburgh, Scotland,
United Kingdom). This processing included flagging low-quality
data, performing corrections for sonic temperature and humidity,
planar fit coordinate rotation, and corrections for air density. These
are typical corrections used in the processing of Eddy Covariance
data (Abraha et al., 2019; Burba, 2022).

The PRHPA site is located near Omaha, Nebraska, United States
(41.1651, −96.4766) and is operated under a partnership between
USDA-ARS and the University of Nebraska-Lincoln and is part of
the Platte River High Plains Aquifer agroecoregion (Bean et al.,
2021). The average annual temperature is 10.1°C and the average
precipitation is 790 mm. Three EC towers were established in
2001 and remain in operation. The three EC towers are in three
no-till fields that are operated with the following production cycles:
1) Irrigated continuous maize; 2) irrigated maize/soybean rotation;
and 3) rainfed maize/soybean (Suyker, 2021a; Suyker, 2021b; Suyker,
2021c). Irrigation managements was performed with a center-pivot.
LI-7200 IRGA (LI-COR Biosciences) and R3-100 sonic anemometer
(Gill Instruments, Hampshire, United Kingdom) were used at the
site. On-site raw processing was completed using custom code and
included typical corrections for EC data as discussed previously.

The UMRB site is located near Minneapolis-St. Paul, Minnesota,
United States (44.7143, −93.0898) and is operated under a
partnership between USDA-ARS and the University of
Minnesota and is part of the Upper Mississippi River Basin
agroecoregion (Bean et al., 2021). The average annual
temperature is 6.4°C and the average annual precipitation is
879 mm. Three of the EC towers (UMRB 1, UMRB 2, and
UMRB 3) were established in 2003 and were dismantled in
2016 when the site was developed. A new EC tower (UMRB 4)
was established in a nearby site in 2017 and is still in operation. All
tower sites were managed as rainfed maize/soybean rotation with
chisel plow tillage (Baker and Griffis, 2019; Baker and Griffis, 2021).
LI-7500 IRGA and CSAT3 sonic anemometer were used at the site.
Raw data were processed on-site using custom code prior to data
sharing. Data processing involved standard corrections applied to
EC data as previously discussed. Air temperature and precipitation
were measured at all three sites (KBS, PRHPA and UMRB) with
ancillary instruments on the EC towers.

Missing EC (15.7%) data due to power outages, instrument
maintenance and failure, and unfavorable weather conditions were
gap-filled using an online R-based tool, REddyProc (https://www.
bgc-jena.mpg.de/5622399/REddyProc; Version 75, Jena, Germany).

REddyProc uses a moving-window-based algorithm to fill gaps in
EC data and is one of the widely used methods (Reichstein et al.,
2005; Wutzler et al., 2018). An average gap of 15.7% is relatively low
compared to other eddy covariance datasets (Falge et al., 2001; Hui
et al., 2004; Moffat et al., 2007) NEE fluxes were partitioned into
GPP and Reco in REddyProc using a relationship between nighttime
NEE and air temperature to estimate Reco, assuming nighttime NEE
fluxes are equal to Reco. GPP was then calculated by adding Reco to
NEE (Lloyd and Taylor, 1994; Reichstein et al., 2005). EC GPP will
be referred to in this paper as GPPEC from here outwards.

2.2 MODIS data acquisition and processing

MODIS data were pulled from the MODIS/006/MOD17A2H
collection (Running et al., 2015) through Google Earth Engine Code
Editor (Gorelick et al., 2017). Quality control (QC) bits 5-7 provided
a 5-level confidence quality score where “0” indicated the “very best
possible” quality (e.g., absence of the clouds). Images with the value
of “0” were used while the remaining scores were all masked. Once
the desirable images were selected, they were saved to a list and
exported to Google Drive. The imagery data were then subject to
geospatial processing methods incorporating averaged zonal
statistics representing the area of each individual field using
ArcGIS Pro (ESRI, Redlands, CA, United States). The spatial
resolution for this product is 1 km2. The typical eddy covariance
tower has a flux footprint (radius) around 150–200 m2, giving it an
effective spatial resolution that is similar to that of the MODIS
product. Across the studied sites, the average EC flux location
consisted of 1.05 MODIS pixels.

2.3 MODIS GPP algorithm

MODIS calculates GPP using a light-use efficiency-based model
as follows:

GPPMODIS � APAR p ε (1)
where APAR is the absorbed photosynthetically active radiation
(PAR) and ε is the coefficient of radiation use efficiency (Reeves
et al., 2005; Running and Zhao, 2015). ε is calculated using the
maximum ε, and terms for water, temperature stress, and other
environmental factors that come from the Biome Specific
Parameters Look Up Table (BPLUT, https://www.ntsg.umt.edu/
files/modis/MOD17UsersGuide2015_v3.pdf). For this dataset,
cropland BPLUT was used (Running and Zhao, 2015; Huang
et al., 2021). APAR is calculated by modifying incoming PAR
using cloud cover, aerosol interference, leaf area, day length, and
incident angle (Running and Zhao, 2015). As the MODIS product is
an 8-day sum, a daily value was obtained by dividing the value by 8.

2.4 Machine learning model

The h2o package (LeDell et al., 2021) provides the AutoML
function, which is an automated, supervised machine learning
algorithm. It trains the model by utilizing a variety of other
algorithm types such as: Gradient Boosting Machines (GBM),
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Generalized Learning Models (GLM), and eXtreme Gradient
Boosting Models (XGBoost). AutoML uses three pre-specified
XGBoost GBM models, a fixed grid of GLMs, a default Random
Forest (DRF), five pre-specified H2O GBMs, a near-default Deep
Neural Net, and Extremely Randomized Forest (XRT), a random
grid of XGBoost GBMs, a random grid of H2OGBMs, and a random
grid of Deep Neural Nets (H2O AutoML, 2022). AutoML includes
stacked ensembles, which is a type of algorithm that additionally
trains with a second-level meta-learner to find the best combination
of the base learners (LeDell and Poirier, 2020). The models were
trained to predict the daily GPP values based on the combination of
MODIS-derived daily GPP (MODIS GPP), Julian day of year
(DOY), air temperature, precipitation, agroecoregion, and
crop. While MODIS includes biome types, the biomes used by
MODIS are very broad (i.e., cropland, grassland, deciduous forest)
and all sites in this study fall into the cropland biome, including
location that allows for more specific ecoregions to be included. This
model was limited to only maize and soybean due to limited data
availability for other crop types. Several algorithm types such as
Random Forest, k-nearest neighbor, and XGBoost were trained
separately and as part of AutoML’s stacked ensemble in R
(LeDell and Poirier, 2020). For reproducibility, parameters such
as “max_models” and “max_runtime”were set to 500 and unlimited,
respectively. This allowed AutoML to generate 500 models for each
run with no limitations on time and then select the best-performing
ones overall as well as within each algorithm type. The best models
were identified by Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE). It should be noted that XGBoost is not
currently available on Windows, which is why MacOS was used in
this step.

Cross-validation (CV) is used to understand how well a model
will likely perform in an actual use-case scenario (Friedman et al.,
2001). There are several available methods to use for CV, each
having its own advantages and disadvantages (Arlot and Celisse,
2010). h2o AutoML uses K Fold CV by default, a method
introduced by Geisser (1975), to provide a better estimate of
how well the model will perform on new data. K Fold CV
removes part of the training data and tests the model on the
removed portion. The data is divided into k subsets, and then the
training is repeated k times using a different combination of
subsets each time. The accuracy metrics are averaged across all
versions to produce the CV results. In our case, k = 5, which means
that 80% of the data was used to predict on the remaining 20%.
While the CV results can give a reasonably accurate view of model
performance, we chose to keep some years separate from the
training for an independent model validation. Only the
validation results from this last step are utilized in this paper to
provide a more accurate reflection of the models’ performance
instead of the CV results that can sometimes appear inflated. The
data were split three ways across entire years to ensure model
robustness: 1) Models were trained on older years (2004–2015) and
tested on recent years (2016–2019); 2) Models were trained on
recent years (2006–2019) and tested on older years (2004–2005);
and 3) Models were trained and tested on years selected at random
(testing years: 2009, 2011, 2014, 2017). Due to the variability of
observations between years, the number of years for each region
were chosen to maintain as close to an 80:20 training/testing split
as possible for a more realistic view of the model’s performance

(see Saeb et al., 2017). A summary of all models run is included in
the supplementary materials.

2.5 Statistical analyses

The statistical methods used for comparing modeled GPP to
GPPEC were coefficient of determination (r2; Eq. 2), Root Mean
Square Error (RMSE; Eq. 3), and Mean Average Error (MAE; Eq. 4).
R-squared measures the amount of variability in the predicted
variable that can be explained by the model with values ranging
from 0 to 1. RMSE is the sum of the square of prediction error for
each observation. MAE is the sum of the absolute value of error. We
used r2 and RMSE to easily compare across models, while MAE was
used for ease of communicability to the general public because it is in
a format that is understood by the average farmer (i.e., gC m−2 day−1

as opposed to a root/squared value or something between 0 and
1 that may not be comparable across fields). These indices were
calculated as follows:

r2 � 1 − ∑ yi − ŷ( )2

∑ yi − �y( )2
(2)

RMSE � ≤ �√ 1
n
∑ yi − ŷ( )2 (3)

MAE � 1
n
∑ yi − ŷ

∣∣∣∣
∣∣∣∣ (4)

where n is the number of data points, ŷ is the actual value
(GPPEC), yi is the predicted value (modeled GPP), and �y is the
mean value. Linear regression of the GPPMODIS and GPPEC was
performed using SigmaPlot (Version 14.0, Systat Software,
Berkshire, United Kingdom). Differences in model success
between management practice and sites were determined by
comparing MSE and MAE values.

3 Results and discussion

3.1 Comparison of GPPMODIS to GPPEC

The linear regressions between the GPPMODIS (prior to
modeling) and GPPEC vary greatly among sites (Figure 2). The
strongest correlation was found at the PRPHA site with maize;
however, this could possibly be an artifact of greater data availability
(17 years per EC tower versus 9 and 12 at KBS and UMRB,
respectively) for that site/crop combination. Larger datasets, with
increased data available for training, are associated with lower error
than smaller datasets (e.g., Faber et al., 2016; Schmidt et al., 2017;
Zhang and Ling, 2018). Across all sites, GPPMODIS has a tendency to
underestimate GPP during the peak growing season and
overestimate GPP in the seedling establishment and senescence
phases. Underestimation was most pronounced at the peak of the
growing season, often by > 100 gC per 8-day measurement period.
Overestimation was most pronounced in the late spring just at the
very beginning of the growing season with overestimations of
around 50–60 gC per 8-day measurement period being common.
Tuner et al. (2006) reported that GPPMODIS product tended to
overestimate during low productivity and underestimate during
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high productivity (i.e., peak growing season) across multiple biomes
including croplands. Other studies also found significant
underestimation of GPPEC by the raw GPPMODIS product, often
with similar magnitudes to our results (Wang et al., 2012; Tang et al.,
2015; Huang et al., 2018).

A best fit line between GPPEC and GPPMODIS was determined
for all sites as one dataset using linear regression (Figure 3). The r2 of
the relationship with all sites pooled is not different from findings of
sites being analyzed individually, potentially indicating a universal
model for simulating GPP for all sites (i.e., toward a much greater

FIGURE 2
Relationship between the rawModerate Resolution Imaging Spectroradiometer (MODIS) gross primary productivity (GPP) and eddy covariance GPP
using linear regression at each site. The best fit lines use the same color scheme as the points that the regression is showing the relationship of. All slopes
are significant to p < 0.0001. Platte River High Plains Aquifer (PRHPA) had 1,007 and 299, observations for irrigated and rainfed maize, respectively and
285 and 344 for irrigated and rainfed soy, respectively. Kellogg Biological Station (KBS) had 342 and 355 observations for AGR and CRP, respectively.
UMRB had 303 and 349 observations for maize and soy, respectively.

FIGURE 3
Linear regression of the rawModerate Resolution Imaging Spectroradiometer (MODIS) gross primary productivity (GPP) and eddy covariance GPP at
all sites as 8-day sums (A) for maize (red solid) and soybean (blue dashed), and (B) for bothmaize and soybean in one dataset with the best fit line in red. All
slopes are significant to p < 0.0001. The total number of datapoints was 3,030 (2,186 for maize and 844 for soy).
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utility than a model that works for one site alone). There are
differences in the correlation between GPPEC and GPPMODIS

between the maize and soybean crops, with a stronger correlation
in soybean sites. The efficiency parameter in MODIS is based on C3

photosynthesis, which has been shown to lead to greater
underestimation of GPP in C4-dominated systems (Wang et al.,
2012; Running and Zhao, 2015; Huang et al., 2021). There were also
differences between sites in the efficacy of the MODIS GPP at
directly estimating crop GPP, which may be related to the
coefficients used in the estimation. The coefficients (i.e., light use
efficiency (ε), temperature response, vapor pressure response, etc.)
used by MODIS were the same for all three sites, regardless of
differences in climate (Running and Zhao, 2019).

3.2 Model results

All agroecoregion/crop combinations were analyzed first,
individually, using the three data training/testing splits (Table 2). To
re-iterate, all observations classified as the testing datasets were not
included in the training datasets. Supervised machine learning has an
unavoidable issue of overfitting, mostly due to the limits of training data
or the constraints of algorithms that are too complicated and require an
abundance of parameters (Ying, 2019). Training/validation data were
kept separate in an effort tominimize overfitting, with only the validation
results communicated here. At PRHPA, the maize models had an
average validation r2 of 0.88, RMSE of 2.82 gC m−2 day−1, and MAE
of 1.71 gC m−2 day−1; for soybean the average validation r2 was 0.78,
RMSEwas 2.61 gCm−2 day−1, andMAEwas 1.73 gCm−2 day−1. For both
crops combined at PRHPA the model success was similar to single crop
models with an average r2 of 0.85, RMSE of 2.93 gCm−2 day−1, andMAE
of 1.77 gCm−2 day−1. AtUMRB, themaize onlymodels had an average r2

of 0.86, a RMSE of 3.06 gC m−2 day−1, and a MAE of 2.0 gC m−2 day−1;
with soybean only models the average r2 was 0.76, RMSE was 2.06 gC
m−2 day−1, andMAEwas 1.38 gCm−2 day−1. For both crops combined at
UMRB the model success was similar to that of single crop models with
an average r2 of 0.84, an RMSE of 2.6 gC m-2 day-1, and an MAE of
1.64 gCm-2 day-1. At KBS only maize was grown, and themodels had an
average validation r2 of 0.77, RMSE of 3.14 gC m-2 day-1, and MAE of
1.95 gC m-2 day-1. All best-fit models were Stacked Ensemble-type
models, likely due to their second-level learning approach by utilizing

what they learn from the base learners to inform the meta-algorithm or
super learner.

In both agroecosystems with maize and soy, the model success
with both crops combined into a single dataset was similar to that of
single crop models, indicating that this method can be used with
multiple crops with different growth patterns and photosynthetic
pathways in the same model. Model validation RMSE ranged from
2.06 to 3.14 gCm-2 day-1 depending on location and crop. Given that
the typical maximum daily GPPEC was around 25–30 gC m-2, the
observed error was considerably less than a day’s carbon update and
was well within the range of expected values from other studies.
Other remote sensing GPP modeling efforts (primarily linear
regression) reported daily RMSE values ranging from 2.6 gC m-2

(Nguy-Robertson et al., 2015), 1.9 to 12.1 gC m-2 depending on
efficiency term (Cheng et al., 2014), 0.5 to 2.0 gC m-2 depending on
ecosystem and methodology (Gilabert et al., 2015), 3.8 gC m-2 (He
et al., 2013), and 0.8 to 7.5 gC m-2 depending on site and
methodology (Huang et al., 2021). The error range found here is
well within the range reported by other studies, showing that this
method is suitable for simulating cropland GPP.

3.3 Comparison of all site data

The models were then run with all site data combined into a
single dataset (Table 3; Figure 4). When all agroecoregions and crops
were combined into one dataset, the model validation r2 was 0.85,
RMSE was 2.77 gC m-2 day-1, and MAE was 1.67 gC m-2 day-1. As a
control, a model set where the only input was MODIS GPP was also
created; this model was much weaker (r2: 0.52), showing that the
addition of other variables (i.e., climate, location, crop) greatly
improved model success. The error shown with the single dataset
was within the range seen in individual datasets and similar those
seen in other studies (Guo et al., 2023; He et al., 2013; Nguy-
Robertson et al., 2015; Reed et el., 2021). Duan et al., 2021 found a
similar error using Random Forest when modeling for rice (Oryza
sativa), but was more accurate when modeling wheat (Triticum
Aestivum). When looking at the regression between modeled and
observed GPP, as shown in Figure 4, the slope of the relationship is
close to 1.0. The slopes were similar across data splits, 1.01 for early
year, 1.05 for late, and 0.96 for random, indicating a near 1:

TABLE 2 The average results for machine learning modeling of individual agroecosystem GPP are shown below. Average is across the three temporal validation
data splits. Units are gC m-2 day-1.

Agro-ecoregion Crop μ r2 r2 μ RMSE RMSE μ MAE MAE

Range Range Range

KBS Maize 0.77 0.70–0.85 3.14 2.68–3.47 1.95 1.68–2.14

PRHPA Maize 0.88 0.86–0.91 2.84 2.5–3.1 1.71 1.49–1.93

PRHPA Soybean 0.78 0.75–0.83 2.61 2.11–3.39 1.73 1.41–2.2

PRHPA Both 0.85 0.79–0.89 2.98 2.45–3.35 1.77 1.44–2.03

UMRB Maize 0.86 0.82–0.89 3.06 2.55–3.61 1.99 1.68–2.39

UMRB Soybean 0.76 0.66–0.85 2.06 1.7–2.27 1.38 1.27–1.49

UMRB Both 0.84 0.78–0.90 2.6 1.97–3.09 1.64 1.2–2.03
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1 relationship between modeled and observed GPP. This 1:
1 relationship further indicates that Stacked Ensemble machine
learning can reliably estimate GPP across various data splits.
However, it is worth noting that there was a greater spread of
data points about the slope at higher GPP values (both with machine
learning and in the original data comparison), indicating a potential
oversaturation of the remote sensing data. While the combined
dataset had more training data, it had two crops and three locations
to model for, potentially complicating the modeling effort, as a
result, it is performance was similar. Maize and soybean have very
different growth habits and photosynthetic pathways, likely making
best-fit models different for each crop. TheMODIS17 product uses a
light-use efficiency method but does not correct for differences in C3

and C4 photosynthetic pathways. In-situ measurements of light use
efficiency have found considerably different efficiency values for
maize and soybean due to differences in plant physiology, including
canopy structure and photosynthesis biopathways (Gitelson et al.,
2015; Xin et al., 2015; Gitelson et al., 2018). However, by including
the crop type as a variable, the AutoML algorithms successfully
distinguished between the two biopathways.

As with analysis by agroecosystem, all best-fit models for the
combined datasets were Stacked Ensemble-type models. As discussed
previously, Stacked Ensemble is a machine learning method that
combines multiple learning methods (i.e., GBM and XGBoost) by
using the output of onemodel as the input for another (Rajadurai and
Gandhi, 2020; Mohebbian et al., 2021). Stacked Ensemble is a robust
approach that can work withmany data types and uses (Zai and Chen,
2018; Rajadurai and Gandhi, 2020). Stacked Ensemble methods have
been found to frequently outperform single models across many data
types (Zhai and Chen, 2018; Chowhurdy et al., 2019; Singh et al., 2019;
Jangam and Annavarapu, 2021).

3.4 Implications for future research

This study has provided insight into the potential of using
machine learning methodology to estimate GPP using readily
available inputs (MODIS GPP product, air temperature,
precipitation, crop type, and agroecosystem) across the LTAR
network and croplands. This framework has the potential to
allow for network-wide estimations of carbon uptake across the
Common Experiment and other sites, even where EC towers are not
present, and to further network goals of understanding cropland
carbon dynamics. Combined models (including multiple
agroecoregions in the same model) can account for region-
specific differences by using agroecosystem region as an input in
the training phase. The combined model will allow for more large-
scale carbon inventories without compromising on accuracy when
compared to site and crop-specific models (combined model r2:

TABLE 3 The average results for combined agroecosystem/crop GPP modeling are shown below. Average is across the three temporal validation data splits. Units
are gC m-2 day-1.

Dataset μ r2 r2 range μ RMSE RMSE range μ MAE MAE range

All 0.85 0.82–0.87 2.77 2.62–2.89 1.64 1.59–1.72

MODIS Only 0.52 0.48–0.55 4.94 4.57–5.30 3.08 2.91–3.25

FIGURE 4
The relationship between machine learning predicted GPP and
eddy covariance GPP is shown above. The top graph shows themodel
where the earlier years (2004–2005) were used as validation and the
later years (2006–2019) were used as training (645 data points).
Themiddle graph shows themodel where the later years (2016–2019)
were used as validation and the earlier years (2004–2015) were used
as training (618 data points). The bottom graph is where random years
were used for validation (2009, 2011, 2014, and 2017) with the
remainder as training (574 data points).
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0.85 average site/crop-specific model r2: 0.82), likely owing to the
greater pool of training data for larger models.

Croplands cover about 12% of the Earth’s ice-free land area
(IPCC, 2019). Sustainable management on these lands can maintain
or improve productivity while contributing to climate change
mitigation and adaptation goals (Tang et al., 2015; IPCC, 2019;
Browning et al., 2021). As a component of the carbon cycle, cropland
GPP is an important indicator of productivity and sustainability,
and its monitoring can contribute to furthering sustainability goals
(Beer et al., 2010; Gilabert et al., 2015; Huang et al., 2018; Browning
et al., 2021). GPP monitoring can also be valuable in understanding
the short-term effects of extreme weather events on carbon
dynamics, including droughts, floods, and intense storms (Ciais
et al., 2005; Menefee et al., 2020; Yin et al., 2020). Given that few
cropland sites have in-situ GPP monitoring, regional and global
GPP estimates rely on remote sensing and modeling to estimate
large-scale carbon uptake (Kalfas et al., 2011; Huang et al., 2018;
Smith et al., 2019). This method of incorporating machine learning
allows for a more flexible model that can apply to broad areas and
pick up on trends not seen in process-based modeling (Beer et al.,
2010; Jung et al., 2011; Xiao et al., 2014). Expanding this
methodology to broader regions and more sites to create LTAR-
wide carbon flux estimates is a future goal of this project.

Machine learning methods have already been widely used to
successfully estimate global GPP on annual timesteps with various
algorithm types (Beer et al., 2010; Jung et al., 2011; Xiao et al.,
2014). Machine learning estimated global evapotranspiration, CH4

emissions, and NEE on global, field, and regional scales (Yao et al.,
2017; Knox et al., 2021; Shang et al., 2021; Talib et al., 2021). Applying
these methods to agricultural lands can quantify carbon cycle
contributions from agriculture and determine best management
practices for carbon sequestration. Practically any field of suitable
size can leverage the power of machine learning by utilizing methods
as described in this paper, which, given the wide accessibility of input
data, should make this type of analysis feasible for any large-scale
cropping system. The methods employed provide a simple solution that
can be followed with minimal experience/knowledge with machine
learning. However, further improvement of a given algorithm’s output
via adjusting hyperparameters is limited to the range of values disclosed
by the h2o package. Currently, the full range required for a sensitivity
analysis is undisclosed by the h2o package. Data limitations from EC
towers often arise due to the high costs of the equipment; the limited
data can possibly result in commonly known issues of overfitting with
machine learning. Nevertheless, the extensive reach and robustness of
machine learning-based carbon models, as demonstrated here, make it
an ideal method for future work in understanding cropland carbon
uptake and climate interactions. Future steps aim to apply this
methodology to more sites within the LTAR network. The LTAR
network has contributed to our collective understanding of cropland
biogeochemical cycling across the United States, and it is our hypothesis
that the addition of machine learning methods will enhance these
network analyses.

4 Conclusion

In this study, we showcased the applicability of machine
learning to estimate GPP across LTAR croplands using

MODIS satellite imagery, weather, and agroecoregion as input
data. The MODIS GPP product, while correlated with in-situ
GPP, frequently underestimated GPP during peak growing
season and overestimated during seedling establishment and
senescence. In simulating GPP at individual tower sites, model
performance was best at sites with larger quantities of data
available for model training. The machine learning methods
also work well with all sites combined into one dataset,
particularly for maize. Combined datasets provide more
training data for the machine learning algorithm to work with
and can thus improve model success over individual site-scale
models. The success of machine learning at modeling GPP across
three LTAR sites is a first step towards applying this methodology
to the network as a whole.
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