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Marine plastic pollution is an emerging environmental problem since it pollutes
the ocean, air and food whilst endangering the ocean wildlife via the ingestion and
entanglements. During the last decade, an enormous effort has been spent on
finding possible solutions to marine plastic pollution. Remote sensing imagery sits
in a crucial place for these efforts since it provides informative earth observation
products, and the current technology offers further essential development.
Despite the advances in the last decade, there is still a way to go for marine
plastic monitoring research where challenges are rarely highlighted. This paper
contributes to the literature with a critical review and aims to highlight literature
milestones in marine debris and suspected plastics (MD&SP) monitoring by
promoting the computational imaging methodology behind these approaches
along with detailed discussions on challenges and potential future research
directions.
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1 Introduction

The ocean provides a livelihood for more than 3 billion people whilst being the habitat
for billions of species and generates more than $3 trillion each year to the global economy
(Leape, 2018). Despite this importance, especially in the last decade, plastic pollution and
marine debris have become one of the most important reasons for endangering the ocean
and marine environment due to the large needs of the human population and the massive
production of plastic. Particularly, low-density plastics remain buoyant in the water, while
high-density particles descend and settle in the sediment at the bottom of the benthic system
(Thushari and Senevirathna, 2020). Microplastics, defined as plastic particles with a diameter
of less than 5 mm, present a multifaceted worldwide issue, impacting both the environment
and potentially posing a health risk to the public (Farré, 2020). On the other hand, when we
consider larger plastic pieces, often referred to as macroplastics (greater than 5 mm), they
emerge as a particularly significant subgroup of floating plastics. This subgroup is primarily
responsible for entangling and being ingested by marine wildlife. Hence, it is vital to identify
and monitor large-scale floating plastic debris to prevent its breakdown into smaller particles
at the micro and nano levels, which can pose a threat to wildlife. In addition to the problems
caused for human health and marine wildlife, the ocean pollution problem can heavily affect
economies, especially for countries whose economy relies on summer tourism (The NOAA,
2022).
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For a multitude of maritime environmental applications,
exploiting earth observation systems and their products such as
active and passive imagery is a long-established approach, to name
but a few: oil spill detection (Angelliaume et al., 2017; Fingas and
Brown, 2017), algal blooms (Shen et al., 2012; Sagan et al., 2020),
vessel-tracking and recognition (Shan et al., 2020; Yasir et al., 2023).
Although in the early stages, remote sensing techniques have been
invaluable tools for monitoring marine debris and suspected plastics
(MD&SP), offering unparalleled advantages in comprehensively
assessing and managing this critical environmental issue. Unlike
traditional ground-based methods, remote sensing provides a
holistic view of debris patterns, facilitating the identification of
hot spots and accumulation areas. Additionally, the non-intrusive
nature of remote sensing minimises disturbances to fragile marine
ecosystems during data collection. Thus, the application of remote
sensing techniques in monitoring MD&SP holds immense promise
in advancing our understanding of the issue and guiding effective
conservation strategies.

In this emerging field, the utilisation of machine and deep
learning in remote sensing for computational imaging is still in
its developing phase. One of the primary factors contributing to this
early stage of development is the absence of officially sanctioned
datasets for MD&SP. However, in recent years, there has been a
surge in academic publications introducing cutting-edge
computational imaging techniques and making data-sets
available, largely due to the concerted efforts of academic
institutions aimed at enhancing MD&SP detection and tracking
capabilities (Salgado-Hernanz et al., 2021; Topouzelis et al., 2021;
Veettil et al., 2022; Politikos et al., 2023). Yet, the number of open-
access data sets to train advanced machine learning methods for
pixel-level classification remains limited, resulting in remote sensing
imaging research moving slower compared to other computerised
image analysis areas. Existing data sets, despite guiding the current
MD&SP monitoring research, are however suffering from various
other problems such as small amounts of target pixels and highly
unbalanced class distributions. On the other hand, due to the small
target size of the floating plastics and similar other marine
pollutants, the current data set spatial resolutions cause a high
number of mixed pixels (i.e., pixels whose values are averaged
from multiple classes) in the data sets. The above problems and
many others remain challenging and degrade the performance of
MD&SP detection and monitoring of the existing remote sensing
image analysis techniques.

This article presents a comprehensive review of recent
developments in the utilisation of remote sensing imagery to
identify and monitor MD&SP whilst highlighting the advanced
computational image analysis approaches behind these important
works. During the second half of this review, we specifically list and
discuss a non-exhaustive list of challenges in MD&SP monitoring
research areas. This presents an in-depth critical analysis of the
strengths and weaknesses of the published articles with
consideration for the validity of the claims made in previous
works, as well as consideration for the ongoing scientific debate.
Hence, the primary aim of this paper is to enhance the existing body
of knowledge by not only summarising key academic findings in the
field of monitoringMD&SP but also engaging in a thorough analysis
of significant challenges. Noticeably, this primary aim differentiates
this review from other relevant surveys (Salgado-Hernanz et al.,

2021; Topouzelis et al., 2021; Gnann et al., 2022; Mukonza and
Chiang, 2022; Veettil et al., 2022; Vighi et al., 2022; Politikos et al.,
2023) as it provides a more comprehensive discussion on ongoing
challenges and future research directions. The paper concludes by
outlining several crucial directions for potential research as
envisioned by the author, intended to provide a guiding
framework for future studies. Please note that throughout this
paper we use MD&SP to refer to marine debris, floating plastics,
marine plastics, plastic litter, plastic debris and similar definitions for
consistency and to provide a clear understanding of the term.

2 MD&SP monitoring applications

Following a general introduction to the importance of MD&SP
monitoring research, this section reviews the literature under three
sub-sections: 1) Initial/current efforts via spectral arithmetic, 2)
Machine learning approaches and 3) important efforts on active
remote sensing.

2.1 Promoting spectral arithmetics

Initial efforts to detect and analyse the MD&SP rely on in situ
approaches via 1) visual surveys (Thiel et al., 2011; Lavers and Bond,
2017), 2) airborne data (Garaba and Dierssen, 2018; Moy et al., 2018;
Themistocleous et al., 2020), and 3) satellite-based remote sensing
imagery due to its capability to cover large and inaccessible areas.
Aoyama (2014), Aoyama (2016) proposes using several candidate
MD&SP pixels and making a spectral analysis of whether there is a
discrimination between debris and surrounding ocean pixels. The
proposed approach works effectively in cases where the size or area
of MD&SP is large enough. Matthews et al. (2017) have shown that
high spatial resolution satellite tracking reveals faster-than-expected
MD&SP motions. A study by Goddijn-Murphy et al. (2018) has
shown that plastic litter and seawater develop a reflectance model
from their spectral signatures and optical geometry. The authors
consider only one type of macro plastic and propose that the fraction
of a plastic surface can be estimated from the surface reflectance
provided the clear water reflectance.

Reflectance analysis of Goddijn-Murphy et al. (2018)
motivated Topouzelis et al. (2019), Topouzelis et al. (2020) for
further analysis via both satellite and unmanned aerial imagery.
Topouzelis et al. (2019) have created a measurement setup at
Tsamakia Beach, Greece, which includes a set of three artificial
floating plastic targets. It has been shown that plastic litter such as
bottles, bags, and fishing nets, reflect light in the near-infrared
(NIR) band where clear water absorbs the light. Moreover, it has
been reported that the reflectance intensity is also directly related
to the amount of plastic in a single pixel (10 m × 10 m for
Sentinel-2). Thus, if water composes more than 50%–70% for
a given pixel, the reflection from the plastic pollutant is relatively
low in the NIR band. Martínez-Vicente et al. (2019) discuss the
requirements of a specifically designed remote sensing
monitoring system for plastic pollution, and report that an
ideal system would compromise both passive (short-wave
infrared (SWIR) band) and active (SAR) satellite modalities,
as well as support from UAVs.
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The very first work on detecting and classifying plastic patches
using solely optical satellite data has been studied by Biermann
et al. (2020) with two joint objectives: demonstrating the capability
of Sentinel-2 data on detecting floating macroplastics and
classifying macroplastics and other natural materials. The
authors propose a novel parameter - the floating debris index

(FDI) - to analyse sub-pixel interactions of macroplastics to
increase the chance of detection of patches. The FDI is inspired
by the floating algae index (FAI) of Hu (2009) by replacing the red
band with the red edge band, and the authors leverage the
difference between the NIR band and its baseline reflectance
(Please refer to Table 1 for Sentinel-2 band characteristics). The

TABLE 1 Spectral bands for the Sentinel-2.

# Sentinel-2 bands Central wavelength (nm) Bandwidth (nm) Spatial resolution (m)

Band 1 Coastal aerosol 442.7 21 60

Band 2 Blue 492.4 66 10

Band 3 Green 559.8 36 10

Band 4 Red 664.6 31 10

Band 5 Vegetation red edge 1 704.1 15 20

Band 6 Vegetation red edge 2 740.5 15 20

Band 7 Vegetation red edge 3 782.8 20 20

Band 8 Near Infrared 832.8 106 10

Band 8A Narrow NIR 864.7 21 20

Band 9 Water vapour 945.1 20 60

Band 10 Shortwave Infrared – Cirrus 1,373.5 31 60

Band 11 SWIR 1 1,613.7 91 20

Band 12 SWIR 2 2,202.4 175 20

FIGURE 1
Representation of FDI index in optical imagery. (A) An example of Sentinel-2 imagery in RGB. (B) FDI representation of imagery in (A). (C) Expert labels
of MD&SP. The Sentinel-2 imagery was chosen from the MARIDA data set where the labelling steps are specifically explained in Kikaki et al. (2022). Using
the corresponding spectral bands and Biermann et al. (2020)’s FDI formulation, we calculated FDI representations in (B). The region of Interest for this
Sentinel-2 imagery is Haiti, Northern America and the imagery was acquired on the 20th of March 2020. (A) and (C) reproduced from MARIDA
dataset, licensed under CC-BY 4.0
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FDI dramatically highlights plastic and has been found useful in
identifying floating plastics in water bodies. An example of the
visibility of the FDI is depicted in Figure 1. It can be seen from
Figure 1 that FDI increases the visibility of MD&SP when
comparing the sub-scenes in yellow rectangles. It has also been
shown by Biermann et al. (2020) that using FDI in conjunction
with the Normalised Vegetation Difference Index (NDVI) (Rouse
et al., 1974) makes detecting differences between plastics,
vegetation, driftwood, and seafoam possible.

Themistocleous et al. (2020) set up a pilot study consisting of a
target of plastic water bottles with the size of 3 m × 10 m in the sea
near the Old Port in Limassol, Cyprus. They gathered UAV multi-
spectral images during the same time as the Sentinel-2 satellite
passed. They propose a new index called the Plastic Index (PI) where
their analysis shows that the newly developed PI has been able to
identify floating plastics. Kikaki et al. (2020) have conducted
research over the Bay Islands in the Caribbean Sea where
remarkable amounts of MD&SP have been reported. Satellite
imagery for 2014–2019 has been investigated and in situ data
collected with vessel and diving expeditions. This work utilises
classical spectral analysis approaches to analyse the source of
pollution, and concludes that the main source of pollution in the
target area is the river discharges from the basins of Honduras and
Guatemala, and dynamic sea currents affect plastic patches to travel
more than 200 km.

Park et al. (2021), instead of Sentinel-2, utilises very high
geospatial resolution 8-waveband WorldView-3 imagery to
observe floating plastic litter in the Greater Pacific Garbage Patch
(GPGP). They apply various spectral analysis approaches and
investigate anomalies to infer the presence of suspected plastic
litter. Furthermore, Hu (2022) also suggests that it may not be
possible to detect floating material by optical spectra and analysis
should be performed over the difference spectra to minimise the
impact of variable subpixel coverage. Knaeps et al. (2021) publish a
data set of 47 hyperspectral-reflectance of plastic litter in dry and wet
conditions from the Port of Antwerp. They highlight water
absorption and suspended sediments could allow future research
to appropriately select wavelengths. Garaba et al. (2021) propose an
analysis of the reflectance measurements collected from virgin and
ocean-harvested plastics, and show that wet ocean-harvested plastics
(ropes, foam, etc.) have lower reflectance compared to virgin plastics
(low-density polyethylene, polypropylene) due to their wet nature
and the impact of water absorption. Moshtaghi et al. (2021) propose
another hyperspectral reflectance analysis in a controlled
environment for virgin and natural plastics submerged in water
with different sediment conditions and depths. Their findings
provide evidence to utilise SWIR and visible spectrum for plastic
detection. Arias et al. (2021) present the ESA-funded “Windrows As
Proxies” project (WASP) which involves the development of a novel
WASP Spectral Index (WSI). Their results indicate that WSI is a
robust index for the task, technically simpler than existing
alternatives.

Ciappa (2022), for the North Adriatic during the summer of
2020, uses spectra arithmetic to analyse anomalies of the red edge
bands, assuming changes of the red edge in pixels where marine
litter was mixed with vegetal materials. Papageorgiou et al. (2022)
present the Plastic Litter Project 2021 in which artificial floating
marine litter (FML) targets are deployed, and a set of 22 Sentinel-2

images are acquired. The detection of FML is performed through a
partial unmixing methodology and the study finds that floating
substances such as pollen exhibit similar spectral characteristics to
FML and are difficult to differentiate. Mikeli et al. (2022) use the
Marine Debris Archive (MARIDA) of Kikaki et al. (2022) to
investigate various spectral indices and texture features, and
conclude that spectral information alone is inadequate to
distinguish marine plastic from other floating materials with
similar spectral behaviour. The aim of the study by Sakti et al.
(2023) is to detect illegal dumping for the first time in the literature
in a river area by utilising the adjusted plastic index (API) and
Sentinel-2 satellite imagery. The Rancamanyar River in Indonesia
was chosen and their results indicate that API successfully improves
the accuracy of identifying plastic waste. The most common spectral
indices are given in Table 2.

2.2 Computational image analysis meets
marine debris research

In this sub-section, we focus on works that promote machine/
deep learning-based computational imaging techniques such as
feature extraction, segmentation, and classification for MD&SP
detection. We start firstly with two non-marine environment
studies since both helped other marine environment research by
exploiting machine learning approaches despite being based on the
beach environment. Acuña-Ruz et al. (2018) promote the utilisation
of 8-band very-high resolution WorldView-3 products via testing
random forests (RF), support vector machines (SVM) and linear
discriminant analysis (LDA) in the classification of beach debris.
The results show that SVM is mostly the best with an accuracy of
around 85%–90%. Fallati et al. (2019) propose a combined use of a
UAV and the deep-learning software of PlasticFinder which consists
of several Convolutional Neural Networks (CNN) which are
constructed to detect and quantify anthropogenic marine debris
(AMD) and reach a sensitivity value of 67% with a positive
predictive value of 94%.

The first satellite-only computational image analysis approach
has been proposed by Biermann et al. (2020). In fact, their approach
has two main steps: manual detection using FDI and NDVI, and
using Näive Bayes to classify the types of debris and plastics. Across
all five test sites, the proposed approach reaches 86% accuracy of the
plastic pixels. Furthermore, Jakovljevic et al. (2020) aim to
investigate the applicability of semantic segmentation based on
the U-Net architecture with UAV orthophotos. Results show that
the ResUNet50 architecture achieved the best performance via
detecting plastics with more than 85% precision. van Lieshout
et al. (2020) propose an automated plastic pollution monitoring
approach for the river surfaces using bridge-mounted camera
imagery for five rivers in Jakarta, Indonesia. The proposed deep
learning-based approach consists of the so-called Faster R-CNN for
segmentation and Inception v2 for object detection stages and
reaches the highest 69% precision of plastic detection.

Freitas et al. (2021) propose an ML method with a data set
collected with manned/unmanned airborne hyper-spectral sensors.
Their results with two supervised methods of RF and SVM show a
performance of up to 80% precision (50% recall). Tasseron et al.
(2021) present a hyper-spectral laboratory setup to collect spectral
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signatures of 40 virgin macroplastic items and vegetation. The
experiment setup generates around 2 million pixels that are
processed by the LDA method. Their results provide evidence of
the gold spectral indices of NDVI and FDI by returning peaks of
plastics (1215, 1410 nm) and vegetation (710, 1450 nm). Basu et al.
(2021) utilise Sentinel-2 imagery to detect MD&SP in coastal water
bodies in Cyprus and Greece. The authors test four machine learning
approaches K-means, fuzzy c-means (FCM), support vector
regression (SVR), and semi-supervised fuzzy c-means (SFCM).
Their results suggest that SVR outperforms all other ML models
with around 97% plastic detection accuracy.

Kremezi et al. (2021) leverage satellite-based hyper-spectra
imagery for the first time in the literature by using the PRISMA
data consisting of fine spectra but low spatial resolutions. To
increase the spatial resolution, they propose exploiting
pansharpening where thirteen different pansharpening methods
are tested and the PCA-based substitution method is managed to
efficiently discriminate plastic targets from water bodies. Jamali and
Mahdianpari (2021) propose a cloud-based framework for large-
scale marine pollution detection, integrating Sentinel-2 satellite
imagery and machine learning tools. The performance of two
shallow machine learning algorithms (RF & SVM) and a deep
learning method of the generative adversarial network-random
forest (GAN-RF) are evaluated where GAN-RF reaches an overall
accuracy of 96% by generating synthetic ocean plastic samples. In a
technical report, Mifdal et al. (2021) use a CNN deep learning
predictor and highlight the importance of increasing diversity in the
dataset and addressing domain shifts between regions and satellite
acquisitions.

In their work, Kikaki et al. (2022) present the MARIDA dataset,
a benchmark dataset derived from Sentinel-2, which marks a

significant improvement in MD&SP detection research. Notably,
it stands out as the first comprehensive dataset originating from
Sentinel-2, potentially reshaping the landscape of research and
development of machine learning algorithms in this domain. The
authors have gathered plastic pollution information for
2015–2021 from more than 11 countries and annotations have
been done by using high-resolution information from Planet and
Google Earth imagery. MARIDA data consists of 837,377 annotated
pixels 3,339 of which are MD&SP pixels. Of these, 1,625, 1,235 and
539 are annotated with high, moderate and low confidence,
respectively. MARIDA also presents two baseline approaches
based on RF (with three versions) and a U-Net architecture. The
results indicate that RF outperforms U-Net with an F1 score of
higher than 0.7 whilst U-Net achieves 0.5. Interested readers might
refer to the MARIDA data class distributions and Sentinel-2 band-
specific reflectance plots in Figure 2.

Kremezi et al. (2022) propose to enhance the capabilities of
Sentinel-2 via image fusion with very high-resolution WV3 images.
Various image fusion techniques have been tested in terms of
preserving spectral and spatial information where the coupled
non-negative matrix factorization (CNMF) is the best via
producing a fused image with clear edges, no blurring, and
favourable spectral characteristics. Utilised Fusion-GAN and
Fusion-ResNet approaches have also shown significant
performance regarding spectral similarity. The superior
performance can be listed as the reduction in the smallest
detectable target in the fused image to 0.6 × 0.6 m2 in size, which
is equivalent to 3% pixel coverage of the original Sentinel-2 imagery
with 10 m resolution. Taggio et al. (2022) develop a new method
based on the combination of unsupervised and supervised ML
algorithms using pan-sharpened hyperspectral PRISMA data. The

TABLE 2 Frequently utilised spectral indices.

Index References Expression

Normalized Difference Vegetation Index (NDVI) RNIR−RRED
RNIR+RRED

Rouse et al. (1974)

Floating Debris Index (FDI) RNIR − [RRE2 + (RSWIR1 − RRE2) · λNIR−λRED
λSWIR1−λRED · 10] Biermann et al. (2020)

Plastic Index (PI) RNIR
RNIR+RRED

Themistocleous et al. (2020)

Water Ratio Index (WRI) RGREEN+RRED
RNIR+RSWIR2

Shen and Li (2010)

Reversed Normalized Difference Vegetation Index (RNDVI) RRED−RNIR
RRED+RNIR

Themistocleous et al. (2020)

Automated Water Extraction Index (AWEI) 4 · (RGREEN − RSWIR2) − (RNIR+11·RSWIR1
4 ) Feyisa et al. (2014)

Modified Normalization Difference Water Index (MNDWI) RGREEN−RSWIR2
RRED+RSWIR2

Xu (2006)

Normalization Difference Moisture Index (NDMI) RNIR−RSWIR
RNIR+RSWIR

Wilson and Sader (2002)

Normalized Difference Water Index (NDWI) RGREEN−RNIR
RGREEN+RNIR

MacFeeters (1995)

Adjusted Plastic Index (API) IF(NDVI >0): PI1 = PI − NDVI, ELSE: PI1 = PI IF(MNDBI >0): API = PI1 −
MNDBI, ELSE: API = PI1

Sakti et al. (2023)

Soil adjusted vegetation index (SAVI) (1 + L) · RNIR−RRED
RNIR+RRED+L Huete (1988)

Normalised Difference Build-Up Index (NDBI) RSWIR−RNIR
RSWIR+RNIR

Zha et al. (2003)

Floating Algae Index (FAI) RNIR − [RRED + (RSWIR1 − RRED) · λNIR−λRED
λSWIR1−λRED] Hu (2009)
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combined computational imaging approach exploits Light Gradient
BoostingModel (LGBM) as its supervised path whilst K-means is for
the unsupervised path. Results suggest that the tested approach can
effectively recognize plastic targets, and increasing input datasets
can help achieve higher-quality results. Lavender (2022) proposes a
detection approach using satellite imagery for marine and terrestrial
environments. This work produces a data set by manually digitising
some land cover classes into plastics, greenhouses, tyres, and waste
sites that consist of around 1.3 million pixels (1% of which is labelled
as plastics). The proposed detection algorithm is fed by Sentinel-1/
2 imagery and consists of an artificial neural network (ANN) where
RF is used to compare the ANN performance. Despite having
around 95% of aggregate average precision, their plastic detection
precision is 91%. Except for the proposed data set, maybe the most
important contribution of this paper is to propose a post-ANN
decision tree that adds a second classification step to fix errors
caused by the ANN.

Booth et al. (2023) propose a high-precision MD&SP mapping
algorithm by utilising the MARIDA data set for training an ML
algorithm. It is the first time, this approach focuses on improving the
precision of the MD&SP detection algorithms by keeping recall
values high enough to produce a reliable algorithm. Booth et al.
(2023) facilitate semi-automated monitoring of MD&SP via a data

pipeline named MAP-Mapper that enables inputting coordinates of
the region of interest and the examination period so that Sentinel-2
data could be downloaded, pre-processed and individual pixels
could then be classified. At the output, a plastic density map is
produced and enables users to identify areas of high plastic density
in the investigated area. The authors also proposed a novel index
called the Marine Debris Map (MDM) in which the average
probability of a pixel is positively weighted. This gives a better
picture of measuring the MD density maps on a global time scale.
Their approach promotes utilising the MARIDA data within a
U-Net-inspired machine learning approach. The MAP-Mapper
reaches 95% precision of MD&SP in the MARIDA data whilst
the original U-net-based baseline of Kikaki et al. (2022) do only
30%. In Figure 3, an example of an MD&SP density map generated
by open-access MAP-Mapper software are depicted.

Olyaei et al. (2022) promote the utilisation of Deep Knockoff
and use a generative model to learn the high-dimensional
distribution of reflectance in visible to NIR wavelengths. The
authors conclude that the NIR and Red bands are the most
important bands. Furthermore, they also indicate that in the
presence of dense Sargassum macroalgae, their deep knockoff-
based technique isolates the green band. The study of Nagy et al.
(2022) provides a comprehensive framework that includes a large

FIGURE 2
(A)MARIDA data set class distributions. (B) Sentinel-2 band-specific reflectance plot for each class. Please note this has been created for 11 classes
after Mixed Water, Wakes, Cloud Shadows, and Waves classes are aggregated under the Marine Water class (Kikaki et al., 2022).
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simulated dataset of over 16,000 pixels of marine debris, plastic, and
wood. The RF classifier is tested on actual satellite images and
successfully distinguishes marine litter from seawater. Sannigrahi
et al. (2022) aim to detect and classify MD&SP in Greece, Cyprus,
Italy and Lebanon and utilise SVM and RF models. The newly
developed kernel Normalized Difference Vegetation Index (kNDVI)
is found effective and increases model performances. The developed
automated system achieves 80%–90% accuracy for the test locations
of Calabria and Beirut. The study suggests that the FDI is the most
important variable for detecting marine plastic.

Gómez et al. (2022) detects MD&SP in rivers with high precision
with an approach based on image segmentation architectures of
U-Net and DeeplabV3+. The results show that the approach can
identifyMD&SP and suggest that a more extensive labelled dataset is
needed to generalise the approach. In their recent preprint, Magyar
et al. (2023) analyse illegal waste dumps and identification of water-
surface river blockages. The authors use medium to high-resolution
multispectral satellite imagery, especially focusing on the Tisza River
as the study area. Their RF classifier works well mainly with images
taken in spring and summer. Gupta et al. (2023) present a novel
approach named multi-feature pyramid network (MFPN), which
consists of three subnetworks: feature extractor, feature pyramid,
and pooling block. These subnetworks are concatenated to form an
end-to-end network and are evaluated on the MARIDA dataset by
achieving a pixel accuracy of 84%.

2.3 Leveraging active remote sensing
sensors

Apart from the hyper-/multi-spectral remote sensing-based
approaches discussed above, the literature also accommodates
recently published active-sensor-promoting research. In
Topouzelis et al. (2019), Sentinel-1 SAR imagery has also been

analysed for the same measurement setup and it has, however, not
concluded notable results. Conversely, Savastano et al. (2021)
provide one of the first successful applications of SAR to
MD&SP detection. Nevertheless, it is important to approach this
success with a degree of caution since the authors utilise a spectral
optical index [FDI of Biermann et al. (2020)] to establish
connections between spectrally classified pixels and SAR data.
This process is aimed at training an SVM algorithm capable of
converting optical signals into SAR signals, ultimately enabling
detection using SAR. They advocate for the use of Gaussian
Naive Bayes and RF in conjunction with SVM, and through this
approach, they achieve an accuracy level of up to 86%. Serafino and
Bianco (2021) use a ground-located X-band radar sensor to identify,
discriminate, characterise and follow small floating aggregations of
marine litter. They conclude that in calm sea conditions, X-band
radar is capable of distinguishing targets on the sea surface. Giusti
et al. (2022) propose a drone-based multi-sensor system and present
the main results of the POSEIDON project. This work promotes
utilising an image fusion approach to exploit the advantages of both
radar and multi-spectral imagery where the proposed algorithm
leverages the use of a CNN with a multi-resolution feature pyramid
network (FPN) backbone. For SAR data, a constant false alarm
(CFAR) based detection mechanism is proposed.

The capacity of radar backscattering to identify floating plastics
has been investigated by Simpson et al. (2023). The authors present
the results of a rigorous microwave multi-frequency investigation
conducted at Deltares facilities in the Netherlands. They exploit C-
and X-band radar to detect floating plastic in controlled conditions
and find that there are differences in backscattering between the
reference water and water that contains MD&SP. The X-band radar
is found to perform significantly better than the C-, with
backscattering differences being detected in 48 out of 68 test
cases. In addition, Evans and Ruf (2021) propose a technique to
detect and image microplastics with a spaceborne bistatic radar that

FIGURE 3
MD&SP Density Map of the Gulf of Honduras generated via MAP-Mapper software of Booth et al. (2023). After giving the above region coordinates
and the time interval for the analysis (Jan-September 2022) to MAP-Mapper Software, it returns the above density map in terms of MDM metric.
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measures ocean surface roughness to estimate the reduction in
responsiveness. The efforts utilising meteorological radar systems
to detect and map marine litter have been motivated by Van Sebille
et al. (2015). The authors promote using a statistical framework for
MD&SP measurements and use surface-trawling plankton nets and
couple this with three different ocean circulation models to spatially
interpolate the observations. The findings in this paper construct the
basis of some other works (Van Sebille et al., 2020; Evans and Ruf,
2021; van Duinen et al., 2022).

Another important active remote sensing technique - light
detection and ranging (LiDAR) - provides a vector dataset which
has relatively higher spatial resolution thanks to the gathered point
cloud data. In a seminal work by Ge et al. (2016), a semiautomatic
recognition of MD&SP on a beach has been studied and revealed
that LiDAR is a useful tool for the classification of MD&SP into

plastic, paper, cloth and metal. In addition, the utilisation of LiDAR
gives the capability to 3D model different types of debris on a beach
with a high validity of debris revivification. Furthermore, Yang et al.
(2023) utilises terrestrial laser scanning to detect and extract marine
litter in a coastal environment.

Table 3 provides a summary of the academic achievements
discussed in this section alongside the computational image
analysis models utilised. While some of these studies introduce
specific techniques for monitoring MD&SP, others showcase the
effectiveness of various techniques through comparative analyses.
Upon reviewing the models in Table 3, it is evident that generic
machine learning techniques like RF and SVM have emerged as the
most commonly employed methods among these studies.
Furthermore, when it comes to deep learning model
development, the U-net technique stands out as the preferred

TABLE 3 Literature summary on proposed/utilised computational image analysis methods. WV3: Worldview-3, S1: Sentinel-1, S2: Sentinel-2, UAV: unmanned air
vehicle, HSI: Hyperspectral, MSI: Multispectral.

References Proposed method(s)
(based on)

Other utilised methods Data

Acuña-Ruz et al. (2018) - RF, SVM and LDA WV3

Fallati et al. (2019) CNN - UAV

Biermann et al. (2020) Naïve Bayes - S2

Jakovljevic et al. (2020) Unet ResUNet50, ResUNext50, XceptionUNet, InceptionUResNetv2 UAV

van Lieshout et al. (2020) CNN Faster R-CNN, Inception v2 Mounted
Camera

Freitas et al. (2021) - RF, SVM HSI

Tasseron et al. (2021) - LDA HSI

Basu et al. (2021) - K-means, FCM, SVR and SFCM S2

Kremezi et al. (2021) Pansharpening & PCA 13 other pansharpening methods HSI - PRISMA

Jamali and Mahdianpari
(2021)

- RF, SVM and GAN-RF S2

Mifdal et al. (2021) Unet RF, SVM and Naïve Bayes S2

Kikaki et al. (2022) - Unet, RF S2 - MARIDA

Kremezi et al. (2022) Image Fusion CNMF, Fusion-PNN, Fusion-PNN-Siamese, Fusion-ResNet, Fusion-GAN,
SRGAN, RCAN

S2 & WV3

Taggio et al. (2022) K-means + LGBM - HSI - PRISMA

Lavender (2022) ANN + post-detection decision tree RF S1 & S2

Booth et al. (2023) Unet (MAP-Mapper-HP) MAP-Mapper-Opt, Unet S2 - MARIDA

Olyaei et al. (2022) Deep Generative Models - Deep
Knockoff

RF, SVM S2 - MARIDA

Nagy et al. (2022) Simulated Data Exploitation RF Sim & S2

Sannigrahi et al. (2022) Spectral Feature Selection RF, SVM S2

Gómez et al. (2022) U-Net3DE U-Net and DeeplabV3+ S2

Magyar et al. (2023) - RF S2 &
Planetscope

Gupta et al. (2023) MFPN RF and Unet S2 - MARIDA

Serafino and Bianco (2021) RF, SVM and Naïve Bayes S1 & S2

Giusti et al. (2022) Image Fusion, FPN and CNN - SAR & MSI
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choice, demonstrating acceptable performance across the majority
of the studies that implemented it. Regarding data sources, Sentinel-
2 (S2) has established itself as the succeeding standard in this
domain, with particular thanks directed toward the recently
introduced open-access MARIDA dataset by Kikaki et al. (2022).

3 Challenges & limitations

In the previous section, we discussed some technical and
application details of the advances in the literature on MD&SP
monitoring. Some of the cited papers above claim to have achieved
spectral floating plastic detection, especially by using Sentinel-2/MSI
data. However, there are also several studies and an ongoing academic
debate on the satellite remote sensing applicability for this problem. The
following references, in particular, raise serious concerns about Sentinel
2’s ability to distinguish plastics from other floating matters (Hu, 2021;
Hu, 2022; Hu et al., 2022; Papageorgiou et al., 2022). Considering the
concerns raised by the academic community on this topic, in this
section, we reflect on our understanding and experience of challenges in
MD&SP research and please note that the challenges reported below are
not exhaustive.

3.1 Multi-spectral imagery limitations

The aforementioned literature mostly focuses on optical multi-/
hyper-spectral imagery, which provides a great amount of
information whilst having serious disadvantages at the same
time. To name but a few.

1. Nevertheless providing 13 different spectral bands, Sentinel-2 has
up to 10 m of spatial resolution that significantly influences the
detection capability of methods since the amount of plastic in a
single pixel determines the light intensity. This lower reflectance
limits detection capability considering the ocean generally has
various pollutants combined in a single patch. The sub-pixel
indexes like the FDI (Biermann et al., 2020) can be thought of as a
solution, but it is still open to improvements.

2. Optical images are prone to cloud cover and incapable of night-
time data generation as well as suffering from long revisiting
times that limit their capability to collect continuous data,
specifically for plastic patch tracking applications. To the best
of our knowledge, in the literature, a limited number of works
have studied tracking plastic patches. There are several but non-
exhaustive reasons behind this:
a. Due to atmospheric limitations of the optical sensors, the low

spatial resolution also causes a risk in tracking individuals of
plastic bits.

b. Considering that floating plastics are drifting due to winds, sea
waves, and currents, developing a robust tracking approach
requires modelling these hydrological variables. Since optical
sensor wavelengths are not capable of covering the Bragg
scattering mechanism, imaging hydrological features such as
gravity waves, swell waves, and ocean currents cannot be possible.

3. The limitations of satellite optical imagery have led the research
somehow to UAV-based approaches. Despite important
outcomes for the understanding of imaging of plastic patches

(Garaba and Dierssen, 2018; Moy et al., 2018; Topouzelis et al.,
2019), they are operator- and location-dependant whilst having
high costs and lack of standardisation.

3.2 Atmospheric correction & pre-
processing

Atmospheric correction techniques serve to minimize the
detrimental influence of atmospheric interferences, such as
aerosols and water vapour, on optical imagery. This, in turn,
yields improved image quality and greater clarity, enabling more
precise detection and classification of floating debris against the
backdrop of water bodies. Furthermore, the application of pre-
processing techniques, including radiometric calibration and
geometric correction, significantly enhances the contrast and
visibility of objects within the imagery, further facilitating the
identification of floating debris. Accurate spectral information is
crucial for distinguishing and characterizing various types of floating
debris based on their unique optical properties. The importance of
these steps lies in their contribution to the acquisition of dependable
data for decision-making in environmental conservation and
resource management domains. With trustworthy data at their
disposal, authorities and organizations can develop more effective
strategies for addressing floating debris issues and implementing
sustainable policies. Moreover, the consistent application of
atmospheric correction and pre-processing techniques allows for
long-term monitoring of floating debris trends, aiding in the
assessment of mitigation efforts and policy efficacy. These reliable
datasets also play a vital role in scientific research, where they are
employed to investigate the impact of floating debris on aquatic
ecosystems and wildlife.

However, while the benefits of atmospheric correction and pre-
processing are evident, challenges persist in their implementation.
The availability of suitable data for atmospheric correction can be
limited, and acquiring high-quality satellite imagery with necessary
data can be a costly endeavour. Moreover, choosing the appropriate
atmospheric correction and pre-processing algorithms presents a
complex task, as these selections must align with specific imaging
sensors, environmental conditions, and study objectives.
Additionally, the processing of substantial datasets for these
purposes may require substantial computational resources, posing
a challenge for researchers with limited access to high-performance
computing facilities. Furthermore, the validation of the accuracy of
atmospheric correction and pre-processing results necessitates
ground truth data, which can be challenging to obtain,
particularly in remote or inaccessible areas. Despite these
challenges, the continued advancement of technology and data
accessibility are helping to address these obstacles, solidifying
remote sensing as an indispensable tool in the comprehensive
effort to combat the issue of floating debris in aquatic ecosystems.

3.3 Uncertainty of spectral reflectance of
floating plastics

The spectral reflectance of floating plastics measured via multi-
spectral imaging sensors can introduce uncertainties due to several
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factors. These uncertainties may arise from variations in plastic
composition, shape, surface texture, and environmental conditions,
such as water quality, lighting conditions, and wave-induced
distortions. Additionally, the presence of other materials in the
water, such as algae, debris or driftwood, can further complicate
spectral measurements. Accurate quantification of floating plastic
pollution requires accounting for these uncertainties and
implementing appropriate calibration and data processing techniques
to improve the reliability of spectral reflectance measurements.

This matter is connected to the ongoing debate regarding the
appropriate remote sensing principles to apply for machine
learning-based detection and characterisation. Several of the
studies mentioned rely on a scarce amount of ground-truth data,
such as the MARIDA database or artificial targets in Lesbos Island
(Greece). These limitations substantially challenge the assessment of
the effectiveness of the different algorithms proposed, prompting us
to question the true nature of the information they are extracting.

In Hu (2022), the author highlights that Sentinel-2 data exhibit
spectral distortions due to variations in spatial resolution among its
bands, which range from 10 to 60 m when they are adjusted to the
same spatial resolution. Additionally, these distortions are
compounded by pixel misalignment between different bands.
Consequently, these spectral distortions give rise to a misleading
spectral peak at approximately 842nm, which has been commonly
utilised within the research community for identifying MD&SP in
Sentinel-2 data. This peak’s significance is evident, for instance,
please see Figure 2B. Hu (2022) demonstrates that after eliminating
the distortions, the spectral signature closely resembles that of
driftwood rather than plastic. These concerns form the basis of
the hypothesis proposed by Arias et al. (2021), aligning with Hu’s
assertion that distinguishing floating materials is considerably more
straightforward than identifying floating plastics. We refrain from
providing conclusive evidence in this regard and suggest that
researchers in this field consider the possibility that the
previously mentioned discoveries may not be influenced by these
spectral distortions.

3.4 Importance & challenges in addressing
the mixed pixel problem in MD&SP

Precisely addressing the mixed pixel problem in the context of
MD&SP holds profound importance for a range of important reasons.
Above all, it generates a direct influence on the accurate quantification
of marine debris and plastics within aquatic environments. The
capacity to discriminate among the diverse materials coexisting
within mixed pixels is key for estimating the volume and
distribution of debris. This, in turn, plays a pivotal role in
facilitating comprehensive environmental impact assessments and
the formulation of effective strategies for mitigating pollution.
Furthermore, the varied origins of marine debris and plastics, each
with its level of ecological and environmental threat, underline the
significance of successfully resolving the mixed pixel issue. This
achievement empowers researchers to identify the sources of
pollution, thereby aiding regulatory bodies and environmental
organizations in implementing precise measures to address the
root causes of marine debris and plastics. Additionally, the
accurate identification of mixed pixels is crucial for assessing the

ecological impact of MD&SP on marine ecosystems, providing
valuable insights into how different materials interact with marine
life, including issues related to entanglement and ingestion.

Nonetheless, despite its essential importance, the challenge of
dealing with the mixed pixel problem in MD&SP poses a
formidable set of challenges. The heterogeneity of debris,
characterised by materials with distinct properties, origins, and
various degrees of weathering and biofouling, complicates the task
of distinguishing and segregating mixed pixels due to significant
spectral overlap. The limitations in the spatial and spectral
resolution of remote sensing data occasionally restrict the ability to
accurately discriminate fine-scale differences within MD&SP,
particularly when closely situated objects or materials coexist.
Moreover, the temporal variability of marine debris and plastics,
influenced by factors such as ocean currents, tides, and changing
weather conditions, further complicates efforts to resolve the mixed
pixel problem, as the same location may exhibit different materials at
different times. Coastal environments, characterised by the coexistence
of diverse land and water features, boost these challenges by making it
difficult to differentiate terrestrial objects from marine debris,
particularly in nearshore regions. The interference from natural
elements, such as algal blooms and floating vegetation, can mimic
the spectral characteristics of plastics and debris, leading to
misclassification and the misidentification of mixed pixels.
Furthermore, the complexity of developing algorithms to manage
mixed pixel issues can be significant. Finally, validating the accuracy
of remote sensing results when dealing with mixed pixel problems is
complex, primarily due to the challenges of acquiring ground truth data
for the various types of marine debris and plastics, especially in remote
or offshore areas.

3.5 Remote sensor related challenges:
sensitivity, noise and coverage

Another aspect that would require consideration is a view of the
sensitivity of the various proposed sensors to plastic content. The
sensitivity analysis of satellite remote sensing techniques concerning
their observational capabilities for detecting floating plastics has been
notably limited. While these techniques have shown promise in
monitoring marine pollution, however, up to date, no proper
sensitivity analysis has been done with them to address their
observational capabilities for floating plastic. Factors such as plastic
size, shape, colour, and concentration in the water, as well as
environmental conditions like sunlight, water turbidity, and wind-
induced surface roughness, can all influence the effectiveness of
satellite-based plastic detection. A thorough sensitivity analysis is
imperative to quantify the reliability and limitations of these
methods under different scenarios, ultimately enhancing the
accuracy and utility of satellite remote sensing for tracking and
addressing the global issue of plastic pollution in our oceans.

The primary research in this field is the study conducted by
Papageorgiou et al. (2022), which establishes the detection threshold
for Sentinel-2/MSI at 20% of the pixel area. In contrast, Garaba et al.
(2021) have determined a limit of 1% based on laboratory
measurements with an ideal sensor. Nevertheless, it is worth
noting that there currently exists no sensor specifically designed
for this particular task. To gain a more comprehensive
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understanding of their capabilities, there is a need to expand the
number of analytical studies conducted not only for Sentinel-2
sensors but also for other commonly used sensors such as
Landsat-8 and WV-3. This broader assessment will enable a
more thorough evaluation of their performance.

Furthermore, in MD\&SP monitoring, In optical remote sensors,
the signal-to-noise ratio (SNR) is crucial for data quality, offering
reduced noise, enhanced precision, and reduced uncertainties in data
products. However, the purpose of higher SNR entails trade-offs as it
requires greater instrument sensitivity, potentially narrowing the
dynamic range and increasing the risk of signal saturation in the
presence of very bright targets. Achieving a higher SNR may also
involve coarser spatial and lower spectral resolutions to gather an
adequate number of photons. Beyond a certain SNR threshold, other
factors contributing to data uncertainties may eclipse the benefits of
further SNR improvement. Therefore, optimising SNR in optical
remote sensors necessitates careful consideration of sensitivity,
dynamic range, spatial and spectral resolutions, and the delicate
balance among these elements to ensure the highest quality and
accuracy of data products (Qi et al., 2017). On the other hand,
Noise Equivalent Sigma-Nought (NESZ) challenges for SAR involve
speckle noise, which can obscure small or low-contrast marine debris.
The incident angle of the radar beam also plays a role, as varying angles
can produce different NESZ levels, necessitating consideration of
specific angles for each data acquisition. Furthermore, SAR signals
can interact with natural features like vegetation, potentially leading to
false positives and misinterpretations in MD&SP monitoring.

Simultaneously, medium to high-resolution missions face
systematic global coverage limitations in MD&SP monitoring.
These missions often prioritise spatial and temporal resolution,
leading to detailed data collection in specific areas of interest,
leaving gaps in systematic global coverage. The high costs
associated with acquiring high-resolution data over extensive
ocean areas can be prohibitive, leading to concentrated data
collection in specific regions. Mission lifespans are finite, and
when a mission ends, data acquisition stops, causing gaps in
long-term monitoring efforts and restricting the ability to track
changes inMD&SP distribution over time. Moreover, managing and
storing resource-intensive high-resolution data can pose significant
challenges, particularly for systematic global coverage.

3.6 On spectral indices

The utilization of spectral indices for investigating and detecting
marine plastic from remote sensing imagery is a promising avenue,
but it is not without its challenges and limitations. While spectral
indices have been successfully applied in various environmental
monitoring tasks, their efficacy in the context of plastic detection
remains uncertain. The spectral signature of marine plastics can be
highly variable, influenced by factors like plastic type, weathering, and
the presence of other materials in the water. This variability can make
it challenging to develop a one-size-fits-all spectral index that reliably
identifies MD&SP across diverse marine environments. Furthermore,
spectral indices often rely on empirical relationships between spectral
bands and specific materials, and these relationships may not hold
consistently for plastic detection due to the wide diversity of plastic
types and conditions. Additionally, the accuracy of these indices can

be affected by atmospheric conditions, water quality, and sensor
characteristics, introducing sources of uncertainty that must be
carefully considered. Therefore, while spectral indices offer a
valuable tool in the quest to address plastic pollution in our
oceans, their application should be approached with a critical
awareness of the complexities and limitations inherent to the task.

Despite being the first-ever developed and widely used spectral
index, doubts persist regarding the effectiveness of Biermann’s FDI
for its intended purpose. As previously highlighted in the preceding
sections, issues with Sentinel-2 data raise questions about its ability
to distinguish plastics from other floating materials. Biermann et al.
(2020) Figure 2C unmistakably demonstrates that when comparing
FDI and NDVI, the latter appears to be significantly more adept at
distinguishing floating litter from other spectral categories. FDI
exhibits noticeable signal overlap and range convergence with the
other considered spectral categories. The same concern has also been
experimentally shown in Papageorgiou et al. (2022) (pg. 15,
Figure 9) that using FDI alone to discriminate floating plastics is
not possible, since there is considerable overlap between the FDI
values of the different classes. While these uncertainties are cause for
concern, it is important to note that FDI remains the predominant
spectral index in the literature for detecting floating plastics.
Nevertheless, it necessitates a comprehensive supplementary
analysis to establish its reliability definitively.

An alternative index designed for discriminating floating plastics is
the PI introduced by Themistocleous et al. (2020). Alongside the PI,
practical indices like NDVI have also been employed to differentiate
artificial plastic from the sea surface. Initial findings demonstrate the
successful detection of plastic targets using most of these indices, with
authors subsequently incorporating a statistical validation step to bolster
the credibility of their proposed method. However, while the inclusion
of statistical validation is a positive step, its applicability may still be
considered limited since it was tested specifically with one type of
artificial plastic target and excludes other potential floating materials
originating from sources like vegetation and land. Sakti et al. (2023) have
made further enhancements by combining PI with NDVI and MNDBI
to identify floating plastic litter in watersheds, particularly in complex
scenarios where plastic waste is mixed with various land covers. Their
primary objective was to rectify land cover discrepancies around rivers,
especially those that might interfere with the PI results. Despite
achieving satisfactory outcomes in their study, the developed index
remains reliant on spectral indices that may not be tailored for MD&SP
analysis, and the authors themselves acknowledge this limitation. It is
certain that certain river types exhibit unique characteristics, such as
substantial riverbank activities, transportation-related disturbances,
wave patterns, rock distributions, and diverse water quality
parameters like sedimentation and vegetation, necessitating further
investigation. In light of these characteristics, spectral indices for
both riverine aqua systems and open waters require an advanced
and validated approach by also exploiting other water-related
alternative index corrections such as NDWI, turbidity index
(Tasseron et al., 2021), and bare soil index (BSI) (Nguyen et al., 2021).

3.7 On capabilities of SAR imagery

All the efforts in the last decade led to the development of the
pioneering works mentioned above. However, optical imagery that
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displays the earth as the human eye sees it, is at the mercy of the
clouds and the amount of sunshine. On the other hand, the SAR
system constitutes an active sensor, which emits microwaves
towards the Earth and receives back-scattered signals from the
surface. Since SAR utilises larger wavelengths (1 cm to 1 m), it
can image day/night and in almost all-weather conditions
through clouds and storms. SAR imagery provides us with useful
information about forest biomass, and crop cover types.
Furthermore, SAR also provides useful information on ocean
state, including wind speed/direction, gravity waves, swells,
currents, and sea-ice structures. Hence, SAR imagery is
recognised as superior to optical imagery in applications such as
detecting/tracking oil spills (Li and Li, 2010; Shirvany et al., 2012;
Zhao et al., 2019), assessment of sea surface signatures (Graziano
et al., 2016; Karakus et al., 2019; Rizaev et al., 2022), ship detection/
tracking (Pappas et al., 2018; Kartal and Duman, 2019; Liang et al.,
2019), and ice sheets tracking (Lemos et al., 2018; Gomez et al., 2019;
Barbat et al., 2021).

Despite this widespread usage and advantages, its usage in
MD&SP monitoring works has been limited up to now. As
discussed in Section 2.3, we have explored several SAR-based
studies primarily aimed at complementing surface spectral
information. While some of these studies did not yield positive
contributions to the detection of MD&SP (Papageorgiou et al.,
2022), others have shown promising and encouraging results for
future research (Savastano et al., 2021; Giusti et al., 2022; Simpson
et al., 2023). However, it is important to exercise caution when
applying SAR imagery, despite these encouraging outcomes. For
instance, the first successful use of SAR in plastic detection, as
demonstrated by Savastano et al. (2021), relies on SAR data
findings that are conditional on spectral information obtained
through the FDI metric. This connection has been further extended
through machine learning algorithms, introducing an additional layer
of uncertainty [epistemic within the context of Kendall and Gal
(2017)]. Conversely, while Simpson et al. (2023) have identified
distinguishable features between different frequency bands for
detecting floating plastic under controlled conditions, a closer
examination of Tables 4 and Table 5 in their study reveals that the
majority of results were non-significant, particularly when scenarios
resembled real-world events at sea. Furthermore, the work of Serafino
and Bianco (2021) suggests the suitability of X-band radar, but this is
contingent on mild weather and calm sea surface conditions, which
may not always align with the realities of open ocean scenarios.

All the studies mentioned above represent significant
achievements in exploring the potential of SAR in this field,
underscoring the pivotal need for enhancing SAR technology to
support machine learning methods. This does not mean that SAR
usage is not viable, but rather underscores the necessity for further
research efforts to thoroughly establish its capabilities, which have
yet to be comprehensively documented or published.

3.8 Data related challenges

In addition to the sensor-related challenges mentioned above,
there is also another important problem causing this research area to
move slower compared to other computational imaging areas; that is
the data availability and other data-related problems.

3.8.1 Open-access MD&SP data
Before 2022, there was only one source of data set from Plastic

Litter Projects (PLP) of (Themistocleous et al., 2020; Topouzelis
et al., 2020) consisting of artificial plastic targets. Despite providing a
great source of information for future studies, the shared data sets
consist of a couple of Sentinel-2 images with a handful of annotated
plastic pixels. Thus, their applicability in advanced computational
imaging approaches naturally remained limited. Thanks to the
efforts in this area, during 2022 two important data sets have
been published (Kikaki et al., 2022; Lavender, 2022). These data
sets, even though still suffering from the number of annotated plastic
pixels, provide a basis and some chances for the applicability of the
advanced deep-machine learning approaches. The International
Ocean Colour Coordinating Group (IOCCG) is listing all
available data in this research area in a database bibliography.
Interested readers may refer to this exhaustive list of databases
by The IOCCG (2022). In addition, Politikos et al. (2023) set a
primary objective to explore a wide range of subjects to recognize the
multifaceted impact of artificial intelligence in this domain and
create a valuable point of reference for researchers in the field of
MD&SP. To accomplish this goal, the authors have introduced an
internet-based repository1, wherein users have the capability to
search for publications categorized under various topics and
tagged accordingly. For those seeking more information on open-
access resources and public datasets, we encourage them to refer to
these sources.

3.8.2 Limitted annotation
Machine learning algorithms possess significant potential for

enhancing detection and classification tasks, as they excel at labelling
complex datasets. However, the effectiveness of these technologies is
unpredictable on the quality of the training data. Even in the case of
one of the largest existing databases, MARIDA Kikaki et al. (2022),
the number of pixels considered to have “high confidence” in terms
of plastic pollution is relatively limited. TrainingML algorithms with
only 1,625 “high confidence” pixels (constituting 0.4% of all pixels)
out of nearly a million others elevates the risk of training errors. We
contend that this limitation is a major factor contributing to the
prevalent issue of low precision (resulting in a high number of false
detections) observed in most of the proposed methods documented
in the literature.

3.8.3 Non-applicability of advanced approaches
The utilisation of advanced computer vision algorithms for the

detection of MD&SP has been hindered by several factors. These
include the aforementioned reasons for the limited availability of
datasets and a scarcity of highly reliable annotated pixels for training
purposes. Another contributing factor is the unfortunate lack of
collaboration between machine learning experts and marine
scientists/field researchers. Consequently, most research efforts in
this field rely on conventional approaches such as RF, Naive Bayes,
or relatively straightforward deep learning architectures. In contrast,
computer vision research in fields like medical imaging or other
challenging domains often produces groundbreaking algorithms

1 https://dimpolitik-ai-marine-litter-app-zd7cow.streamlit.app/
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that make innovative use of minimal or unsupervised learning
methods.

4 Future research directions

4.1 Applicability of new generation satellites

The advent of new-generation satellite imagery has brought
about significant advancements in the realm of marine floating
plastics detection. However, it is essential to recognise that, even
with these technological strides, challenges persist. While Sentinel-2
represents the current state of the art, it does come with certain
limitations, such as its spatial resolution and spectral capabilities.
The applicability of new-generation satellite imagery, therefore,
holds promise for improved plastic detection due to enhanced
spatial and spectral characteristics, allowing for more precise
identification and monitoring of MD&SP in marine
environments. Nevertheless, the efficacy of these new tools hinges
on addressing the remaining limitations and the development of
innovative algorithms and analysis techniques, which can better
exploit the potential of these advanced satellite systems for
comprehensive and accurate plastic pollution detection and
assessment.

In the last decade, new technology satellites for optical imagery
have been launched. Worldview-3 is a super-spectral, high-
resolution commercial satellite sensor from Maxar launched on
13 August 2014, and can be named among those technologies.
WV3 collects images at 0.31 m panchromatic, 1.24 m in VNIR, and
3.7 m in SWIR bands whilst having enhanced multi-spectral analysis
bands (coastal blue, yellow, red edge, NIR2) designed for land and
aquatic applications. Since WV3 products started to be delivered by
the ESA, their applicability has increased (refer to (ESA, 2023c) for
the WorldView ESA archive).

In addition to Maxar’s WV3, Planet Space’s SkySat is a
constellation of high-resolution Earth-observing satellites owned
and operated by the commercial company Planet Labs where the
first SkySAT-1 launched in 2013 whilst the latest SkySat-21 in 2020.
It is known for capturing highly detailed images of the Earth’s
surface, with spatial resolutions as fine as 50 cm. SkySat offers
frequent revisits (up to 12 times a day) for dynamic event
monitoring. PlanetScope, another satellite constellation by Planet
Space consists of multiple launches (“flocks”) of Dove satellites and
provides medium-resolution optical imagery with spatial resolutions
between 3 and 5 m. It is ideal for daily revisits, making it valuable for
tracking changes like crop growth and urban development but at a
coarser resolution compared to SkySat. Both constellations have
ESA data archives with limited coverage. Interested readers might
refer to (ESA, 2023a; ESA, 2023b) for SkySat and Planetscope data
archives of ESA.

We believe satellite products like WV3, SkySat and PlanetScope
will direct the following years of research for MD&SPmonitoring by
filling the gaps in a low spatiotemporal resolution of Sentinel-2. On
the other hand, we should note that the pressing need for a dedicated
satellite constellation tailored to monitor MD&SP has become
increasingly evident. Existing satellite systems primarily designed
for broader Earth observation purposes lack the specialised
capabilities required for precise and comprehensive detection and

tracking of these pollutants across the world’s oceans. A specifically
developed constellation would offer the advantage of optimised
spectral bands (mitigating the effects of the aforementioned
spectral distortion), spatial resolution, and revisit frequencies,
precisely tuned to the unique characteristics of MD&SP. Such a
constellation could enhance our ability to monitor the global
distribution, movement, and accumulation of plastic waste,
providing critical data for informed decision-making, pollution
mitigation efforts, and policy formulation aimed at addressing
this urgent environmental crisis. By focusing our resources and
technology on a constellation designed explicitly for this purpose, we
can significantly improve our capacity to understand and combat
the pervasive problem of marine plastic pollution.

4.2 Solutions via computational image
analysis

To sum up our discussion on the computational imaging
methods mentioned earlier, it is worth mentioning that these
methods predominantly depend on traditional machine learning
techniques. Nonetheless, it is crucial to recognise that one of the
most dynamically evolving fields in artificial intelligence is computer
vision, where new and sophisticated approaches are emerging
almost daily. Interestingly, the remote sensing image analysis
domain, despite being a part of computer vision research, has
not kept pace with these recent advancements and still mostly
relies on older methodologies developed several years ago.

4.2.1 Multi-modal AI and fusion
Various environmental applications have benefited from multi-

modal image fusion by exploiting complementary features provided
by different remote sensors. Specifically, for active-passive data
fusion, passive sensors play the role of feeding the system with
high spectral information whilst active sensors usually provide
sufficient textural and structural information (Zhang et al., 2022).
Some example remote sensing applications can be listed as land use/
cover classification (Ma et al., 2022; Roy et al., 2023), air pollution
detection (Scheibenreif et al., 2022; Rowley and Karakuş, 2023),
building footprint extraction (Shermeyer et al., 2020), and maritime
vessel detection (Farahnakian and Heikkonen, 2020).

4.2.2 Minimal supervision
The low amount of annotated data has been a great driving force

for the development of semi-, weakly-, and self-supervised learning
computational imaging approaches especially in the medical
imaging area, which has the same annotated data problem as in
remote sensing. Along with the advances in multi-modal fusion
approaches, developing minimal supervision techniques for
MD&SP monitoring is a crucial step, and we believe academic
literature will gradually get involved in this area to leverage
unlabelled data simultaneously with the limited amount of high-
confidence pixels. The weakly supervised approach proposed by
Kikaki et al. (2022) is a good starting point for this, but of course not
enough for high-precision MD&SP monitoring software
development tools. Ma et al. (2022), in their land cover mapping
paper, have shown that without losing much performance accuracy,
multi-modal usage in a parallel manner can reduce the amount of
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required labelled training data down to 1/20, whilst Ma et al. (2023)
also further demonstrate the capability of the semi supervision
techniques in which the authors reach better performance
metrics compared to the state-of-the-art techniques utilising
several times higher number of labelled data sets.

4.3 Employability of spectral unmixing
techniques

As a natural outcome of the conversation regarding the
uncertainty surrounding spectral reflections from floating plastics
in Section 3.2, particularly within the current marine optics research
community, a consensus emerged. This consensus acknowledged
that the application of one-to-one spectral classification through
machine learning using existing sensors requires the incorporation
of spectral unmixing. This approach becomes essential due to the
current absence of ground-truth data and serves as a means to
evaluate the effectiveness of proposed algorithms.

In general terms, spectral or pixel unmixing can be described as
follows: In remote sensing, a common challenge arises due to the
inherent limitation of spatial resolution in remote sensors (or
relatively small target class sizes even when high spatial
resolution exists), resulting in “mixed” pixels near the boundaries
of different classes. In essence, individual pixels often encompass
more than one type of material, causing the pixel’s spectral response
to represent a combination of underlying pure classes known as
“endmembers.” When conventional single-class per pixel
classification is applied, the best-case scenario involves
compromised accuracy, as a portion of the pixel is inaccurately
categorised. In the worst-case scenario, mixing can create a
perplexing spectral blend, leading to entirely incorrect pixel
classifications. A more effective approach, which mitigates both
of these error sources, is to model the spectral mixture and, at each
pixel, determine the proportions of the endmember classes for
classification Rosin (2001).

One of the most important spectral unmixing analyses has been
implemented by Papageorgiou et al. (2022). In their work, the
authors have reported that biofouling primarily impacts the
spectral response of floating marine litter concentrations in the
RGB part of the spectrum, affecting signal intensity and shape, while
the NIR bands remain relatively unaffected. The accumulation of
biofouling notably alters the shape of high-density polyethylene’s
(HDPE) spectral response. This observation corresponds with
chlorophyll absorption features, although stable reflectance in the
green part of the spectrum is not consistently observed. Further
research is necessary to gain a comprehensive understanding and
quantification of biofouling effects, as well as the characteristics of
the organisms involved. Submerging the HDPE mesh target to
depths between 20 and 30 cm below the water surface leads to a
30%–40% signal decay across the visible range of the MSI’s sensor,
with a greater impact on NIR bands. This decrease in signal could
potentially impede the detection of submerged or partially
submerged floating marine litter, which is often encountered in
real-world scenarios. However, partial unmixing methodologies
have demonstrated the ability to detect partially submerged target
pixels. Additionally, the spectral features of floating materials like
pollen, sea snot, wakes, foam, and vessels closely resemble those of

floating marine litter, making their discrimination challenging and
presenting a significant constraint in pixel classification [also
reported in Kikaki et al. (2022) and Booth et al. (2023)]. In
practical terms, the detection of floating marine litter using
partial unmixing methodologies with atmospherically corrected
Sentinel-2 data is feasible under reasonable conditions, typically
requiring an estimated abundance fraction of less than 20% for
successful detection. Discriminating other floating features, such as
pollen, vessels, and vessel wakes, remains problematic due to their
similar spectral characteristics to floating marine litter in the
proposed model.

Spectral unmixing methods, while valuable for extracting
information from mixed pixels in remote sensing imagery, do
have their limitations. One key constraint lies in the assumption
of linear mixing, which may not always hold in complex natural
environments where interactions between different materials can be
nonlinear. Additionally, these methods often rely on prior
knowledge of endmember spectra, which can be challenging to
obtain accurately, especially in heterogeneous landscapes.
Atmospheric effects, such as scattering and absorption, can
introduce uncertainties and affect the reliability of unmixing
results. Furthermore, spectral unmixing assumes that the number
of endmembers is known a priori, and determining the appropriate
number can be a non-trivial task. Lastly, variations in lighting
conditions, sensor calibration, and noise levels can also impact
the accuracy of spectral unmixing outcomes. Thus, while spectral
unmixing methods are powerful tools, their successful application
requires careful consideration of these limitations in real-world
scenarios.

4.4 Support from radar backscattering

Upon completing the earlier section concerning the potential of
SAR imagery, it became evident that for SAR to play a more active
role in this domain, there is a necessity for significant advancements
in research to substantiate its capabilities. Here, we enumerate
several advantages of SAR in comparison to passive remote
sensing methods, alongside potential areas of future research
interest as perceived by the authors.

1. Several European missions (e.g., COSMO/SkyMed, TerraSAR-X,
NovaSAR-1, ICEYE) have developed a new generation of
satellites exploiting SAR to provide spatial resolutions
previously unavailable (up to 0.25 m). Investigating the cm
scale is crucially important to detect/classify plastic pollutants
since these spatial resolutions have recently been available for
optical remote sensing (Planet-SkySat, WV3). High-resolution
SAR data is continuously obtained for some other monitoring
applications and taking these high-potential, yet less-demanded,
sources into play supportive information to high-resolution
spectral imagery for plastic detection yields crucial importance.

2. Due to its day and night imaging capabilities, synthetic aperture
radar (SAR) offers more frequent revisits compared to optical
imagery, such as Sentinel-2, which revisits approximately every
5 days. Furthermore, SAR’s ability to collect data in all weather
conditions and despite cloud cover enables it to provide
uninterrupted information, particularly in regions where
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optical sensors often lack data due to severe cloud cover and
adverse weather conditions. A continuous stream of data with
shorter time intervals is essential for monitoring and
understanding the behaviour of plastic patches in the open
ocean. Leveraging SAR data can help shed light on why
certain areas, like Henderson Island, serve as gathering points
for ocean plastics (Lavers and Bond, 2017).

3. SAR sensors operate with various frequency bands (P-S-L-C-X)
each of which has various advantages compared to the others.
Since (i) different frequency bands will therefore develop
different interactions between the plastic pollutant and the sea
surface waters, and (ii) different penetrable frequency bands such
as S (NovaSAR-1), L (ALOS2) and X (TerraSAR-X, ICEYE, etc.)
have not yet been utilised in the analysis, SAR imagery research is
still open to exploration regarding its plastic detection capability.
A key fact shared by Papageorgiou et al. (2022) for optical
imagery reception of the floating pixels states that if we
contemplate submerging the target at a depth of
approximately 20–30 cm below the water surface, we observe
a notable decline in signal strength, ranging from 30% to 40%
across the visible spectrum with a more pronounced effect on the
NIR bands. This important observation is supportive evidence of
the need for SAR penetration capability exploration for this
problem which could offer valuable insights and data for
mitigating the effects of this natural phenomenon.

4.4.1 Drawbacks
An important problem degrading statistical inference from SAR

imagery is the presence of multiplicative speckle noise. The received
back-scattered signals sum up coherently and then undergo
nonlinear transformations which causes a granular look in the
resulting images. This is referred to as speckle noise (Kuruoglu
and Zerubia, 2004) and may lead to the loss of details in SAR and
cause problems for feature detection, segmentation, or classification.
However, speckle noise has been a well-studied problem for decades
and can be removed by precisely determining the statistical
characteristics of images (Kuruoglu and Zerubia, 2004; Achim
et al., 2006; Karakuş et al., 2018; Karakuş and Achim, 2020;
Karakuş et al., 2021).

4.5 Tracking the source of pollution

The literature for marine plastic pollution monitoring does not
yet have a complete tracking method due to the incapability of
continuous data flow and resolution limitations. Detecting where
marine plastics are accommodated and tracking where they are
heading are of crucial importance, however, there is another
important aspect: the detection of the sources of the plastic.
Detecting and acting to clean plastic pollution from the oceans
requires repetitive efforts as soon as we do not stop the source of the
pollution. Hence, the effort by Lavender (2022) via proposing a date
set for plastic pollutants both on the land and coastal areas can be
seen as one of the starting points since analysing the source of the
pollution requires discriminating the pollutants not only on land/
ocean but also in small inland waters such as rivers. Similarly, the
work by Sasaki et al. (2022) exploiting coastal debris detection via
machine learning approaches and utilising Maxar WV-3 imagery

accommodates the same importance to clearly discriminate the
debris on the sea surface and on Land. It is also important to
note that Bosi et al. (2021) propose two different particle tracking
models (PTM-SD and PTM-REF) to investigate the timescales of
dispersal from the ocean surface and onto coastal accumulation
areas. Their models suggest that the coastal regions of Central
America and Western Europe will be most affected by floating
plastic particles.

As mentioned in the above sections, floating plastics’ trajectory
in the ocean has been affected by surface signatures and currents.
Combining SAR and optical imagery information with the ground-
breaking statistical samplers (Corenflos et al., 2021; Wu et al., 2022;
Hao et al., 2023a; Hao et al., 2023b) for tracking approaches will
make analysing ocean currents, and wave structures possible, which
can lead to developing back-tracking approaches to predict the
sources of plastic pollution. Lastly, In order to mitigate the
drawbacks of small-sized plastic bits and relatively low spatial
resolution remote sensing data, group (or, namely, cloud)
tracking-based approaches (Mihaylova et al., 2014) are of great
importance.

4.6 Need for consensus

Different from the aforementioned future research
directions, the authors would like to finalise the paper with a
general but considerably important future direction. Due to its
multi-/cross-disciplinary nature, MD&SP monitoring research
requires an improved understanding and consistent steps in
agreement with academia, decision/policymakers and industry.
Thus, a consensus among academia, governments, policymakers,
and industry is crucial for effective MD&SP detection/
monitoring research. This collaboration is necessary due to
several compelling reasons.

1. MD&SP is a complex and multifaceted problem that requires a
multidisciplinary approach. Academia contributes scientific
expertise and research, governments enforce regulations and
policies, industry provides resources and innovation, and
policymakers drive effective decision-making. A consensus
ensures a holistic understanding of the issue, combining
diverse perspectives and knowledge.

2. Efficient allocation of resources is essential to address the scale of
MD&SP. A consensus helps prevent duplication of efforts and
ensures that funding, technology, and human resources are
directed toward the most pressing research areas, leading to
impactful outcomes.

3. Collaboration between policymakers, governments, and
academia ensures that research findings directly inform policy
formulation and implementation. Consensus-driven policies are
more likely to be based on accurate, up-to-date information,
resulting in effective strategies to reduce, manage, and prevent
MD&SP.

4. A unified stance from academia, governments, policymakers, and
industry enhances public awareness and engagement. When
these entities collaborate, they can communicate findings,
goals, and solutions more effectively to the public, generating
support and encouraging responsible behaviour.
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5. MD&SP is also a global issue that transcends borders. A
consensus is essential for international cooperation, facilitating
the sharing of data, best practices, and technologies. This enables
a coordinated effort to address MD&SP that travels across oceans
and affects multiple regions.

6. A shared understanding and coordinated effort are necessary for
the long-term sustainability of research initiatives. Consensus-
driven research is more likely to have a lasting impact and adapt
to evolving challenges over time.

7. Industry involvement is crucial for driving innovation in
detection and monitoring technologies. Collaboration with
academia and governments ensures that technological
advancements are aligned with research needs and regulatory
requirements. There is an improved activity on this point thanks
to ESA’s Open Space Innovation Platform (OSIP) activities. ESA
Discovery started (since 2019) sourcing ideas for new activities
from industry, academia and the general public through the
OSIP. Some example projects can be seen in (ESA, 2019).

8. Collaboration among various stakeholders helps mitigate
potential conflicts of interest. It ensures that research
outcomes and policies are not unduly influenced by any single
group’s agenda.

In conclusion, when academia, governments, policymakers, and
industry stakeholders reach a common understanding, it promotes a
collaborative strategy for the detection and monitoring of MD&SP.
This collaborative effort enhances the potential for more efficient,
knowledgeable, and environmentally responsible solutions.

5 Summary and final remarks

This paper was concerned with one of the most important
nature-related problems of marine plastic pollution. Considering
the recent technological developments in remote sensing, machine
learning and artificial intelligence areas, this paper aimed to
highlight academic efforts that concern MD&SP detection
problems. Particularly, we presented a thorough review of the
academic efforts and highlighted developed computational
remote sensing imaging approaches for detecting MD&SP.
Furthermore, a critical discussion was presented to clearly show
the challenges and limitations of the reviewed academic outcomes.
Finally, depending on the author’s experience and research on

marine-related remote sensing computational imaging
approaches, various potential future research directions have
been listed.

Our literature review in the above sections clearly shows that
MD&SP monitoring research has had a great interest, especially
after 2019. This can be seen as a natural increase in interest due to
the vast amount of approaches developed in computer vision
research, and the launching of high-resolution new remote
sensing technologies. Challenges caused by the dynamic
characteristics of MD&SP on the sea surface and their small-scale
target size will be important indicators for future research.
Moreover, remote sensing sensor limitation and ground truth
data labelling problems will also drive researchers to develop
advanced minimal supervision approaches.
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