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Estimation of chlorophyll (CHL) using ocean colour remote sensing (OCRS) signals in
coastal waters is difficult due to the presence of two other constituents altering the
light signal: coloured dissolved organic material (CDOM) and mineral suspended
sediments (MSS). Artificial neural networks (NNs) have the capacity to deal with signal
complexity and are a potential solution to the problem. Here NNs are developed to
operate on two datasets replicating MODIS Aqua bands simulated using Hydrolight
5.2. Artificial noise is added to the simulated signal to improve realism. Both datasets
use the same ranges of in water constituent concentrations, and differ by the type of
logarithmic concentration distributions. The first uses a Gaussian distribution to
simulate samples from natural water conditions. The second uses a flat distribution
and is intended to allow exploration of the impact of undersampling extremes at both
high and low concentrations in the Gaussian distribution. The impact of the
concentration distribution structure is assessed and no benefits were found by
switching to a flat distribution. The normal distribution performs better because it
reduces the number of low concentration samples that are relatively difficult to
resolve against varying concentrations of other constituents. In this simulated
environment NNs have the capacity to estimate CHL with outstanding
performance compared to real in situ algorithms, except for low values when
other constituents dominate the light signal in coastal waters. CDOM and MSS
can also be predicted with very high accuracies using NNs. It is found that
simultaneous retrieval of all three constituents using multitask learning (MTL)
does not provide any advantage over single parameter retrievals. Finally it is
found that increasing the number of wavebands generally improves NN
performance, though there appear to be diminishing returns beyond ~8 bands. It
is also shown that a smaller number of carefully selected bands performs better than
a uniformly distributed band set of the same size. These results provide useful insight
into future performance for NNs using hyperspectral satellite sensors and highlight
specific wavebands benefits.
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1 Introduction

Retrieving concentrations of the three main water constituents, Chlorophyll (CHL),
coloured dissolved organic material (CDOM) and Mineral Suspended Sediments (MSS) in
coastal areas from remote sensing is a challenging task due to the complex interactions between
these constituents and the associated light signal. Accurate estimations of these constituents is
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critical to understand interactions between physics, biology and
human impacts in coastal waters. It is known that retrieval of CHL
has potential to be overestimated by up to several orders of magnitude
(Darecki and Stramski, 2004) using inappropriate algorithms in
coastal waters. CDOM absorbs light in the visible with a decreasing
exponential relationship from ultraviolet to infrared (Bricaud et al.,
1981). It impacts the light signal used to retrieve CHL in coastal waters
and leads to failure of CHL algorithms (Darecki and Stramski, 2004;
Pitarch et al., 2016). MSS is relatively easy to estimate with good
confidence from remote sensing algorithms (Nechad et al., 2010; Neil
et al., 2011). However, high sediment concentrations impact the
atmospheric correction process that converts the signal measured
by a satellite spectroradiometer at the top of atmosphere into a water
leaving remote sensing reflectance (Rrs0+) which most algorithms rely
on. It is therefore crucial to be able to make accurate estimations of
these three parameters based on remote sensing signals in coastal
waters, and to be able to do so under conditions where each
constituent varies freely from the other two.

Multi layered perceptrons (McCulloch andPitts, 1943; Hebb, 1949;
Rosenblatt, 1958; Rumelhart et al., 1985; Rumelhart et al., 1986), here
referred as neural networks (NNs), have in the past shown capacity to
deal with complexity of the light signal in coastal conditions and
allowed good retrieval of different parameters (Doerffer and Schiller,
1994; Buckton et al., 1999; Gross et al., 1999) and are potential
candidates to advance from semi-analytical or empirical algorithms
currently in use in complex waters (e.g., OC5, Gohin et al., 2002).
Their potential benefit stems from ability to assimilate complex input
information and independently establish statistically optimal
relationships returning similar or higher performances than
existing algorithms. However, NNs typically require substantial
datasets to support training and limited availability of clear sky
matchups between in situ and remotely sensed data is a limiting
factor on the development of NNs. To date most NN algorithms
remain regional with limited application to global scale or under
represented conditions. With access to radiative transfer models such
as Hydrolight 5.2, we can simulate remote sensing light fields for a
wide variety of optical constituent combinations and create artificial
data to test different hypothesis, thereby overcoming data availability
issues and generating an opportunity to establish the real limits of NN
development for coastal water remote sensing.

Hydrolight requires knowledge of inherent optical properties
(IOPs, absorption, attenuation and backscattering) to be able to
simulate light spectra leaving the ocean surface. In this case we
need to be able to relate IOPs to constituent concentrations using a
bio-optical model operating on material-specific IOPs (SIOPs).
Relatively few complete sets of SIOPs have been presented in the
literature. The dataset presented by Bengil et al. (2016) for optically
complex waters in the Ligurian Sea, comprising both Case 1 and
Case 2 water types (Morel and Prieur, 1977), provides the SIOPs
needed to support rigorous exploration of the optical variability
associated by freely varying CHL, CDOM and MSS concentrations.
By being able to simulate surface remote sensing reflectance signals
for a wide range of constituent combinations, we can test several
hypotheses related to neural network development. Efforts are
made to incorporate realistic estimates of measurement noise in
both light and optical constituent concentrations in order to better
simulate real world conditions. Hydrolight simulations of
hyperspectral Rrs were used to produce the 13 MODIS Aqua
bands available up to 869 nm and used for most parts of this

study, as well as being used to study the potential of hyperspectral
data for future ocean colour missions e.g. the Plankton, Aerosol,
Cloud, ocean Ecosystem (PACE, Gorman et al., 2019).

The first hypothesis (H1) to be tested is that NNs will be able to
provide accurate estimates of all three optical constituents across a
wide range of constituent concentration combinations. This
hypothesis sets the control group, and if a specific method
improves performance, it has to outperform this hypothesis
setup. This is an apparently simple test, but has to be considered
within the context of the limits of real world data sampling. The
distribution of data sampled in natural waters typically follows log
normal distributions, reflecting a tendency to under-sample extreme
scenarios of very high and very low concentrations of any given
constituent (SeaBASS matchup dataset, Seegers et al., 2018). NNs
require more data than empirical methods to learn robustly, especially
if the signal contains complex non-linear interactions and is
dependent on other factors, which are numerous in ocean colour
(sun angle, temporal window used, resolution etc.). The reduced
amount of data at both low and high ends of the data distribution
is expected to negatively impact NN development when applied to
such ranges in coastal waters (Hadjal et al., 2022). The second
hypothesis (H2) is that training with an evenly distributed ‘flat’
data distribution will produce higher quality performance over the
range of variability than is possible from a log-normal data
distribution. If found to be true, this would point to potential
benefits of directing future in situ sampling effort to more carefully
attempt to cover the full range of optical variability found in coastal
waters.

Schiller and Doerffer (1994) were the first to mention the use of
NNs to solve the inverse problem in ocean color (1994). Gross et al.
(1999); Schiller and Doerffer (1999) both proposed NNs to make
estimates of CHL using Rrs as an input in respectively Case 1 and Case
2 waters condition; Buckton et al. (1999) proposed to test the impact of
instrumental noise on the performances achieved by a NN on
300 simulated matchups. Hypothesis H1 consists of testing a
combination of these three different studies with a simulated
radiative transfer matchup dataset and actual knowledge of realistic
uncertainties for the MODIS Aqua sensor. NN showed promising
results when applied to real coastal data (D’Alimonte and Zibordi,
2003) and returned coherent structures for wide scale images (Jamet
et al., 2005). A NN algorithm specific to the MERIS sensor wavebands
was later developed (Doerffer and Schiller, 1994). Recently, similar
work has been conducted for Sentinel–3 sensors by Brockmann et al.
(2016). Hieronimyi et al. (2017) trained NNs optimized for 13 distinct
water classes. Similar applications to retrieve CHL over lakes has been
conducted with the use of NNs (Pahlevan et al., 2020; Xue et al., 2021;
Cao et al., 2022), NNs have also successfully retrieved other variables,
such as the spectral diffuse attenuation, Kd, in both open and coastal
waters (Jamet et al., 2012); inherent optical properties (Ioannou et al.,
2013); photosynthetically available radiation (Schiller, 2006) or
multiple variables at the same time (Schroeder et al., 2007; Fan
et al., 2021).

Despite great results achieved by NNs, the operational products in
use by the ocean color community still rely on empirical or semi
analytical algorithms to estimate chlorophyll (O’Reilly et al., 1998;
Gohin et al., 2002; Lavigne et al., 2021). One of the limitations of NNs
is the potential to overfit signals by remembering the training
examples rather than establishing robust relationships between
inputs and the target. This type of artefact is at least partly due to
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limited numbers of data available from ocean colour matchup datasets
with only several thousand examples for the biggest datasets in the
literature, while a single MODIS Aqua image can contain multiple
millions of 1 km2 pixels. Multiple techniques exist to avoid overfitting
issues, including multi-task learning (MTL). MTL occurs when NNs
are trained to produce multiple related targets at the same time, with
the main objective being to improve their performance, robustness
and reduce overfitting problems (see Ruder, 2017 for a recent overview
of different techniques available). Optical signals sampled in coastal
waters are a good candidate to evaluate MLT as all three constituents
contribute to the light signal. Tanaka et al. (2004) and Pahlevan et al.
(2022) proposed to simultaneously retrieve CHL, CDOM and MSS
based on NNs trained with modelled data. The third hypothesis (H3)
is that simultaneous retrieval of all three constituents using MTL will
perform better than individual retrievals by helping to constrain NN
construction.

To date the majority of ocean colour NN development has been
done in the context of data from multispectral sensors. A number of
hyperspectral radiometers onboard satellites have been launched in
the past including EO-1 and PROBA-1 (2001), with others added as an
additional sensor to the ISS (International Space Station), including
HICO the hyperspectral imager for the coastal ocean in 2009 (Corson
et al., 2008) and HISUI the Hyperspectral Imager Suite in 2020
(Iwasaki et al., 2011). This development has continued with the
launches of PRISMA (PRecursore IperSpettrale della Missione
Applicativa, Loizzo et al., 2018) in 2019 and EnMap
(Environmental Mapping and Analysis Program, Guanter et al.,
2015) in 2020. There is a clear trend towards future ocean colour
missions being equipped with hyperspectral sensors. However,
increased spectral resolution is a technical challenge that is usually
achieved by compromise with other mission parameters. For example,
all of the sensors mentioned above have high spatial resolution
(30–100 m) which comes with the side effect of a reduced temporal
resolution (usually an image of the full Earth every 16 days) and signal
to noise ratios are usually lower than for multispectral systems,
reducing their effectiveness for deep ocean observations. These
factors greatly reduce their impact for global scale algorithm
development even though they provide access to much higher
spectral information content and explains the absence to date of
publicly available hyperspectral remote sensing matchup datasets.
A further limiting factor stems from the challenge of accurate
atmospheric correction for hyperspectral sensors (Ibrahim et al.,
2018). The first sensor fulfilling global scale and time overpass
requirements, PACE is planned to be launched in the near future
by NASA.

Providing a neural network with additional relevant information
should typically lead to improved performance, so it is reasonable to
expect that NNs operating on hyperspectral data should perform
better than those operating on multispectral data. Radiative transfer
simulations can be performed with hyperspectral resolution that can
be subsequently re-sampled at multispectral resolution, in this case
corresponding to the wavebands used by MODIS. There is, of course,
the potential for hyperspectral data to contain an element of
information redundancy as there is likely to be some degree of
correlation between adjacent or nearby spectral bands. By
resampling the hyperspectral reflectance data produced by
simulations we can test a fourth hypothesis (H4) that NNs
operating on hyperspectral data will perform better than those
operating on multi-spectral data. At the moment and until such

time as there has been opportunity to collect sufficient volumes of
matchup datasets for PACE, the only way to test the hypothesis that
NNs will benefit from availability of hyperspectral data is with the use
of modelled data.

2 Materials and methods

2.1 Hydrolight radiative transfer simulations

All remote sensing reflectance data used in this study were
generated using Ecolight 5.2, part of the Hydrolight 5.2 software
package(Sequoia Scientific Ltd). EcoLight 5.2 was used for the
creation of the simulated above surface remote sensing
reflectance (Rrs0+) spectra rather than Hydrolight mainly due
to the processing time involved in creation of such extensive
datasets: 10,000 constituent combinations for the dataset with a
normal or flat distrubiton, which gives 20,000 independent
combinations in total. Each of the 20,000 combinations of CHL,
CDOM and MSS are unique and the constituents vary freely from
each other (randomly selected). Comparison of light spectra with
the more accurate model Hydrolight was not conducted here but is
expected to be very similar (Lefering et al., 2016) and satisfies
requirements for this study.

Simulations were set up with a uniform water column, a solar
zenith angle of 0°, zero cloud cover, wind speed 9 m s−1, a refractive
index of 1.34, water temperature of 20°C and salinity of 35 PSU.
Note that the surface reflectance product reported here does not
include sun glint effects (Lw/Es). The light signal was saved every
5 nm from 390 nm to 895 nm. 13 MODIS Aqua wavebands from
the visible and infrared spectrum were simulated by averaging the
hyperspectral signal using their full wavebands width provided by
NASA (https://modis.gsfc.nasa.gov/about/specifications.php, last
access 26th of March 2022) at 412, 443, 469, 488, 531, 547, 555,
645, 667, 678, 748, 859, 869 nm. Two datasets of
10,000 hyperspectral light spectra each were created. A bespoke
Matlab script was used to generate IOPs using constituent data
distributions and a bio-optical model described below, with data
being presented to Hydrolight in the form of simulated AC and BB
instrument files.

2.1.1 Constituent data distributions
Two constituent concentration data distributions were generated

in order to test the hypothesis that evenly distributed training data
would lead to NNs that outperform those trained with log-normal
training datasets (H2). CHL, CDOM and MSS constituents were
created following two different approaches. Both approaches use a
random distribution of values for all three variables and return two
datasets of 10,000 values each. The first dataset uses a log-normal (LN)
distribution and crosses several orders of magnitude with limits
summarized in Table 1 for each variable. These kinds of
distributions are commonly found in reports of sampling
campaigns from natural waters (e.g; Babin et al., 2003; Pahlevan
et al., 2022) and can be observed in Figure 1 (a, b and c). The
second dataset was created using a log-flat (LF) distribution,
applying the same logarithmically spaced intervals as LN, shown in
Figure 1 (d, e and f). While medians between the normal and flat
distributions remain the same, there are significant difference in the
mean values for each distribution type.
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2.1.2 Bio-optical model used
In order to simulate reflectance spectra for different combinations

of optical constituents, the radiative transfer simulation requires
selection of a bio-optical model to allow prediction of IOPs from
constituent concentrations. Bengil et al. (2016) presented a bio-optical
model for the Ligurian Sea that was adopted here. Full details are
provided in Bengil et al. (2016) and are briefly summarized here. CHL,
CDOM and MSS samples and IOP profiles were collected during a
cruise campaign in the Ligurian Sea from 13 to 26 March 2009 off the
northwest coast of Italy on board NR/V Alliance. Absorption and
attenuation profiles were collected with a 25 cm pathlength AC-9
(WetLabs Inc.) operating at nine wavebands (10 nm FWHM) centred
on 412, 440, 488, 510, 532, 555, 650, 676 and 715 nm. The AC-9 was
calibrated using ultrapure water (Milli-Q, Millipore) before and
during the cruise, with corrections applied for the temperature and
salinity dependence of pure seawater. Absorption data were corrected
for scattering errors using the proportional correction method
(Zaneveld et al., 1994) Backscattering profiles were collected using
a WETLabs BB9 operating at nine wavebands centred on 412, 440,

488, 510, 532, 595, 650, 676 and 715 nm. Backscattering data were
interpolated to AC-9 wavelengths and measurements were corrected
according to the BB-9manual (WETLabs Inc, 2013). See Lefering et al.
(2016) for more details. The absorption of all dissolved and suspended
components minus water was measured using a Point Source
Integrating Cavity Absorption Meter (PSICAM; Röttgers and
Doerffer, 2007; Röttgers et al., 2005). A 1 m liquid waveguide
capillary cell (LWCC) with an Ocean Optics USB2000 mini-
spectrometer was used to measure absorption by CDOM. total
particulate absorption was also measured using the quantitative
filter pad method (Ferrari and Tassan, 1999). Samples were placed
directly in front of the optical windows of a Shimadzu UV-2501PC
spectrophotometer. Absorption by phytoplankton was determined by
bleaching samples, measuring the absorption of non-algal particles,
and subtracting this from total particulate absorption. Path length
amplification factors and scattering offset corrections were
determined using a linear regression approach (McKee et al., 2014;
Lefering et al., 2016) and corresponding PSICAM particulate
absorption data. The resulting filter pad corrections were

TABLE 1 In situ constituent concentration ranges.

Variable Range from in situ samples Range used for model creation Units

Chlorophyll a 0.29–3.31 0.01–100 mg.m-3

CDOM 0.021–0.11 0.01–1 m-1

MSS 0.13–3.7 0.1–100 g.m-3

FIGURE 1
Histogram of each constituent concentration used for application of the radiative transfer model. First row shows the log normal distribution of (A) CHL,
(B) CDOM and (C) MSS respectively. The second row shows the log flat distributions for (D) CHL, (E) CDOM and (F) MSS respectively.
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subsequently applied to both bleached and unbleached filter pad
absorption spectra.

Chlorophyll concentration was measured using standard HPLC
measurements on samples filtered through GF/F filters, stored in
liquid nitrogen and transported to laboratories for later analysis.
CHL data presented here were collected by colleagues from
Management Unit of the North Sea Mathematical Models
(MUMM). Triplicate HPLC samples were analyzed by the Marine
Chemistry Laboratory of the MUMM using a reversed phase,
acetone-based method with a C18 column and a Jasco FP-1520
fluorescence detector. Total suspended solids concentrations (TSS)
were obtained by colleagues from MUMM by filtering samples
through pre-ashed, rinsed and pre-weighed 47 mm GF/F filters.
Samples were rinsed with several aliquots of ultrapure water,
taking care to rinse the edge of the filter to minimize salt
retention. Filters were stored frozen and returned to the lab
where they were dried and reweighed. All samples were measured
in triplicate and final values expressed as averages. TSS in
northeastern stations was numerically decomposed into organic
(OSS) and mineral (MSS) components using the technique
outlined in Bengil et al. (2016).

34 stations were available after quality control (Figure 2). Stations
were partitioned into onshore and offshore sub sets, with deep clear
case 1 waters in the southwestern part and shallower clear to turbid
case 2 waters in the northeastern part. Figure 2 shows that the
northeastern, onshore area is partly influenced by the Arno River
plume and generally shows higher sediment concentrations near the
coast. The offshore data set was in deep, relatively clear water which
fitted the Case 1 definition and therefore did not contain significant
MSS. This was used to determine CHL-specific IOPs. These CHL-
specific IOPs were then used to help partition onshore IOPs which did
contain MSS as well as CHL in the particulate fraction, enabling
derivation of mineral specific SIOPs (again, for absorption, scattering
and backscattering). Absorption by CDOM was directly measured in

both sectors. Further details of this approach are found in Lo Prejato
et al. (2020).

SIOP spectra were generated from IOP measurements spanning
the visible range (400–715 nm). In order to fully represent the range of
wavebands provided by MODIS, SIOP spectra were extended out to
895 nm by linear extrapolation. Figure 3 shows the final set of SIOP
spectra used to form the bio-optical model used for Ecolight
simulations. Figure 4 shows remote sensing reflectance spectra
obtained from Ecolight simulations using both LN and LF
constituent distributions. These reflectance spectra together with
their associated input constituent concentrations form the basis for
training and testing NNs in this paper.

2.1.3 Simulation of radiometric noise and constituent
measurement uncertainty

Simulated data from model outputs are essentially error-free and
not impacted by noise compared to real Earth Observation data. In
reality, measurement uncertainties will impact both remote sensing
reflectance signals and measurements of constituent concentrations,
both of which go into training and testing of NNs. In order to better
simulate real world conditions, artificial noise was added to both the
Rrs and constituent data prior to NN training. This is not related to
the development of neural networks to help them make more
realistic estimates if applied to real radiometric data, but an
attempt at being as close as possible to real conditions using a
simulated dataset.

Mélin et al. (2016) evaluated noise impacting the MODIS Aqua
sensor data and found a wavelength dependent relationship, with
shorter wavelengths returning higher measurement uncertainties.
Figure 5 shows the error estimates for 5 MODIS Aqua bands
following their work. Note that these estimates are for random
noise only, and are based on analysis of 1 km spatial resolution
bands which typically will have lower noise than the 500 m and
250 m spatial resolution bands, some of which have been used in

FIGURE 2
Repartition of the 34 in situ stations (displayed as white stars) where light and constituent concentrations were collected during the Ligurian cruise
campaign in March 2009 displayed onto the true colour Landsat 5 image of the 8th of March, 2009.
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our NNs. Here we have interpolated theMélin et al. (2016) results using a
power law relationship to provide estimated measurement uncertainties
for Rrs on a hyperspectral basis. These values provide the standard
deviation of measurement uncertainty for each wavelength, with noise
being assigned to each wavelength of simulated Rrs using a random
normal distribution operating on these predicted standard deviations.

Constituent concentration measurements collected during
fieldwork campaigns are sensitive to errors for several reasons,
including errors related to the water sample filtration, sensor
calibration, method specific or human errors, etc. Estimates of
systematic uncertainties related to CHL sampling range from +/-10%
(Claustre et al., 2004) to ±80% standard deviation (Sørensen et al., 2007;
Tilstone et al., 2012), depending on the method used for sampling and
the degree of quality control applied. We have used these systematic
error ranges as a guide to define random errors due to limited
information in the literature on random errors for CHL samples.
There is even less information available in the literature for estimates
of uncertainty in MSS measurements, so we have assumed that errors
will be similar to those found for CHL as both techniques operate on
filtered samples. For CDOM, Dall’Olmo et al. (2017) respectively found
absorption measurements accuracy and precision of 0.0004 m−1 and
0.0025 m−1 when compared with independent data at 440 nm. For
consistency Gaussian random errors were applied to CHL and MSS
following a standard deviation of 20% and were assumed to be
proportional to the concentration. Uncertainties for CDOM were
determined using random normal distributions with a standard
deviation of 0.0025 m−1. We applied noise to the model constituent
outputs to better represent realistic datasets.

2.2 Neural network development

For this study, feed forward neural networks with
backpropagation of the error until convergence was reached were
developed using Matlab’s train function. An architecture of three
hidden layers and N neurons in each layer was selected for each

FIGURE 4
Rrs spectra for (A) log normal (LN) and (B) log flat (LF) constituent distributions. Only 200 random spectra of the 10,000 combinations are displayed for
each distribution.

FIGURE 3
SIOP spectra used in radiative transfer simulations: (A) specific absorption
spectra, (B) specific scattering spectra, and (C)backscattering spectra. PHstands
for Phytoplankton, BD for Biogenic Detritus, MSS for Mineral Suspended
Sediments.
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networks, with N being the number of inputs. For example, N was set
to 13 when NNs were created using the 13 MODIS Aqua-like bands
available with both datasets. Selecting three hidden layers is
sufficient to avoid under fitting issues and is computationally
efficient. The Rectified Linear Unit activation function was
selected and the error was evaluated using the MSE error
function. Light and constituents concentrations were log
transformed and then normalised between 0 and 1 prior to
training, following Dransfeld et al. (2006). The train set
represented 70% of available data, and validation and test sets

15% each, all randomly selected for each training. For the last
results section when hyperspectral NN were developed, the
number of neurons per layer was selected to be the number of
bands available for each experiment. Figure 6 shows a schematic
diagram of a NN. It contains four inputs, two hidden layers of four
neurons each (following the number of inputs as mentioned above),
and can make estimations of all three constituents at the same time,
CHL, CDOM and MSS as used in multi-task learning. When a single
constituent is estimated, the output layer contains only one node
associated with the desired constituent.

NN performance will be evaluated with the Mean Absolute Error
(MAE) using the Seegers et al. (2018) formula, which is a MAE applied
to log transformed values to the model and observation parameters
prior to application as shown in Eq. 1 below. For example, a MAE of
1.3 represents a relative measurement error of 30%.

MAE � 10^
∑n

i�1 Mi−Oi| |
N( )

(1)
R � ∑ Mi − �M( ) Oi − �O( )��������������������∑ Mi − �M( )2∑ Oi − �O( )2√ (2)

The purpose of neural network development is to provide sufficient
training data to allow the NN to establish robust statistical relationships
that enable accurate prediction of the target parameter from potentially
complex input data. The training part of the dataset is used to train the
network, the validation part is used to stop the network training when it
stops improving (when the magnitude of the gradient descent reaches a
value below 10–7), and the test part is used to evaluate the performance
of the resulting NN. Figure 7 shows data for training, validation and test
datasets for CHL prediction using the LN distributed dataset without
inclusion of input noise. All three datasets show very similar
performances, and the same observation was made during the
analysis of results section. This suggests that the NNs are not
overfitting. To avoid showing similarly repetitive diagrams in the
results section, only the independent test set results will be shown
going forward.

FIGURE 6
Neural network diagram as used for multi-task learning. Hidden layers always contain a number of neurons equal to the number of inputs. The output layer
returns a single constituent at a time when MLT is not used.b0, b1 etc, represent the bias unit. The Rrs and constituents are log transformed prior to training.

FIGURE 5
MODIS Aqua spectral random error (Estimated from Figure 3A in
Melin et al., 2016) and its hyperspectral interpolation.
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3 Results

3.1 NN retrieval of constituents in optically
complex waters (H1)

The first set of experiments is designed to test the hypothesis thatNNs
should be able to accurately retrieve individual constituent concentrations
(CHL, CDOM and MSS) across the broad range of optical water
conditions found in coastal waters (H1) with this modelled dataset.
Therefore for this section, NN were trained to produce a single
constituent at a time. Figure 8 (a, b and c) shows performance
obtained for the test sets for each constituent concentration, for the

LN dataset, without addition of noise. All three constituents can be
predicted with very high performances under these idealized conditions,
with MAE vales close to one and more than 99% of data falling within a
factor of two of the 1:1 line. Adding realistic estimates of random noise to
both the reflectance and constituent datasets has a significant impact on
NN performance. Figure 9 (a, b and c) shows that retrieval of CHL,
CDOMandMSS is still largely successful, but there is a noticeable increase
in the spread of data for each parameter, with MAEs reaching as high as
1.25 for CHL, though more than 96% of data still falls within a factor of
two of the 1:1 line.

These results clearly demonstrate that NNs have the capacity to
overcome the optical complexity of coastal waters with freely varying

FIGURE 7
Neural network results estimating CHL based on the 13 MODIS Q23 Aqua bands, using the log normal distribution of data without addition of noise.
(A) training, (B) validation, and (C) test data sets.

FIGURE 8
Neural network results obtained using a log normal (top row) or log flat (bottom row) distribution of data without addition of noise (rawmodel output) for:
(A,D) CHL, (B,E) CDOM, and (C,F) MSS.
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constituent concentration combinations. This is perhaps unsurprising
in the case of noise-free data, but it is reassuring to see that inclusion of
noise in the system does not irreparably impair performance. We can
therefore conclude that hypothesis 1 (H1) is demonstrated to be
correct as was previously observed in the literature with other
datasets (Buckton et al., 1999; Schiller and Doerffer, 1994; Tanaka
et al., 2004; Ioannou et al., 2013 for example). The NN developed for
this hypothesis can reach close to perfect estimates due to the absence
of noise and the controlled environment of Hydrolight similarly to
results achieved by Schiller and Doerffer, 1999, with the difference
being that low concentrations are slightly harder to estimate.

3.2 Impact of data distribution on NN
performance (H2)

The results presented in section 3.1 were produced using the
log-normal (LN) datasets where the distribution of data has been
organized to broadly replicate datasets found in the literature. In
this section we test the hypothesis (H2) that NN performance will
improve if the training dataset is more evenly distributed to better
capture extreme events at both high and low concentrations. First,
when trained on their respective perfect datasets, the normal and
flat distribution both produce good estimates (Figure 8), where
panels d, e and f show NN performance using the log-flat (LF) data
distribution. NN performance for the LF dataset is generally
slightly worse than for the LN dataset, with MAEs increasing
very slightly for CDOM and MSS, but more markedly for CHL
(MAE = 1.11). It is noticeable the greatest deterioration in
performance appears to be for low CHL values. This is slightly

surprising as part of the interest in testing the LF distribution was
specifically to address the question of less commonly occurring
scenarios at the extremes of the concentration ranges. It may be the
case that although the LF training dataset has increased the
proportion of low concentration training data, there is an
intrinsic problem in trying to estimate very low concentrations
of CHL in the presence of potentially high concentrations of other
constituents. This could simply be attributable to the CHL making
an insignificant contribution to the optical signals under these
circumstances.

Figure 9 (d, e and f) shows the impact of incorporating noise into
the LF NNs. As found previously with the LN dataset, introduction of
realistic measurement uncertainties negatively impacts NN
performance for all three constituents, with CHL more strongly
affected than CDOM and MSS. In the latter cases although MAEs
increase to 1.13 and 1.2, approximately 99% of points still fall within a
factor of 2 of the 1:1 line. In contrast, performance of the CHL NN
deteriorates significantly with a MAE of 1.49 and the fraction of points
falling within a factor of 2 of the 1:1 line dropping to 83%. CHL
performance is again most notably affected for low concentrations
where it would appear that introduction of measurement uncertainties
has made it even harder to resolve the small contribution of CHL to
the optical signals. This level of CHL retrieval is close to the levels
found with real in situ observations (Hadjal et al., 2022; Pahlevan et al.,
2022). Retrieval of CDOM and MSS is fairly robust under all of the
circumstances tested here. This is unsurprising in the case of MSS
which has previously been robustly determined using even single red
wavebands (Nechad et al., 2010; Neil et al., 2011).

The idea behind the creation of a LF NN is to evaluate if it can
outperform a LN NN at estimating data where it is problematic, near

FIGURE 9
Neural network results obtained using a log normal (top row) or log flat (bottom row) distribution of data with addition of noise for: (A,D) CHL,
(B,E) CDOM, and (C,F) MSS.
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the edges of distributions where the amount of training data is limited.
To further evaluate this hypothesis, we apply a cross validation test,
where the LN NN is applied to the flat dataset, and the LF NN is
applied to the normal dataset. For this specific test, the input data were
normalised using the entire dataset to avoid obvious normalisation
bias during the training session which would lead to failure in both
cases. The results are displayed in Figure 10. Panels a to c present the
results from the application of the LN NN to the flat dataset, while
panels d to f present the results from application of the LF NN to the
normal dataset. Both NN return poorer performances on the opposite
dataset compared to the original NN. The LN NN (Figures 10A–C)
shows reduced MAE net performances for all constituents. Similarly,
the LF NN (Figures 10D–F) shows net reduced MAEs of for CHL but
very close to what the LN NN produce for CDOM and MSS. The LF
NN performs better on a flat distribution (Figure 9) and is much less
impacted than a LNNN. This is mostly due to the training session that
included more extreme values, easier to predict than a NN that did not
have access to it previously.

The results presented in Figure 8, Figure 9 and Figure 10 refute
the hypothesis (H2) that a more evenly distributed dataset will tend
to improve NN performance. It seems that the NN trained with a LF
distributed dataset is more resilient and produce better results at
both edges of the dataset, yet performances are still lower than a NN
trained with this specific type of distribution. Nonetheless, across the
full range of variability of the three constituents there is no evidence
to suggest that the LF dataset is producing superior performance.
Thus it seems unlikely that either subsampling existing datasets to
artificially produce log-flat distributions or targeting sampling effort
to achieve it in future will lead to any improvement in performance.

3.3 Multitask learning: Simultaneous
estimation of CHL, CDOM and MSS (H3)

Multitask learning (MTL) is a type of machine learning method
(Caruana, 1997) that tries to improve neural networks generalization
capabilities performance by compelling networks to learn how to
estimate multiple, potentially correlated variables simultaneously.
There are multiple reports of successful applications from different
fields in the literature (Collobert and Weston, 2008; Deng et al., 2013;
Girshick, 2015; Ramsundar et al., 2015). In order to test the potential
benefits of MTL one needs to have access to a set of data containing
both the reflectance signals and all three optically significant
constituent concentrations. Additionally the dataset needs to be
sufficiently large and representative to be suitable for NN training.
Unfortunately there are relatively few publicly available in situ datasets
where all of these parameters are simultaneously recorded. Here,
because we use modelled datasets based on user-defined ranges of
constituent concentrations and a complete set of SIOPs, we have
sufficient flexibility to produce a dataset that can be used to test the
hypothesis that MTL will improve determination of constituent
concentrations using NNs (H3).

The NNs developed in this section estimate all three constituent
concentrations (CHL, CDOM and MSS) simultaneously in the output
layer as shown in Figure 6; Figure 11 displays the performance reached
for each variable for both the LN and LF distributions, with noise
included in both cases. MTL performance levels are broadly
comparable with single parameter retrievals (Figure 9) in all cases.
There is no evidence to suggest thatMTL has improved retrieval of any
of the constituents and in the case of CDOM there is even some

FIGURE 10
(A–C)Neural network results obtained for each constituent estimates by applying the log normal neural network (LNNN) algorithm trained in Figure 9 to
the log flat distributed dataset (top row). (D–F) Log flat neural network applied to the log normally distributed dataset.
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degradation in performance compared to single parameter retrieval.
Whilst we cannot rule out the possibility thatMTLmay have benefits if
used with more complex NN architectures or with real world data, at
this point we can only draw the conclusion that there is currently no
evidence to support the hypothesis (H3) that MTL will improve NN
retrieval of CHL, CDOM and MSS.

3.4 Comparison of hyperspectral vs.
multispectral NN performance (H4)

The final experiment presented in this study concerns evaluation
of the potential for hyperspectral reflectance data to significantly
improve the performance of NNs over existing multispectral
capabilities (H4). The work presented in previous sections was
conducted using 13 wavebands that were selected to mimic
MODIS signals. The Ecolight simulations produced a total of
102 wavebands. Using all available wavebands would be
computationally expensive and there is good reason to believe that
such an approach would be superfluous due to information
redundancy between adjacent bands. Instead we systematically
explore the impact of increasing the number of bands available for
the network. In order to be methodical, bands were selected using even
spacing. For example, when two bands were used, bands 33 and 66
(550 and 715 nm respectively) were selected among the 102 available.
When three bands were used, bands 25, 50 and 75 were selected. This
approach does not attempt to optimize performance by selecting the
best performing bands for each subset, but rather treats the data in a
systematic manner operating on an assumption that each band has
similar information value. Here between 1 and 20 wavebands were

selected and resulting NNs were tested for both the LN and LF
datasets, with noise included in all cases. Each NN is composed of
three layers with the number of neurons per layer being equal to the
number of wavebands used, and separate NNs being developed for
each constituent (no MTL).

Figure 12 shows the MAE obtained for 10 neural networks trained
with 1–20 bands evenly spaced from the full hyperspectral signal. To
improve consistency for each band combination, an ensemble
approach was used (Hadjal et al., 2022). The ensemble consists of
10 neural networks that were created for each band combination. The
output of each set of 10 networks is averaged (median value for each
estimates based on the 10 values available). The 10 networks of each
architecture are all independent and trained with a different initial
randomization and different training datasets. The results are shown
for the entire dataset, not the test set only as it was conducted for
previous figures. The light grey area that englobes the dashed or solid
lines represent the median ± 1 standard deviation (std) of the
10 networks for each band combination. There is an obviously
higher std when small numbers of bands are used due to the
potential increased presence of failure to reach convergence during
the NN training. It does not affect the median, which is why it was
selected over the mean. The MODIS Aqua examples are shown as an
horizontal line ± 1 std.

As expected, there is a clear improvement of NN performance with
increasing waveband availability and increased dimensions of the
networks. Improvements are most significant for small numbers of
wavebands and then in most cases a region of much slower
improvement is reached once approximately 7–10 bands are used.
In all cases the MODIS Aqua NNs outperform evenly-spaced
algorithms with equivalent spectral regions suggesting that careful

FIGURE 11
Results obtained for estimating CHL, CDOM andMSS at the same time using a neural network (3 layers of 13 neurons each) and using the 13 MODIS Aqua
bands as inputs for (A–C) log normal and (D–F) log flat distributions.
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selection of specific wavebands may be slightly beneficial compared to
evenly spaced wavebands. Further testing of 25–50 evenly spaced
wavebands (not shown) provided little further improvement in NN
performance (MAE is 5% lower). The same test using 61 hyperspectral
bands (the real number of information carried by the 13 MODIS
Aqua-like bands) returned similar performances as the MODIS Aqua
NN (MAE of 1.5) but took more computational time to train (up to
10 times longer). To separate the H4 performance changes attributed
to the number of input bands from increasing dimension of the
networks, the aforementioned band combinations were also tested

on a fixed network architecture. Reproducing the method with a fixed
size NN (3 layers of 13 neurons) for each number of band combination
rather than using the number of inputs as the number of neurons per
layer also returned broadly the same performances, with the main
difference being slightly better estimates when one to 5 bands are used
due to higher number of neurons available, which can lead to
overfitting issues. These results generally refute the hypothesis (H4)
that ever greater spectral resolution will improve retrieval of CHL,
CDOM and MSS in optically complex coastal waters. This may reflect
the fact that the optical properties of the water constituents vary slowly

FIGURE 12
Modelled absolute retrieval errors for (A) CHL, (B) CDOM, and (C) MSS for varying numbers of wavebands and different data distribution structures (log
normal and log flat). Plain and dashed line: median ofmean absolute error obtained for 10 neural networks using the specified number of bands used to create
an evenly-spaced algorithm. Grey areas represent the median ± standard deviation. The green and red crosses represent performance obtained for the 13
band MODIS Aqua NN shown in Figure 8 along with associated standard deviations.
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with wavelength and associated reflectance spectra offer only limited
spectral information content. There are still goodmotivations for access to
further resolved spectral resolution in future, which may help deal with
pigment specific algae.While we cannot demonstrate it due to the absence
of real data, there is also scope for improving performances for light
signals contaminated by other sources such as glint, haze, land adjacency
effects, etc. due to their impact over different parts of the light spectrum
hyperspectral sensors will have access to.

Table 2 summarises the different metrics obtained for each test.
The percentage of data between the 1:2 and 2:1 line was not processed
for the hyperspectral experiments.

4 Discussion

The potential for NNs to provide improved quality ocean colour
products for optically complex coastal waters has been demonstrated for
many years (Buckton et al. (1999); Doerffer and Schiller, 1994; Buckton
et al. (1999); Gross et al., 1999). The advent of hyperspectral ocean colour
sensors with genuine global spatio-temporal capabilities and the
availability of affordable computational resources provides growing
impetus to further explore this potential. However limited data
availability for training and testing NNs is a serious impediment to
development of this approach. Here we have developed realistic radiative
transfer simulations in order to generate training datasets that span the
range of constituent concentrations needed to test NN performance
across the range of variability encountered in coastal waters. This
modelling approach has allowed us to test a number of fundamental
hypotheses relating to development of NN algorithms for coastal ocean
colour applications. Of course it should be noted that our bio-optical
model is restricted through selection of SIOPs generated from a single

region and does not include variability associated with optically distinct
algal functional types.

When applied to the simulated data used in this study, neural
networks have shown capacity to accurately retrieve CHL, CDOM and
MSS when all three constituents are free to vary independently from one
another over concentration ranges spanning several orders of magnitude
(H1). NN performance is affected by inclusion of realistic measurement
uncertainties, but the fundamental conclusion remains the same that
relatively small NN architectures are capable of handling the levels of
optical complexity encountered in coastal and shelf seas. These results are
broadly consistent with recently presented research by Pahlevan et al.
(2022) who have demonstrated ability to retrieve all three constituents
using Mixture Density Networks. The simulated datasets presented here
could usefully be used to test approaches of this nature and othermachine
learning algorithms. Whilst NN return almost perfect results with noise-
free simulations, their performance appears to be strongly linked to the
uncertainty in the in situ training data.With 20% (StdDev) noise added to
both CHL andMSS but not to the light signal (not shown),MAEs close to
1.2 were reached. With application of noise to both constituents and Rrs
signals (Figure 9) the MAE achieved reach 1.5 for CHL retrievals with the
MODIS Aqua like NN, which shows over and under estimates at low
concentrations. Whilst the error on the light signal impacts the
constituents retrieval in the same way, the noise addition to CDOM
measurements consists of a net value, which may explain why the
estimates are closer to the model value (MAE of 1.2 on average). The
performance of NN estimates is directly linked with in situ constituents
data quality and is probably the main limiting factor here. Except for the
low values of CHL, CDOM and MSS, NN have shown the capacity to
make excellent estimates of the constituents.

Various strategies to improve NN performance have been developed
over awide number of researchfields.One of themore commonly discussed

TABLE 2 Statistical performances of the different experiments. The size of the neural network architecture used is displayed (3 × 13 means three layers of 13 neurons
each).

CHL CDOM MSS

N MAE R %<2/1 & >1:2 MAE R %<2/1 & >1:2 MAE R %<2/1 & >1:2

Hypothesis 1: Group control

LN dataset (3 × 13) 1,500 1.02 1 99.93 1.01 1 100 1 1 100

LF dataset (3 × 13) 1,500 1.11 1 99 1.04 1 100 1.01 1 100

Hypothesis 2: Impact of data distribution

LN dataset (3 × 13) 1,500 1.52 0.92 80.53 1.19 0.94 97.4 1.05 1 99.47

LF dataset (3 × 13) 1,500 1.95 0.93 63.73 1.36 0.94 89.73 1.16 0.99 95.73

LN NN applied to flat dataset (3 × 13) 10,000 2.21 0.9 63.87 1.49 0.89 81.6 1.2 0.99 93.76

LF NN applied to flat dataset (3 × 13) 10,000 1.83 0.9 66.37 1.25 0.93 95.2 1.07 1 99.44

Hypothesis 3: Multitask learning

LN dataset (3 × 13) 1,500 1.47 0.92 82.8 1.22 0.93 97.53 1.06 1 99.8

LF dataset (3 × 13) 1,500 1.94 0.93 65.67 1.43 0.93 85.53 1.19 0.99 95.6

Hypothesis 4: Hyperspectral

LF dataset 1,500

5 bands (3 × 5) 2.90 0.81 1.84 0.75 1.25 0.98

10 bands (3 × 10) 2.35 0.86 1.54 0.86 1.19 0.99

15 bands (3 × 15) 2.10 0.89 1.43 0.90 1.16 0.99

LN dataset 1,500

5 bands (3 × 5) 1.94 0.85 1.46 0.81 1.08 0.99

10 bands (3 × 10) 1.78 0.89 1.34 0.89 1.07 0.99

15 bands (3 × 15) 1.65 0.91 1.28 0.93 1.06 0.99
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approaches is multitask learning (MTL) which is immediately of interest in
ocean colour remote sensing in coastal waters as the reflectance signals is
inherently dependent on more than one optical constituent. The ability to
determine constituent concentration ranges used in radiative transfer
simulations provides an opportunity to systematically test the potential
merit ofMTL. In this case we have clear evidence that simultaneous retrieval
of all three optical constituents does not improve upon single parameter
retrievals and in fact may slightly reduce overall performance (H2,
Figure 11). For a pure performance approach, MTL should not be
considered, at least with simulated data. However, MTL is also being
used to help generalisation of neural networks in other fields, but this
hypothesis was not testable here because we rely on simulated coastal data.

One of the most common perceptions of NNs (and other machine
learning approaches) is supposed limitation to the training dataset
provided. Whilst there is indeed an element of truth to this, it should
also be recognized that if a training dataset is genuinely representative
of prevailing circumstances then there is good scope for a NN to be
able to provide general predictive power for that system. Many of the
criticisms based on training set limitations are similarly true for
empirical and semi-analytical algorithms. In all cases datasets for
algorithm development are subject to the vagaries of in situ sampling
effort and impact of cloud cover on matchup realization. The NN
approach discussed in this paper was first developed using an in situ
dataset to predict CHL (Hadjal et al., 2022). One of the concerns
identified in that work was the log-normal nature of the data
distribution in the assembled training dataset, with concern that
both high and low concentration scenarios were under-
represented. The simulation approach developed here has allowed
us to compare results from datasets with both log-normal and log-flat
constituent distributions. Somewhat surprisingly, there does not
appear to be any benefit to having a more evenly spaced training
dataset and in fact the performance of CHL retrieval was of lower
quality for the flat dataset at low concentrations. It seems likely that
there is a fundamental limit on accurate retrieval of any constituent
when its contribution to the reflectance signal becomes sufficiently
insignificant. There is naturally interest in trying to retrieve CHL
concentrations at very low concentrations such as are found in
oligotrophic offshore waters (Signorini et al., 2015). However, in
the case of optically complex coastal water it may be much more
difficult or even impossible to achieve the same level of CHL retrieval
at low concentrations due to the confounding influence of CDOM and
MSS which would typically either be absent or found at very low
concentrations in case 1 waters. That said, these results are helpful in
so much as they illustrate that the normal distributions, which are
similar to those generally obtained from large field campaigns, are
capable of producing high quality results across the full range of
concentrations for each constituent, and there is no obvious merit in
trying to further manipulate them to manage over- or under-
representation across the dataset.

Development of the hyperspectral PACE mission has brought
renewed interest in establishing the potential for hyperspectral remote
sensing to improve the quality of ocean colour products for optically
complex coastal waters. This is particularly relevant for NNs and other
data-hungry machine learning approaches that have potential to exploit
additional information content to improve product quality. Here we have
tested the hypothesis that NNs trained on simulated hyperspectral
reflectance data will produce better quality estimates of CHL, CDOM
and MSS than is possible with multispectral data (H4). Results presented
in Figure 11 suggest that there is in fact a practical limit to NN

performance and that there is little further improvement in algorithm
performance with higher numbers of wavebands. For this modelled
dataset, the NNs do not produce better results as soon as the visible
and NIR signal has been split into approximately 10 evenly spaced
regions. It should be noted that these results were obtained using
evenly spaced hyperspectral wavebands and that there is clearly scope
for further optimization by careful selection of specific combinations of
wavebands which is an option with hyperspectral data. Indeed, in all cases
NNs operating on the MODIS Aqua waveband set outperformed evenly
spaced hyperspectral data, illustrating the potential benefit of carefully
selected waveband subsets. Nonetheless, these results strongly suggest that
simply increasing spectral resolution will not of itself improve
determination of CHL, CDOM and MSS in coastal waters. However,
there may be many other benefits to use of hyperspectral data such as
identification of specific spectral features associated with e.g.
cyanobacterial blooms. The main improvement from a remote sensing
point of view could in fact come from the capacity of these neural network
algorithms to deal with natural sources of signal contamination (e.g. sun
glint, thin clouds, etc.). The NN method recently developed by Hadjal
et al. (2022) using TOA signals to retrieve CHL directly could benefit from
inclusion of additional bands providing information on sources of signal
disruption. For good quality Rrs data, expectations for significant
improvement in product quality across the board would be misplaced.
Additional factors such as signal to noise ratio, atmospheric correction
performance and quality of spatio-temporal matching will significantly
impact product performance as well.

Data availability Statement

The original contributions presented in the study are publicly
available. This data can be found here: https://doi.org/10.15129/
8d279184-3e7d-4d29-9a75-c6b52948937b.

Author contributions

All authors were responsible for developing the methodology,
visualisation and formal analysis.

Funding

This work was supported by an UKRI Natural Environment
Research Council award (NE/S003517/1) to DM and by award of a
joint MASTS/Datalab PhD studentship to MH.

Acknowledgments

We are grateful to Marilisa Lo Prejato for providing IOP datasets and
Dr Ina Kostakis for providing Matlab scripts to process Hydrolight data.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Remote Sensing frontiersin.org14

Hadjal et al. 10.3389/frsen.2023.973944

https://doi.org/10.15129/8d279184-3e7d-4d29-9a75-c6b52948937b
https://doi.org/10.15129/8d279184-3e7d-4d29-9a75-c6b52948937b
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.973944


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A., Obolensky, G., et al.
(2003). Variations in the light absorption coefficients of phytoplankton, nonalgal particles,
and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. Oceans 108
(C7), 3211. doi:10.1029/2001jc000882

Bengil, F., McKee, D., Beşiktepe, S. T., Calzado, V. S., and Trees, C. (2016). A bio-optical
model for integration into ecosystem models for the Ligurian Sea. Prog. Oceanogr. 149,
1–15. doi:10.1016/j.pocean.2016.10.007

Bricaud, A., Morel, A., and Prieur, L. (1981). Absorption by dissolved organic matter of
the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr. 26 (1), 43–53.
doi:10.4319/lo.1981.26.1.0043

Brockmann, C., Doerffer, R., Peters, M., Stelzer, K., Embacher, S., and Ruescas, A. (2016).
“Evolution of the C2RCC neural network for sentinel 2 and 3 for the retrieval of ocean colour
products in normal and extreme optically complex waters,” in Proc. ‘Living Planet Symposium
2016’, Prague, Czech Republic, 9–13 May, 2016 (ESA SP-740, August 2016).

Buckton, D., O’mongain, E. O. N., and Danaher, S. (1999). The use of neural networks
for the estimation of oceanic constituents based on the MERIS instrument. Int. J. Remote
Sens. 20 (9), 1841–1851. doi:10.1080/014311699212515

Cao, Z., Ma, R., Pahlevan, N., Liu, M., Melack, J. M., Duan, H., et al. (2022). Evaluating
and optimizing VIIRS retrievals of chlorophyll-a and suspended particulate matter in
turbid lakes using a machine learning approach. IEEE Trans. Geoscience Remote Sens. 60,
1–17. doi:10.1109/tgrs.2022.3220529

Caruana, R. (1997). Multitask learning. Mach. Learn. 28 (1), 41–75. doi:10.1023/a:
1007379606734

Claustre, H., Hooker, S. B., Van Heukelem, L., Berthon, J. F., Barlow, R., Ras, J., et al.
(2004). An intercomparison of HPLC phytoplankton pigment methods using in situ
samples: Application to remote sensing and database activities. Mar. Chem. 85 (1-2),
41–61. doi:10.1016/j.marchem.2003.09.002

Collobert, R., and Weston, J. (2008). “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceedings of the 25th
international conference on Machine learning (USA: ACM).

Corson, M. R., Korwan, D. R., Lucke, R. L., Snyder, W. A., and Davis, C. O. (2008). “The
hyperspectral imager for the coastal ocean (HICO) on the international space station,” in
IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium,
Boston, MA, USA, 07-11 July 2008 (IEEE), IV–101.

D’Alimonte, D., and Zibordi, G. (2003). Phytoplankton determination in an optically
complex coastal region using a multilayer perceptron neural network. IEEE Trans.
Geoscience Remote Sens. 41 (12), 2861–2868. doi:10.1109/tgrs.2003.817682

Dall’Olmo, G., Brewin, R. J., Nencioli, F., Organelli, E., Lefering, I., McKee, D., et al. (2017).
Determination of the absorption coefficient of chromophoric dissolved organic matter from
underway spectrophotometry. Opt. Express 25 (24), A1079–A1095. doi:10.1364/oe.25.0a1079

Darecki, M., and Stramski, D. (2004). An evaluation of MODIS and SeaWiFS bio-optical
algorithms in the Baltic Sea. Remote Sens. Environ. 89 (3), 326–350. doi:10.1016/j.rse.2003.
10.012

Deng, L., Hinton, G., and Kingsbury, B. (2013). “New types of deep neural network
learning for speech recognition and related applications: An overview,” in 2013 IEEE
international conference on acoustics, speech and signal processing, Vancouver, BC,
Canada, 26-31 May 2013 (IEEE), 8599–8603.

Doerffer, R., and Schiller, H. (1994). “Inverse modeling for retrieval of ocean color
parameters in case II coastal waters: An analysis of the minimum error,” in Ocean Optics
(SPIE), 887–893.

Dransfeld, S., Tatnall, A. R., Robinson, I. S., and Mobley, C. D. (2006). Neural network
training: Using untransformed or log-transformed training data for the inversion of ocean
colour spectra? Int. J. Remote Sens. 27 (10), 2011–2016. doi:10.1080/01431160500245658

Fan, Y., Li, W., Chen, N., Ahn, J.-H., Park, Y.-J., Kratzer, S., et al. (2021). OC-SMART: A
machine learning based data analysis platform for satellite ocean color sensors. Remote
Sens. Environ. 253, 112236. doi:10.1016/j.rse.2020.112236

Ferrari, G. M., and Tassan, S. (1999). Amethod using chemical oxidation to remove light
absorption by phytoplankton pigments. J. Phycol. 35 (5), 1090–1098. doi:10.1046/j.1529-
8817.1999.3551090.x

Girshick, R. (2015). “Fast r-cnn,” in Proceedings of the IEEE international conference on
computer vision, Santiago, Chile, 07-13 December 2015 (IEEE), 1440–1448.

Gohin, F., Druon, J. N., and Lampert, L. (2002). A five channel chlorophyll
concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal
waters. Int. J. Remote Sens. 23 (8), 1639–1661. doi:10.1080/01431160110071879

Gorman, E. T., Kubalak, D. A., Patel, D., Mott, D. B., Meister, G., and Werdell, P. J.
(2019). “The NASA Plankton, Aerosol, cloud, ocean Ecosystem (PACE) mission: An

emerging era of global, hyperspectral earth system remote sensing,” in Proc. SPIE 11151,
sensors, systems, and next-generation satellites XXIII, 111510G (10 October 2019). doi:10.
1117/12.2537146

Gross, L., Thiria, S., and Frouin, R. (1999). Applying artificial neural network
methodology to ocean color remote sensing. Ecol. Model. 120 (2-3), 237–246. doi:10.
1016/s0304-3800(99)00105-2

Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S., et al. (2015).
The EnMAP spaceborne imaging spectroscopy mission for Earth observation. Remote
Sens. 7 (7), 8830–8857. doi:10.3390/rs70708830

Hadjal, M., Medina-Lopez, E., Ren, J., Gallego, A., and McKee, D. (2022). An artificial
neural network algorithm to retrieve chlorophyll a for northwest European shelf seas from
top of atmosphere Ocean Colour reflectance. Remote Sens. 14 (14), 3353. doi:10.3390/
rs14143353

Hebb, D. O. (1949). The organization of behavior; a neuropsychological theory. Wiley

Hieronymi, M., Müller, D., and Doerffer, R. (2017). The OLCI neural network swarm
(ONNS): A bio-geo-optical algorithm for open ocean and coastal waters. Front. Mar. Sci. 4,
140. doi:10.3389/fmars.2017.00140

Ibrahim, A., Franz, B., Ahmad, Z., Healy, R., Knobelspiesse, K., Gao, B. C., et al. (2018).
Atmospheric correction for hyperspectral ocean color retrieval with application to the
Hyperspectral Imager for the Coastal Ocean (HICO). Remote Sens. Environ. 204, 60–75.
doi:10.1016/j.rse.2017.10.041

Ioannou, I., Gilerson, A., Gross, B., Moshary, F., and Ahmed, S. (2013). Deriving ocean
color products using neural networks. Remote Sens. Environ. 134, 78–91. doi:10.1016/j.rse.
2013.02.015

Iwasaki, A., Ohgi, N., Tanii, J., Kawashima, T., and Inada, H. (2011). “Hyperspectral
Imager Suite (HISUI)-Japanese hyper-multi spectral radiometer,” in 2011 IEEE
International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada,
24-29 July 2011 (IEEE), 1025–1028.

Jamet, C., Loisel, H., and Dessailly, D. (2012). Retrieval of the spectral diffuse attenuation
coefficientKd(λ) in open and coastal ocean waters using a neural network inversion.
J. Geophys. Res. Oceans 117 (C10), 8076. doi:10.1029/2012jc008076

Jamet, C., Thiria, S., Moulin, C., and Crepon, M. (2005). Use of a neurovariational
inversion for retrieving oceanic and atmospheric constituents from ocean color imagery: A
feasibility study. J. Atmos. Ocean. Technol. 22, 460–475. doi:10.1175/jtech1688.1

Lavigne, H., Van der Zande, D., Ruddick, K., Dos Santos, J. C., Gohin, F., Brotas, V., et al.
(2021). Quality-control tests for OC4, OC5 and NIR-red satellite chlorophyll-a algorithms
applied to coastal waters. Remote Sens. Environ. 255, 112237. doi:10.1016/j.rse.2020.
112237

Lefering, I., Bengil, F., Trees, C., Röttgers, R., Bowers, D., Nimmo-Smith, A., et al. (2016).
Optical closure in marine waters from in situ inherent optical property measurements.
Opt. Express 24 (13), 14036–14052. doi:10.1364/oe.24.014036

Lo Prejato, M., McKee, D., and Mitchell, C. (2020). Inherent optical properties-
reflectance relationships revisited. J. Geophys. Res. Oceans 125 (11), e2020JC016661.
doi:10.1029/2020JC016661

Loizzo, R., Guarini, R., Longo, F., Scopa, T., Formaro, R., Facchinetti, C., et al. (2018).
“Prisma: The Italian hyperspectral mission,” in IGARSS 2018-2018 IEEE International
Geoscience and Remote Sensing Symposium, Valencia, Spain, 22-27 July 2018 (IEEE),
175–178.

McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bull. Math. Biophysics 5 (4), 115–133. doi:10.1007/bf02478259

McKee, D., Röttgers, R., Neukermans, G., Calzado, V. S., Trees, C., Ampolo-Rella, M.,
et al. (2014). Impact of measurement uncertainties on determination of chlorophyll-
specific absorption coefficient for marine phytoplankton. J. Geophys. Res. Oceans 119 (12),
9013–9025. doi:10.1002/2014jc009909

Mélin, F., Sclep, G., Jackson, T., and Sathyendranath, S. (2016). Uncertainty estimates of
remote sensing reflectance derived from comparison of ocean color satellite data sets.
Remote Sens. Environ. 177, 107–124. doi:10.1016/j.rse.2016.02.014

Morel, A., and Prieur, L. (1977). Analysis of variations in ocean color 1. Limnol.
Oceanogr. 22 (4), 709–722. doi:10.4319/lo.1977.22.4.0709

Nechad, B., Ruddick, K. G., and Park, Y. (2010). Calibration and validation of a generic
multisensor algorithm for mapping of total suspended matter in turbid waters. Remote
Sens. Environ. 114 (4), 854–866. doi:10.1016/j.rse.2009.11.022

Neil, C., Cunningham, A., and McKee, D. (2011). Relationships between
suspended mineral concentrations and red-waveband reflectances in moderately
turbid shelf seas. Remote Sens. Environ. 115 (12), 3719–3730. doi:10.1016/j.rse.2011.
09.010

Frontiers in Remote Sensing frontiersin.org15

Hadjal et al. 10.3389/frsen.2023.973944

https://doi.org/10.1029/2001jc000882
https://doi.org/10.1016/j.pocean.2016.10.007
https://doi.org/10.4319/lo.1981.26.1.0043
https://doi.org/10.1080/014311699212515
https://doi.org/10.1109/tgrs.2022.3220529
https://doi.org/10.1023/a:1007379606734
https://doi.org/10.1023/a:1007379606734
https://doi.org/10.1016/j.marchem.2003.09.002
https://doi.org/10.1109/tgrs.2003.817682
https://doi.org/10.1364/oe.25.0a1079
https://doi.org/10.1016/j.rse.2003.10.012
https://doi.org/10.1016/j.rse.2003.10.012
https://doi.org/10.1080/01431160500245658
https://doi.org/10.1016/j.rse.2020.112236
https://doi.org/10.1046/j.1529-8817.1999.3551090.x
https://doi.org/10.1046/j.1529-8817.1999.3551090.x
https://doi.org/10.1080/01431160110071879
https://doi.org/10.1117/12.2537146
https://doi.org/10.1117/12.2537146
https://doi.org/10.1016/s0304-3800(99)00105-2
https://doi.org/10.1016/s0304-3800(99)00105-2
https://doi.org/10.3390/rs70708830
https://doi.org/10.3390/rs14143353
https://doi.org/10.3390/rs14143353
https://doi.org/10.3389/fmars.2017.00140
https://doi.org/10.1016/j.rse.2017.10.041
https://doi.org/10.1016/j.rse.2013.02.015
https://doi.org/10.1016/j.rse.2013.02.015
https://doi.org/10.1029/2012jc008076
https://doi.org/10.1175/jtech1688.1
https://doi.org/10.1016/j.rse.2020.112237
https://doi.org/10.1016/j.rse.2020.112237
https://doi.org/10.1364/oe.24.014036
https://doi.org/10.1029/2020JC016661
https://doi.org/10.1007/bf02478259
https://doi.org/10.1002/2014jc009909
https://doi.org/10.1016/j.rse.2016.02.014
https://doi.org/10.4319/lo.1977.22.4.0709
https://doi.org/10.1016/j.rse.2009.11.022
https://doi.org/10.1016/j.rse.2011.09.010
https://doi.org/10.1016/j.rse.2011.09.010
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.973944


O’Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A.,
et al. (1998). Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Oceans 103
(C11), 24937–24953. doi:10.1029/98jc02160

Pahlevan, N., Smith, B., Alikas, K., Anstee, J., Barbosa, C., Binding, C., et al. (2022).
Simultaneous retrieval of selected optical water quality indicators from Landsat-8,
Sentinel-2, and Sentinel-3. Remote Sens. Environ. 270, 112860. doi:10.1016/j.rse.2021.
112860

Pahlevan, N., Smith, B., Schalles, J., Binding, C., Cao, Z., Ma, R., et al. (2020). Seamless
retrievals of chlorophyll-a from sentinel-2 (msi) and sentinel-3 (olci) in inland and coastal
waters: A machine-learning approach. Remote Sens. Environ. 240, 111604. doi:10.1016/j.
rse.2019.111604

Pitarch, J., Volpe, G., Colella, S., Krasemann, H., and Santoleri, R. (2016).
Remote sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to 2012 using
merged multi-sensor data. Ocean Sci. 12 (2), 379–389. doi:10.5194/os-12-379-2016

Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D., and Pande, V. (2015).
Massively multitask networks for drug discovery. arXiv preprint arXiv:1502.02072.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65 (6), 386–408. doi:10.1037/h0042519

Röttgers, R., and Doerffer, R. (2007). Measurements of optical absorption by
chromophoric dissolved organic matter using a point-source integrating-cavity
absorption meter. Limnol. Oceanogr. Methods 5 (5), 126–135. doi:10.4319/lom.2007.5.126

Röttgers, R., Schönfeld, W., Kipp, P. R., and Doerffer, R. (2005). Practical test of a point-
source integrating cavity absorption meter: The performance of different collector
assemblies. Appl. Opt. 44 (26), 5549–5560. doi:10.1364/ao.44.005549

Ruder, S. (2017). An overview of multi-task learning in deep neural networks. arXiv
preprint arXiv:1706.05098.

Rumelhart, D. E., Hinton, G. E., andMcClelland, J. L. (1986). A general framework for parallel
distributed processing. Parallel distributed Process. Explor. Microstruct. Cognition 1 (45-76), 26.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). “Learning internal
representations by error propagation,” in California univ san diego La jolla inst for
cognitive science (Cambridge, MA, United States: MIT Press).

Schiller, H., and Doerffer, R. (1999). Neural network for emulation of an inverse model
operational derivation of Case II water properties fromMERIS data. Int. J. Remote Sens. 20
(9), 1735–1746. doi:10.1080/014311699212443

Schiller, H., and Doerffer, R. (1994). “Neuronal network for simulation of an inverse
model,” in Talk given at the Bio-optics Meeting of the SeaWiFS Science Team (IEEE).

Schiller, K. (2006). Derivation of photosynthetically available radiation from
METEOSAT data in the German bight with neural nets. Ocean Dyn. 56, 79–85.
doi:10.1007/s10236-006-0058-1

Schroeder, T., Schaale, M., and Fischer, J. (2007). Retrieval of atmospheric and oceanic
properties from MERIS measurements: A new case-2 water processor for beam. Int.
J. Remote Sens. 28, 5627–5632. doi:10.1080/01431160701601774

Seegers, B. N., Stumpf, R. P., Schaeffer, B. A., Loftin, K. A., and Werdell, P. J. (2018).
Performance metrics for the assessment of satellite data products: an Ocean color case
study. Opt. Express 26 (6), 7404–7422. doi:10.1364/oe.26.007404

Signorini, S. R., Franz, B. A., and McClain, C. R. (2015). Chlorophyll variability in the
oligotrophic gyres: Mechanisms, seasonality and trends. Front. Mar. Sci. 2, 1. doi:10.3389/
fmars.2015.00001

Sørensen, K., Grung, M., and Röttgers, R. (2007). An intercomparison of in vitro
chlorophyll a determinations for MERIS level 2 data validation. Int. J. Remote Sens. 28 (3-
4), 537–554. doi:10.1080/01431160600815533

Tanaka, A., Kishino, M., Doerffer, R., Schiller, H., Oishi, T., and Kubota, T. (2004).
Development of a neural network algorithm for retrieving concentrations of chlorophyll,
suspended matter and yellow substance from radiance data of the ocean color and
temperature scanner. J. Oceanogr. 60 (3), 519–530. doi:10.1023/b:joce.0000038345.99050.c0

Tilstone, G. H., Peters, S. W., van der Woerd, H. J., Eleveld, M. A., Ruddick, K.,
Schönfeld, W., et al. (2012). Variability in specific-absorption properties and their use in a
semi-analytical ocean colour algorithm for MERIS in North Sea and Western English
Channel Coastal Waters. Remote Sens. Environ. 118, 320–338. doi:10.1016/j.rse.2011.
11.019

WET Labs Inc (2013). Scattering meter, ECO BB-9. Philomath, Oregon: User’s Guide”
Revision L.

Xue, Y., Zhu, L., Zou, B., Wen, Y. M., Long, Y. H., and Zhou, S. L. (2021). Research on
inversion mechanism of chlorophyll—A concentration in water bodies using a
convolutional neural network model. Water 13 (5), 664. doi:10.3390/w13050664

Zaneveld, J. R. V., Kitchen, J. C., and Moore, C. C. (1994). “Scattering error correction of
reflection-tube absorption meters,” in Proc. SPIE 2258, Ocean Optics XII (26 October
1994). doi:10.1117/12.190095

Frontiers in Remote Sensing frontiersin.org16

Hadjal et al. 10.3389/frsen.2023.973944

https://doi.org/10.1029/98jc02160
https://doi.org/10.1016/j.rse.2021.112860
https://doi.org/10.1016/j.rse.2021.112860
https://doi.org/10.1016/j.rse.2019.111604
https://doi.org/10.1016/j.rse.2019.111604
https://doi.org/10.5194/os-12-379-2016
https://doi.org/10.1037/h0042519
https://doi.org/10.4319/lom.2007.5.126
https://doi.org/10.1364/ao.44.005549
https://doi.org/10.1080/014311699212443
https://doi.org/10.1007/s10236-006-0058-1
https://doi.org/10.1080/01431160701601774
https://doi.org/10.1364/oe.26.007404
https://doi.org/10.3389/fmars.2015.00001
https://doi.org/10.3389/fmars.2015.00001
https://doi.org/10.1080/01431160600815533
https://doi.org/10.1023/b:joce.0000038345.99050.c0
https://doi.org/10.1016/j.rse.2011.11.019
https://doi.org/10.1016/j.rse.2011.11.019
https://doi.org/10.3390/w13050664
https://doi.org/10.1117/12.190095
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.973944

	Neural networks to retrieve in water constituents applied to radiative transfer models simulating coastal water conditions
	1 Introduction
	2 Materials and methods
	2.1 Hydrolight radiative transfer simulations
	2.1.1 Constituent data distributions
	2.1.2 Bio-optical model used
	2.1.3 Simulation of radiometric noise and constituent measurement uncertainty

	2.2 Neural network development

	3 Results
	3.1 NN retrieval of constituents in optically complex waters (H1)
	3.2 Impact of data distribution on NN performance (H2)
	3.3 Multitask learning: Simultaneous estimation of CHL, CDOM and MSS (H3)
	3.4 Comparison of hyperspectral vs. multispectral NN performance (H4)

	4 Discussion
	Data availability Statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


