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Harmful algal blooms (HABs) have adverse effects on marine ecosystems. An effective
approach for detecting,monitoring, and eventually predicting the occurrences of such
events is required. By combining a singular value decomposition (SVD) approach and
satellite remote sensing observations, we propose a remote sensing algorithm to
detect and delineate species-specificHABs.We implemented and tested the proposed
SVD algorithm to detect HABs associated with the mixed assemblages of different
phytoplankton functional type (PFT) groupings in the Red Sea. The results were
validated with concurrent in-situ data from surface samples, demonstrating that
the SVD-model performs remarkably well at detecting and distinguishing HAB
species in the Red Sea basin. The proposed SVD-model offers a cost-effective tool
for implementing an automated remote-sensingmonitoring system for detecting HAB
species in the basin. Such a monitoring system could be used for predicting HAB
outbreaks based on near real-time measurements, essential to support aquaculture
industries, desalination plants, tourism, and public health.
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1 Introduction

Harmful algal blooms (HABs) are characterized by excessive algae growth and/or the
occasional release of toxins by certain species of algae (Anderson et al., 2002). HABs are often
linked with environmental and socio-economic issues, including impacts on fisheries,
aquaculture, and tourism (Anderson 2009; Gokul et al., 2020). The global concern of HABs
and their socio-economic and environmental effects have highlighted a pressing need to
develop an efficient approach for detecting, monitoring, and eventually predicting these events
(Anderson et al., 2012; Berdalet et al., 2016).

Several studies have suggested that satellite remote sensing provides a comprehensive
approach to detect and monitor HABs over large spatiotemporal scales, not possible with
traditional in-situ techniques (Subramaniam et al., 2001; Zhao et al., 2015; Gokul et al.,
2019). Numerous satellite remote-sensing algorithms have been established using ecological
and bio-optical techniques for detecting and discriminating marine HABs (Alvain et al., 2005; Hu
et al., 2005; Stumpf and Tomlinson, 2007; Bracher et al., 2009; Shen et al., 2012; Dwivedi et al.,
2015). These algorithms are primarily based on second-order derivative (SOD) of remote sensing
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reflectance (Rrs) spectra, band-difference/ratio Rrs spectra, chlorophyll-
based absorption spectra, photosynthetically active radiation (PAR),
wind stress, and sea surface temperature (SST) anomalies. For instance,
Devred et al. (2018) presented a novel approach based on the satellite
observations of SST and a semi-analytical reflectance algorithm for
detecting the diatom-dominated HABs in the Bay of Fundy, Canada;
Gokul et al. (2019) recently developed a remote-sensing algorithm by
combining the SOD technique and Rrs band-difference/ratio method for
detecting and mapping the Red Sea HABs. Although these algorithms
have yielded promising results for detecting and classifying different
phytoplankton functional types (PFTs) (such as diatoms, dinoflagellates,
cyanobacteria, and raphidophytes) from the remotely-sensed data, they
have also pointed out some limitations, the most important of which is
their limited ability to detect the HABs composed of mixed assemblages
of different PFTs (Sathyendranath et al., 2014; Dwivedi et al., 2015;
Gokul and Shanmugam, 2016; Gokul et al., 2019). To address this, we
propose a remote sensing algorithm that uses the spectral features of
different PFTs extracted using a singular value decomposition (SVD)
approach for detecting and delineating HAB species in the Red Sea.

SVD is an effective numerical method for scrutinizing multivariate
data (Danaher and O’Mongain, 1992). A major advantage of using
SVD to detect and classify PFTs from remotely-sensed data is its
potential to produce a higher detection and classification accuracy
compared to other algorithms (e.g., Gokul and Shanmugam, 2016;
Moisan et al., 2017; Correa-Ramirez et al., 2018; Liu et al., 2019).
Moisan et al. (2017) applied an SVD algorithm to satellite-derived
chlorophyll (Chl-a) measurements and an absorption spectra model to
examine the spatial distribution of different PFTs off the eastern coast
of the United States in the Atlantic Ocean. Gokul and Shanmugam
(2016) designed an optical system using a radiative transfer analysis to
infer the phytoplankton signal from simulated reflectance data, which
were processed with the SVD technique to provide the spatial extent of
two PFTs (cyanobacteria and dinoflagellates) in the Indian waters. The
SVD-based remote-sensing algorithm we propose here utilizes the
spectral magnitude information contained in all available bands, for
the detection and delineation of Red Sea HABs associated with mixed
assemblages of different PFTs.

We utilized the SVD algorithm with the satellite-derived Rrs

measurements and available in-situ observations to develop a
remote sensing model for accurate detection and delineation of
HABs in the Red Sea. The proposed SVD model was then applied
on several MODIS-Aqua satellite observations and validated using
concurrent in-situ data from surface samples recorded during various
sampling campaigns in the Red Sea in the last two decades.

2 Materials and methods

2.1 Satellite datasets

Moderate Resolution Imaging Spectroradiometer (MODIS) data
collected by the Aqua satellite were acquired through NASA’s ocean
color archive. We utilized several daily MODIS-Aqua images available
at 1 km spatial resolution. These were selected according to the time
periods of observedNoctiluca scintillans/miliaris, Skeletonema costatum,
Trichodesmium erythraeum, Pyrodinium bahamense, Kryptoperidinium
foliaceum, and Ostreopsis blooms during various field sampling
programs in the Red Sea (Alkershi and Menon, 2011; Alkawri et al.,
2016a; Alkawri, 2016; Alkawri et al., 2016b; Catania et al., 2017).

MODIS-Aqua datasets were acquired to train and validate the SVD-
model (Table 1). An atmospheric correction method of Singh and
Shanmugam (2014) was first applied for pre-processing the MODIS-
Aqua Level 1A to Level 2 data. This atmospheric correction scheme was
primarily established for optically complex and turbid coastal waters
(case II water) dominated by chromophoric dissolved organic matter
(CDOM) and non-phytoplankton particles (such as sediment).We then
extracted the data products from MODIS-Aqua Level 2 files, which
included Rrs observations and Chl-a concentrations derived from the
algal bloom index (ABI) algorithm. Satellite-derived Chl-a
measurements in shallow coastal waters could be hindered by the
presence of non-phytoplankton particles and CDOM (Raitsos et al.,
2013; Gittings et al., 2018).However, previous studies have revealed that
the remotely sensed Chl-a measurements show a reasonable agreement
with in-situ Chl-a observations in the Red Sea basin (Brewin et al., 2013;
Brewin et al., 2015; Racault et al., 2015), suggesting that the remotely
sensed Chl-a dataset is suitable for supporting the detection and
delineation of species-specific HABs in this basin.

2.2 In-situ datasets

We examined in-situ datasets from different sampling HAB
campaigns. Alkawri et al. (2016a) conducted a field sampling
program over the period of June 2012 to September 2013 and
reported the occurrence of dinoflagellate P. bahamense and
cyanobacteria T. erythraeum in the Al-Hodeidah coastal waters. In
addition, several other HAB species including the toxic dinoflagellates
K. foliaceum and Protoperidinium quinquecorne have also been
identified in the Al-Hodeidah coastal waters during this sampling
HAB campaign (Alkawri, 2016; Alkawri et al., 2016b). In-situ studies
conducted in the fish landing center of Al-Hodeidah city reported a
mixed-species HAB assemblage that was composed of dinoflagellate
N. scintillans/miliaris and diatom S. costatum in March 2009 (Alkershi
and Menon, 2011). We further utilized in-situ datasets from Catania
et al. (2017) who reported the presence of the toxic dinoflagellate
Ostreopsis sp. during February 2012, May 2012, and March 2013 off
the Thuwal coast (Saudi Arabia). We finally analyzed in-situ datasets
from previous studies that reported toxic dinoflagellate P. bahamense
blooms and N. scintillans/miliaris in Thuwal and Al Shuqaiq coastal
waters (Saudi Arabia) during November 2013 and March 2004,
respectively (Mohamed and Mesaad, 2007; Banguera-Hinestroza
et al., 2016). These detailed survey datasets included oceanographic
measurements such as temperature, salinity, and cell counts, and are
documented by different studies (see Supplementary Tables S1, S2)
(Alkawri, 2016; Alkawri et al., 2016a; b; Alkershi and Menon, 2011;
Catania et al., 2017). Although these are the most comprehensive in-
situ datasets on HABs available in the Red Sea, we acknowledge this is
still an under-sampled region. The daily spatial matchups between
MODIS-Aqua observations and the in-situ measurements were
attained by selecting the nearest 1 km pixel (closest longitude and
latitude) to the field sampling location.

2.3 Training dataset and SVD approach

A training dataset was established by collecting samples from daily
MODIS-Aqua images concurrently collected alongside available in-
situ datasets on HABs in the Red Sea (see Supplementary Table S2).

Frontiers in Remote Sensing frontiersin.org02

Gokul et al. 10.3389/frsen.2023.944615

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.944615


The training dataset included measurements of Rrs spectra for the
different HAB species that were documented in the basin (Figure 1).
A total of 770 samples were collected from HAB-dominated areas
in the Red Sea basin for the training dataset. We utilised a median
filter with tolerance to remove extreme outliers from the class
distributions. The tolerance of the median filter for the training
data was determined based on the standard deviation of the
distribution. The tolerance (ζtol) was used to maintain spectral
variation for each HAB class while eliminating extreme outliers
from the upper and lower bounds. Thus, the training data for the
model can be expressed as

med Rrs( ) − ζ tol ≤Rrs ≤med Rrs( ) + ζ tol (1)
By applying the median filter, the number of HAB samples in the

training dataset was reduced to 523 samples. For instance, the number of
training data was reduced to 241 samples forT. erythraeum, 152 samples
for P. bahamense, 49 samples forN. scintillans/miliaris, 40 samples for S.
costatum, 21 samples for K. foliaceum, and 20 samples for Ostreopsis.
We then developed an algorithm based on the SVD technique for
detecting and delineating the species-specific HABs. The steps of the
proposed SVD-model for detecting and delineating Red Sea HABs are
outlined in Figure 2. The first step was to generate a training data matrix
A from the Rrs spectra of these HABs defined as,

A �

R11 R12 R13 . . . .R1n

R21 R22 R23 . . . .R2n

R31 R32 R33 . . . .R3n

. . . . .

. . . . .

. . . . .
Rm1 Rm2 Rm3 . . . .Rmn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(2)

where A is a MxN matrix, with M and N the MODIS-Aqua pixels
and wavelengths, respectively, and R is the Rrs observations of these
HAB species. The SVD technique was then used to decompose the
training data-matrix A as,

A � UΛVT (3)
where Λ is a diagonal matrix, U and V are the orthogonal matrices

(Danaher and O’Mongain, 1992).
In the second step, the generalized inverse model (mg) was

computed based on the SVD as,

mg � UTΛVDobs (4)
wheremg is a Nx1 vector and Dobs is the data observation vector of size
Mx1. If the in-situ sampling pixels denote the presence of HABs, then
the element of Dobs is 1, and 0 otherwise.

3 Results and discussion

Based on the SVD analysis, all the reported HABs in the Red Sea
were efficiently classified and distinguished as shown in Figure 3. To
achieve this, the predicted data values (Dpred

i) were computed for all
HABs as Amg

i of respective species (for i = 1,2,3,4,5, and 6). By
specifying a threshold value of 0.8 to the computed Dpred

i values of all
classes, the SVD approach was capable of classifying the HAB species
in the Red Sea waters. For example, the Dpred

1 and Dpred
2 values of all

classes were computed with respect to “mg
1” and “mg

2” for N.
scintillans/miliaris and T. erythraeum blooms, respectively. By
defining a threshold value of 0.8, all N. scintillans/miliaris and T.
erythraeum bloom classes were accurately classified (Figures 3A, B).
Similarly, all P. bahamense and S. costatum samples were delineated
using the same threshold (Figures 3C, D). In Figures 3E, F, K.
foliaceum and Ostreopsis samples were also accurately classified
using Dpred

5 > 0.8 and Dpred
6 > 0.8, respectively. We then applied

the proposed SVD-model to MODIS-Aqua satellite observations and
assessed its performance against the standard SOD approach that has
been previously implemented for detecting and mapping the Red Sea
HABs (Gokul et al., 2019).

TABLE 1 MODIS datasets (time periods) to train and validate the SVD-model for detecting and delineating different HAB types in the Red Sea.

HABs Training datasets Validation datasets

N. scintillans/miliaris 14th March 2004 3rd March 2009

S. costatum 19th March 2009 3rd March 2009

T. erythraeum 27th December 2012 29th April 2013

P. bahamense 14th November 2013 29th April 2013

Ostreopsis 27th March 2013, 12th May 2012 27th February 2012

K. foliaceum 6th May 2013 8th May 2013

FIGURE 1
MODIS-derived Rrs spectra of N. scintillans/miliaris (NS), P.
bahamense (PB), T. erythraeum (TE), S. costatum (SC), K. foliaceum (KF),
and Ostreopsis (Ost) blooms in the Red Sea.
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FIGURE 2
Flow diagram of an SVD model for detecting and delineating HABs in the Red Sea.

FIGURE 3
Results of the SVD analysis. (A–F) Predicted data Values (Dpred

i) > 0.8 delineate the HAB pixels. NS- N. scintillans/miliaris; TE- T. erythraeum; PB- P.
bahamense; SC- S. costatum; KF- K. foliaceum; Ost-Ostreopsis.
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We first investigated the daily MODIS-Aqua image on 3rd March
2009 for detecting the dinoflagellate N. scintillans/miliaris and the
diatom S. costatum over the southern Red Sea (SRS) region. In the false
color composite (FCC) MODIS image, the dark red features suggested
the presence of HABs that were characterized by enhanced reflectance
at the red bands (Figures 4A, B). In Figure 4C, an aggregation of
elevated Chl-a values (>2 mg m−3) was identified in the open and
coastal waters of the SRS. It was also observed that the high Chl-a
observations appear to coincide spatially with the HABs detected by
the SOD approach (Figure 4D). However, the SOD approach is limited
for distinguishing some mixed HAB classes such as diatoms with

dinoflagellates, as reported in Gokul et al. (2019). In contrast, the
SVD-model has the capability of detecting the patterns of these two
different HAB species, and distinguishing between them (Figure 4E).
The prevailing south-easterly winds seemed to be responsible for
transferring these water masses hundreds of kilometers away, while re-
distributing the HAB event (>5000 km2) in the open Red Sea waters
(Gokul et al., 2020). As shown in Figure 4E, the proposed SVD-model
also mapped the large-scale spatial distributions of this mixed-species
HAB assemblage over the SRS. The presence of dinoflagellate N.
scintillans/miliaris and diatom S. costatum blooms detected by the
SVD-model was found to match markedly well with the in-situ

FIGURE 4
Remotely sensing HABs over the southern Red Sea (SRS) on 3rd March 2009. (A, B) False color composite (FCC) map of the SRS [FCC map is processed
using the Rrsmeasurements at wavelengths of 748, 555, 412 nm]. (C) ABI-derivedChl-amap. (D) Bloommap based on the Second-order derivative technique
of Gokul et al. (2019). (E) Bloom map based on the singular value decomposition technique [In (D) and (E) NS- N. scintillans/miliaris; SC- S. costatum; NB-
Non-bloom waters. In (E) the black square, triangles and circle indicate in-situ sampling points for the presence of SC, NS and absence of HABs,
respectively]. (F) Variations of in-situ cell counts for HABs associated with two different PFTs including dinoflagellate N. scintillans/miliaris observed in the
stations “St1” and “St2”, and the diatom S. costatum recorded from the station “St4” in the Yemeni coastal waters, SRS on 3rd March 2009. We note that NS and
SC blooms were not detected from the station “St3” along the Al-Hodeidah coast [The SVD-model detection of SC, NS, and absence of HABs were indicated
by a red square, triangles and circle, respectively].
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observations recorded along the Al-Hodeidah coastal waters during
March 2009 (Figures 4E, F).

Similarly, the daily MODIS image acquired on 29th April 2013 was
analyzed for detecting the dinoflagellate P.bahamense and cyanobacteria
T. erythraeum blooms in the Al-Hodeidah coastal waters. The spatial
coverage of these blooms based on FCC imagery was very low due to the
high suspended sediments and bottom reflection along the coast of Al-

Hodeidah (bright features in the area outlined with the red box in
Figure 5A). This suggests some limitations in the use of the FCC map
to identify the water discoloration due to HABs. However, high Chl-a
values identified along the coast of Al-Hodeidah and noticeable patches of
those elevated Chl-a concentrations were spatially consistent with the
presence of HABs, as depicted by bloom map images from the SOD and
SVD approaches (Figures 5B–D). In Figure 5D, the SVD-approach was

FIGURE 5
Remotely sensing HABs in the Al-Hodeidah coastal waters on 29 April 2013. (A) False color composite (FCC) image [FCC map is processed using the Rrs

measurements at wavelengths of 748, 555, 412 nm]. (B) ABI-derived Chl-a map. (C) Bloom map based on the Second-order derivative technique of
Gokul et al. (2019). (D, E) Bloom map based on the singular value decomposition technique [In (C) and (D) PB- P. bahamense; TE- T. erythraeum; NB- Non-
bloomwaters. In (E) the in-situ sampling points of PB, TE, and the absence of HABs are indicated by the black triangles, square and circle, respectively]. (F)
Variations of in-situ cell counts for HABs associated with two different PFTs including the cyanobacteria T. erythraeum recorded from the station “St1” and the
dinoflagellate P. bahamense recorded from the stations “St2” and “St3” along the Al-Hodeidah coastal waters. We note that no HAB species were observed
from the station “St4” along the Al-Hodeidah coast [red triangles and squares denote SVD-model detection of PB and TE, respectively].

Frontiers in Remote Sensing frontiersin.org06

Gokul et al. 10.3389/frsen.2023.944615

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.944615


able to detect and delineate the dinoflagellate P.bahamense and
cyanobacteria T. erythraeum blooms in the Al-Hodeidah coastal
waters. The SVD-model results were in agreement with an in-situ
measurement of T. erythraeum, which was collected at the station
“St1” in the Al-Hodeidah coastal waters (Figures 5E, F). Besides, the
distribution of P.bahamense detected by the SVD-model was found to be
consistent with the in-situ observations recorded at the stations “St2” and
“St3” in the coastal areas of Al-Hodeida City (SRS) (Figures 5E, F).

Some limitations were also noticed in the SVD-model’s accuracy
along the Al-Hodeidah coastal waters in particular at Station “St4” in
Figures 5E, F. For instance, during 29thApril 2013, the SVD-model falsely
identified T. erythraeum blooms at the station "St4" along the Al-
Hodeidah coast where the in-situ data indicated the absence of HAB
species (Figures 5E, F). Previous studies have suggested that enhanced
radiance caused by shallow bathymetry, and certain combinations of
CDOM and non-algal particles (such as sediments) could mimic the T.
erythraeum blooms reflectance pattern (Subramaniam et al., 1999;

Subramaniam et al., 2001; Hu et al., 2010). Under such conditions,
satellite ocean color measurements are limited to discriminate T.
erythraeum blooms from other non-phytoplankton features
(Subramaniam et al., 1999; Subramaniam et al., 2001; Gokul et al.,
2019). One way to address this limitation may be to consider
additional remotely-sensing datasets such as SST, PAR and wind,
which were used to efficiently discriminate T. erythraeum blooms
from other highly reflective features in the coastal waters
(Subramaniam et al., 1999; Subramaniam et al., 2001; Raitsos et al., 2008).

We finally analyzed the daily MODIS-Aqua image on 29th June
2015 to investigate the HAB species that were associated with different
PFT groupings over the south-central Red Sea (SCRS). Gokul et al. (2020)
demonstrated that the HABs were detected as large-scale events
(>5000 km2) in the SCRS region during summer 2015. In Figure 6A,
these large-scale HABs were identified as dark red features in the FCC
map, because of enhanced radiance at red bands over the SCRS region.
This is consistent with Hu et al. (2005) who suggested that FCC imagery

FIGURE 6
Remotely sensing HAB over the south-central Red Sea (SCRS) on 29th June 2015. (A) False color composite (FCC) image [FCCmap is processed using the
Rrsmeasurements at wavelengths of 748, 555, 412 nm]. (B) ABI-derived Chl-amap. (C) Bloommap based on the Second-order derivative technique of Gokul
et al. (2019). (D) Bloommap based on the singular value decomposition technique [In (D) NS- N. scintillans/miliaris; SC- S. costatum; TE- T. erythraeum; NB-
Non-bloom waters].

Frontiers in Remote Sensing frontiersin.org07

Gokul et al. 10.3389/frsen.2023.944615

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.944615


can discriminate the dark features due to high light absorption associated
with the presence of phytoplankton biomass (including HABs), from
other bright features due to non-algal substances such as bottom reflection
and suspended sediments. As evident in Figure 6B, the patches of elevated
Chl-a (>2 mg m-3) were identified in the SCRS waters. It concurs with Li
et al. (2017) who observed a high Chl-a event on 29th June 2015 over the
SCRS region. Furthermore, the SOD and SVD models were able to map
the HAB event that was associated with these elevated Chl-a
concentrations over the SCRS region (Figures 6C, D). The SVD
approach further has the ability to detect and delineate the HABs
associated with the mixed assemblages of three different PFTs
including dinoflagellates, cyanobacteria, and diatoms in the open and
coastal waters of SCRS during 29th June 2015 (Figure 6D). It is important
to note that no in-situ observations were recorded during this HAB event

over the SCRS region, although their presence was detected during June
2015 and reported by Gokul et al. (2020).

We further assessed the overall accuracy of the SVD-model against
the SOD-model for detecting and delineating the six different Red Sea
HABs (see Supplementary Figures S2, S3 for the SVD and SOD models
derived K. foliaceum and Ostreopsis blooms). An error matrix was
constructed for each of the two models from the spatial matchups
between satellite-derived HAB observations and in-situ measurements
(Table 2; Table 3), including the following metrics: producer’s accuracy,
overall accuracy, user’s accuracy, and the Kappa coefficient (see footnote
“a” and “b” of Tables 2, 3, respectively). Based on the in-situ datasets
available for validation (18 samples), we compared the overall accuracy of
the SOD and SVD approaches.Our results suggested that the SVD-model
has a better agreement with the in-situ datasets with an overall accuracy of

TABLE 2 Accuracy assessment of SVD model for detecting S. costatum (SC), N. scintillans/miliaris (NS), T. erythraeum (TE), P. bahamense (PB), K. foliaceum (KF), and
Ostreopsis (Ost) bloomsa.

No. of satellite matchups

SC NS TE PB KF Ost Non-HABs Total

No. of in-situ locations SC 1 0 0 0 0 0 0 1

NS 0 2 0 0 0 0 0 2

TE 0 0 1 0 0 0 0 1

PB 0 0 0 2 0 0 0 2

KF 0 0 0 0 1 0 0 1

Ost 0 0 0 0 0 3 0 3

Non-HABs 0 0 1 0 0 0 7 8

Total 1 2 2 2 1 3 7 18

aOverall accuracy =((1 + 2+1 + 2+1 + 3+7)/18)×100 = 94.4%, where Overall accuracy = (sum of diagonal elements/total number of samples). Producer accuracy: SC=(1/1)×100%; NS=(2/2)×100 =

100%; TE=(1/2)×100 = 50%; PB=(2/2)×100 = 100%; KF=(1/1)×100 = 100%; Ost=(3/3)×100 = 100%; Non-HABs=(7/7)×100 = 100%, where Producer accuracy = (Total number of correct

classifications/Number in column total).User’s accuracy: SC=(1/1)×100%; NS=(2/2)×100 = 100%; TE=(1/2)×100 = 50%; PB=(2/2)×100 = 100%; KF=(1/1)×100 = 100%; Ost=(3/3)×100 = 100%; Non-

HABs=(7/8)×100 = 87.5%, where User’s accuracy = (Total number of correct classifications/Number in row total). Kappa coefficient = (NX-Y)/(N2-Y) = 0.92, where N = Total number of samples

(18); X = sum of diagonal elements (17); Y = Σ (row total × column total) = 77.

TABLE 3 Accuracy assessment of SOD model for detecting S. costatum (SC), N. scintillans/miliaris (NS), T. erythraeum (TE), P. bahamense (PB), K. foliaceum (KF), and
Ostreopsis (Ost) bloomsb.

No. of satellite matchups

SC NS TE PB KF Ost Non-HABs Total

No. of in-situ locations SC 0 1 0 0 0 0 0 1

NS 0 2 0 0 0 0 0 2

TE 0 0 0 1 0 0 0 1

PB 0 0 0 2 0 0 0 2

KF 0 0 0 0 1 0 0 1

Ost 0 0 0 0 0 3 0 3

Non-HABs 0 0 0 1 0 0 7 8

Total 0 3 0 4 1 3 7 18

bOverall accuracy =((0 + 2+0 + 2+1 + 3+7)/18)×100 = 83.3%, where Overall accuracy = (sum of diagonal elements/total number of samples). Producer accuracy: NS=(2/3)×100 = 50%; PB=(2/

4)×100 = 50%; KF=(1/1)×100 = 100%; Ost=(3/3)×100 = 100%; Non-HABs=(7/7)×100 = 100%, where Producer accuracy = (Total number of correct classifications/Number in column total). User’s

accuracy: SC=(0/1)×100 = 0; NS=(2/2)×100 = 100%; TE=(0/1)×100 = 0; PB=(2/2)×100 = 100%; KF=(1/1)×100 = 100%; Ost=(3/3)×100 = 100%; Non-HABs=(7/8)×100 = 87.5%, where User’s

accuracy = (Total number of correct classifications/Number in row total).Kappa coefficient = (NX-Y)/(N2-Y) = 0.77, where N = Total number of samples (18); X = sum of diagonal elements (15); Y =

Σ (row total × column total) = 79.
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94.4%, compared to 83.3% from the SOD-model. The SOD and SVD
approaches were both trained using the shape (curvature) of Rrs spectra
across the entire visible wavelengths for detecting and delineating the
HAB species associated with different PFT groupings. For instance, the
SOD approach was used to assess the Rrs spectral shapes of different HAB
species and identify the local troughs and peaks of Rrs across the entire
visible region for detecting species-specific Red Sea HABs (Gokul et al.,
2019). Although the SOD approachwas able to identify the Red SeaHABs
from Rrs data, it is limited to distinguishing some mixed HAB species
exhibiting similar spectral shapes but varying magnitudes. This is due to
the fact that the SOD approach was trained solely on spectral shape
information. The success of the present approach could be attributed to
the fact that the SVD technique exploits both spectral magnitude and
spectral shape information across the entire visible wavelengths to detect
and delineate species-specific Red Sea HABs. We also acknowledge a
limitation regarding the satellite ocean color observations used in this
study. For example,MODIS-Aqua observations over the SRS region in the
summer (June-August) are severely limited by the persistent cloud cover,
sensor saturation over sand, and sun-glint (Steinmetz et al., 2011; Brewin
et al., 2015; Racault et al., 2015; Raitsos et al., 2015; Dreano et al., 2016;
Gokul et al., 2020). This limited the ability of the SVD-model to
investigate the HABs composed of toxic dinoflagellate P. quinquecorne
and cyanobacteria T. erythraeum that were reported by Alkawri et al.
(2016a,b) along the Al-Hodeidah coast on 12th June 2012. In addition, the
Red Sea is a severely under-sampled region, despite being substantially
impacted by HABs (Mohamed 2018; Gokul et al., 2019; Gokul et al.,
2020). Due to the lack of adequate in-situ HAB observations in the Red
Sea region, it is difficult to evaluate the proposed SVD model’s ability to
map mixed-species HAB assemblages over large spatiotemporal scales in
the basin. The availability of greater numbers of regional in-situ
measurements in the future would enable further assessment of the
capacity of the SVD-model to map multi-species HABs in the Red Sea.

4 Conclusion

In summary, combining satellite-derived Rrs observations and the
SVD technique for detecting and delineating HABs in the Red Sea
appears promising. The SVD-model’s performance was validated with
the concurrent field observations and further assessed against the SOD-
model that was implemented by Gokul et al. (2019) for detecting and
mapping the Red Sea HABs. Our results suggested that the SVD model
has a better agreement with the available in-situ datasets, in comparison
to the SOD-model. We showed that the SVD-model can separate the
desired phytoplankton signal from the spectral distributions of different
PFTs and produce spatial maps of mixed-species HAB assemblages. We
also acknowledge the SVD model’s limitations of falsely detecting
Trichodesmium blooms in the shallow coastal waters of the Red Sea,
where high bottom reflections and non-algal substances could mimic
the reflectance pattern of these blooms. The SVD algorithm’s capacity at
detecting and mapping multi-species HABs is currently limited to the
Red Sea basin. Consequently, future efforts could focus on including
additional training datasets to enhance the model’s ability to detect and
monitor these events in other oceans. The SVD model could be further
retrained using other multi-spectral satellite sensors such as Sentinel-3
(at a 300 m spatial resolution), to scrutinize its adaptability as a remote
sensing tool to investigate mixed-species HAB events at a higher spatial
resolution. The SVD model’s versatility in utilizing available satellite
remote sensing data makes it suitable for mapping the spatiotemporal

distributions of species-specific HABs in the Red Sea. Such information
will assist policymakers in implementing integrated management
strategies for predicting, mitigating, controlling, and preventing
HABs to ensure the economic sustainability of the Red Sea coastal zone.
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