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Soil moisture maps provide quantitative information that, along with climate and
energy balance, is critical to integrate with hydrologic processes for
characterizing landscape conditions. However, soil moisture maps are difficult
to produce for natural landscapes because of vegetation cover and complex
topography. Satellite-based L-band microwave sensors are commonly used to
develop spatial soil moisture data products, but most existing L-band satellites
provide only coarse scale (one to tens of kilometers grid size), information that is
unsuitable for measuring soil moisture variation at hillslope or watershed-scales.
L-band sensors are typically deployed on satellite platforms and aircraft but have
been too large to deploy on small uncrewed aircraft systems (UAS). There is a
need for greater spatial resolution and development of effective measures of soil
moisture across a variety of natural vegetation types. To address these challenges,
a novel UAS-based L-band radiometer system was evaluated that has recently
been tested in agricultural settings. In this study, L-band UASwas used tomap soil
moisture at 3–50-m (m) resolution in a 13 square kilometer (km2) mixed
grassland-forested landscape in Sonoma County, California. The results
represent the first application of this technology in a natural landscape with
complex topography and vegetation. The L-band inversion of the radiative
transfer model produced soil moisture maps with an average unbiased root
mean squared error (ubRMSE) of 0.07 m3/m3 and a bias of 0.02 m3/m3. Improved
fine-scale soil moisture maps developed using UAS-based systems may be used
to help inform wildfire risk, improve hydrologic models, streamflow forecasting,
and early detection of landslides.
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1 Introduction

Although a small component of the water budget by volume,
soil moisture is essential for characterizing antecedent
conditions and quantifying water resources for vegetation
survival, reservoir forecasting models, drought risk, and flood
protection. This is because soil moisture is a key state variable
that influences, and is influenced by, water and energy fluxes. It
also influences how rainfall is divided into infiltration, runoff,
recharge, and evapotranspiration (Seneviratne et al., 2010; Ali
et al., 2015). Land and natural resource managers can benefit
from accurate, high spatial and temporal resolution soil
moisture data to inform reservoir operations, agricultural
management, and water resources management. Current soil
moisture data fails to provide measurements with adequate
spatial and temporal resolution for field-to watershed-scale
studies. Point measurements of soil moisture are temporally
resolved, yet spatially sparse and do not typically represent the
surrounding area, especially at resolutions from 10s to 100s of
meters (m) (Vinnikov et al., 1996; Loew, 2008; Crow et al., 2012).
Remotely sensed global soil moisture products are too spatially
coarse for regional and local applications. Consequently, soil
moisture products at a fine resolution are useful for drought and
wildfire risk modeling (Seneviratne et al., 2010; Chaparro et al.,
2016), as well as sustainable agriculture and global food security
(Karthikeyan and Mishra, 2021). An improved representation of
soil moisture dynamics at a fine resolution may also lead to
improved safety from flooding for populations in areas with
major reservoirs (Zhai et al., 2018; Hettiarachchi et al., 2019) and
advance streamflow forecasting skill and water supply reliability
(Wood et al., 2016; Harpold et al., 2017).

Due to the unique dielectric properties of water,
electromagnetic methods like time domain reflectometry
(TDR), ground penetrating radar (GPR), or microwave remote
sensing can all be used to estimate water content based on the
dielectric properties of the target medium (Robinson et al., 2003).
Air and soil have a much lower dielectric constant (1–10) than
water (80); therefore, soil dielectric properties and emissivity are
strongly influenced by water content in soil and vegetation
(Wigneron et al., 2017). Microwave remote sensing is
commonly used to quantify precipitation, snow and ice water
content, and soil moisture. Microwave remote sensing can be
advantageous over other types of remote sensing because it is not
as affected by atmospheric interference nor is it dependent on
incoming solar radiation as optical remote sensing; therefore,
data can be acquired day or night and during cloudy weather
(Hossain and Easson, 2016). Due to the ability to retrieve a signal
below the soil surface (even through moderate-density
vegetation), relatively low interference from radio
communications, and the dielectric properties of water,
L-band (15–30 centimeter (cm) wavelength) radiometer data is
widely accepted as the most commonly used microwave band to
estimate soil moisture (Hossain and Easson, 2016; Mohanty et al.,
2017). L-band is considered a protected band for remote sensing
observations but there can still be interference from
communications. Passive microwave data from satellites are
generally very coarse in resolution (10s of kilometers (km))
but provide data every 1–3 days. In contrast, active microwave

data offer a higher resolution (10s to 100s of m), but typically
provide data every 5–12 days. Active microwave data is often less
accurate compared to passive microwave data due to the
decreased sensitivity of water content, increased sensitivity to
surface roughness, and increased sensitivity to the structural
effects of soil and vegetation that are difficult to correct for.
Applications that require accurate soil moisture data like
hydrologic models, ecosystem models, and predicting and
monitoring extreme hydroclimatic events would benefit from
higher spatial resolution and a frequent temporal time step
(i.e., 30-m resolution, daily).

This study assessed near-surface soil moisture maps from a
novel UAS-mounted passive L-band sensor in a natural oak
woodland landscape using three flights conducted over the course
of 1 year (May 2022 August 2022, and May 2023) to evaluate
seasonal changes in soil moisture. This study presents results from
the first application of this L-band UAS in natural landscapes with
highly variable terrain and complex vegetation types. These results
can be used for future studies investigating the use of UAS L-band in
natural landscapes, including future development of the sensors,
UAS, and calibration parameters. Extensive field sampling was
undertaken to evaluate the L-band derived soil moisture at
multiple scales. The NASA Soil Moisture Active Passive (SMAP)
program target accuracy was 0.04 m3/m3 ubRMSE (unbiased root
mean squared error) for its radar-radiometer product against in situ
data (Colliander et al., 2017), a value that was used in this study as a
benchmark for soil moisture retrieval accuracy.

2 Study area

The Pepperwood Preserve in northern California within
Sonoma County, CA is a 13 km2 nature preserve (Figure 1)
located within the Mayacamas Mountains of California’s inner
Coast Ranges, northeast of the city of Santa Rosa (de Nevers,
2013; Oldfather et al., 2016). The climate at Pepperwood Preserve
typifies a coastal Mediterranean climate with cool, wet winters and
hot dry summers, with coastal influences and occasional fog. The
vegetation consists of interspersed grasslands, shrublands, oak
woodlands, and Douglas fir stands (Pseudostuga menziesii; de
Nevers, 2013). The underlying geology consists of Franciscan
Complex mélange, Cretaceous–Tertiary coastal belt rocks,
Tertiary volcanic flows, Quaternary alluvium and marine
deposits, and ultramafic rocks consisting predominantly of
serpentine (Jennings, 1977). The major soil types from the Soil
Survey Geographic Database (SSURGO, Soil Survey Staff (2024)) are
the Laniger loam on the northeast third, Yorkville Clay loam in the
middle, and a combination of Felta very gravelly loam and rock
outcrop in the southwest third of the preserve. The slope ranges
from 15 to 75 percent across the preserve, and the elevation ranges
from 76 to 476 m with an average of 303 m.

3 Materials and methods

Remote sensing and field measurements of soil moisture were
sampled concurrently to estimate near-surface soil moisture
conditions at Pepperwood Preserve in Sonoma County. Three

Frontiers in Remote Sensing frontiersin.org02

Stern et al. 10.3389/frsen.2024.1337953

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1337953


field campaigns were conducted in 2022 and 2023 to capture
seasonal variations in soil moisture. Field measurements using a
mobile soil moisture sensor were used for validation. Remote
sensing was conducted from a fixed-wing and multirotor UAS to
test a novel passive L-band microwave sensor that collected
brightness temperature data used in a radiative transfer model to
estimate near-surface soil moisture.

3.1 UAS remote sensing

Three flight campaigns were flown to capture the seasonal
climate and soil conditions: in May 2022 when soils were drying
down, in August 2022 when soils were near wilting point, and in
May 2023 when soils were near saturated/field capacity conditions
after an extremely wet season. The first two flights were conducted

FIGURE 1
Pepperwood Preserve study area (black outline), uncrewed aircraft system (UAS) footprints (S2 flight = fixed-wing UAS, E2 flight =multirotor UAS, E2
HR = high resolution flight), streams, and grassland extent. The location of the Pepperwood Preserve is shown as a red outline in the northeast corner of
the Sonoma County polygon in the inset map. Base map from Esri and its licensors, copyright 2024.
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using the S2 (Figure 2A), a fixed-wing UAS developed by Black Swift
Technologies LLC and NASA Goddard Space Flight Center (Dai
et al., 2020), with a wingspan of 3 m and the ability to house different
instruments in the nose cone. Additional specifications and
photographs of the S2 can be found online (https://bst.aero/
black-swift-s2-uas/), and from Dai et al., 2020, and Kim et al.,
2024. For this study, the S2 was equipped with optical, near-infrared,
thermal cameras, and an L-band radiometer. Because it can fly at a
lower altitude and thereby provide more detailed imagery, a
multirotor UAS called the E2 (Figure 2B) was also deployed (see
specifications here: https://bst.aero/black-swift-e2-uas/) using the
same sensors as the S2. The L-band antenna footprint size is
roughly equivalent to the UAS altitude; therefore, the S2 flights
had a lower resolution but larger footprint and the E2 had a higher
resolution and smaller footprint. The first two campaigns were done
using the fixed-wing S2 UAS, and the last flight was undertaken
using the multirotor E2 UAS. The multirotor E2 was flown at two
heights to test a higher resolution soil moisture map over smaller
footprints. The flight time for the S2 was roughly 1 h to cover each of
the six 1,000-m flight boxes. The S2 and E2 flew over each area
twice—first with the optical, near-infrared, and thermal cameras and
second with the L-band radiometer. Each flight day consisted of
multiple individual flights that were later stitched together,
beginning around 10 a.m. and ending at around 2 p.m. to avoid
shadows and temperature swings. Each campaign recorded
13,000 to 30,000 individual images. The fixed-wing S2 requires a
33-m-long and relatively flat grassy area to land, limiting the
coverage of some areas of the preserve due to topography and
forest cover.

Volumetric soil moisture (VSM) was retrieved based on a soil-
vegetation radiative transfer model with vegetation correction and
surface roughness correction. The VSM maps were generated using
a physical linear minimum mean square error (LMMSE) method

that includes surface roughness and vegetation type parameters,
navigation data, physical temperatures, and the LDCR (Lobe
Differencing Correlation Radiometer) radiation pattern and
temperature data (Kim et al., 2024). Surface characteristics like
vegetation, scattering albedo, and soil texture were from the
baseline algorithm used for Soil Moisture Active Passive (SMAP)
and the U.S. Department of Agriculture soil survey map. To correct
for vegetation, the Normalized Difference Vegetation Index (NDVI)
was estimated using the red and near-infrared bands from the
multispectral Altum sensor (MicaSense Inc., Seattle,
Washington). A tau-omega model was used to quantify the
vegetation contribution (from the NDVI measurements) to
brightness temperature. The NDVI is commonly used to quantify
the health and density of green vegetation, and was calculated using
the red optical band (red) and the near-infrared band (NIR) and
Equation 1:

NDVI � NIR-red
NIR + red

[ ] (1)

NDVI values range from 0 to 1, indicating low to high greenness.
The surface physical temperature from the Altum sensor was used to
compare with radiometer measurements to determine the soil
emissivity and dielectric properties. Surface roughness and
scattering albedo parameters were from empirically derived
values for different vegetation types from the SMAP
Algorithm Theoretical Basis Document (O’Neill et al., 2018).
Additional details about the LMMSE equations, radiative
transfer model, and associated assumptions are available from
Kim et al. (2024) and Dai et al. (2020). The algorithms used to
calculate VSM from the L-band radiometer data were initially
developed and tested in agricultural fields. For simplicity, the
methods described in this section are referred to here in as the
radiative transfer model.

FIGURE 2
(A) Fixed-wing S2 uncrewed aerial system (UAS) and (B) multirotor E2 UAS. Images provided by Black Swift Technologies and taken near Crested
Butte, CO.
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3.2 Field-collected soil moisture
validation data

During the same week as the UAS flights, field measurements
consisting of core samples and mobile TDR (Time Domain
Reflectometry) measurements were collected. For the first two
flights, 50-millimeter (mm) soil core samples were collected in
triplicate and compared to mobile TDR measurements (referred
to as TDR measurements herein). Volumetric soil moisture (VSM)
was calculated using the gravimetric method for each core sample
using Equation 2:

VSM cm3cm-3( ) � sample wetmass g( )– sample drymass g( )( )x 1/ρw
sample volume cm3( )

(2)
where ρw = the density of water, which is equal to 1 gram per cubic
centimeter (g/cm3).

The Campbell Scientific CD659 HydroSense TDR instrument
has two 12-cm stainless steel rods that are manually inserted
vertically into the soil surface. For the first campaign in May
2022, 344 TDR measurements were collected during the week.
The second flight in August 2022 consisted of 165 TDR
measurements. The third flight in May 2023 resulted in a total of
419 TDR measurements. The TDR probes represent average soil
moisture conditions of roughly 12 cm of soil, whereas the soil cores
represent the top 10 cm of soil. The L-band data represent the top
2–10 cm of soil, depending on moisture content in the soil and
vegetation density. Therefore, the TDR and core measurements
should be more representative of the remote sensing depths
during the summer when water content in the soil is lowest and
the L-band penetration depth is the deepest.

Statistics were calculated to quantify the error between predicted
maps of soil moisture andmeasured soil moisture at validation point
locations. To provide a robust estimate of error the coefficient of
determination (R2), mean percent error, mean error (bias), root
mean squared error (RMSE), and unbiased RMSE were calculated
against field TDR measurements.

4 Results

By May 2022, Pepperwood Preserve had experienced several
years of below average precipitation, and prolonged drought
conditions meant that the soils started out drier than usual and
dried out faster as spring turned into summer. August 2022 followed
one of the driest periods on record at Pepperwood Preserve with
only 711 mm (28 inches) of precipitation in the preceding water
year, compared to the average annual precipitation of 934 mm
(37 inches). California often experiences weather whiplash
conditions from dry to deluge, and after several dry years, the
winter of water year 2023 was one of the wettest on record.
Seven atmospheric rivers provided 1,092 mm (43 inches) of
precipitation over the winter season (PRISM Climate Group,
Oregon State University, https://prism.oregonstate.edu). As a
result, even though remote sensing and field data were only
collected three times over one calendar year, anomalously wet
and dry conditions were represented during this study (Figure

3A). Remote sensing data generated from this study are available
at Stern et al. (2024).

The average soil moisture conditions across all measurements
were 0.13 m3/m3 inMay 2022 (Table 1). The average soil moisture in
August 2022 was only 0.06 m3/m3. May 2023 was much wetter
overall, with average soil moisture around 0.25 m3/m3. To validate
the mobile TDR measurements, core samples were used to evaluate
the accuracy of the mobile TDR measurements. The TDR
measurements accurately reflected soil moisture conditions as
calculated through core samples, underestimating VSM on
average by 0.03 m3/m3 with an ubRMSE of 0.02 m3/m3

(Supplementary Table S1).
In August 2022, the grasslands trending in a northwest-

southeast direction showed up as bright orange, indicating a low
NDVI, in contrast with the green (high NDVI) oak woodlands and
closed canopy Douglas fir stands (Figure 3B). The north-facing
slopes and highly forested areas show up as green to dark green, and
May 2022 had a higher NDVI than August 2022. The thermal data in
Figure 3C show that the preserve was warmest in August 2022 and
coolest in May 2023, with some warmer areas in May 2022 and
cooler areas on north-facing slopes and forested areas.

The passive L-band radiometer sensor picks up naturally
emitted radiation in the 1.4 gigahertz (GHz) wavelength and
results in a map of brightness temperature. The brightness
temperature is highly dependent on soil and vegetation water
content, and to a lesser extent temperature and surface roughness
(Wigneron et al., 2017). Higher L-band brightness temperatures
generally correlate to drier conditions, but spatial and temporal
variations in brightness temperature can occur depending on
diurnal and seasonal temperature fluctuations. Some temperature
artifacts can be seen in the thermal data (May 2022 and August 2022,
center flight box; Figure 3C) at the edge of individual footprints. This
is due to the timing of multiple flights where one flight footprint in
the morning is next to a footprint that was flown later in the day
when temperatures were higher. The L-band results showed similar
spatial patterns to the thermal data including the temperature
artifacts and the highest emissions were in August 2022. To
provide a rough estimate of emissivity, L-band brightness
temperature was divided by thermal temperature data
(Figure 4B). The emissivity estimates show a decreased
temperature artifact and could be used as a correction in the
final soil moisture calculations. Calculated soil moisture from the
radiative transfer model (Figure 4C) shows that August 2022 had the
driest conditions, with wetter conditions in May 2022 and the
wettest conditions in May 2023. Table 2 shows soil moisture
estimated from the radiative transfer model performed poorly for
the first two flights and improved slightly for the third flight, with R2

values of 0.02, 0.02, and 0.24 for May 2022 August 2022, and May
2023, respectively. Mean percent error ranged from 8% to 76%, with
an average ubRMSE value of 0.07 m3/m3.

During the May 2022 campaign, three additional campaigns
were flown over the same larger footprints using the multirotor E2
UAS, at a lower height above ground than the original flights
(Figures 1, 5A). This enabled the UAS to fly lower and produce
more detailed brightness temperature and soil moisture maps. These
flights were only performed over grasslands, and produced maps of
3–4 m resolution.
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The soil moisture maps for each date were compared against
field-collected data and separated by grassland and forest vegetation
types (Figure 6). Statistics for the overall data set not separated by
vegetation type are shown in Table 2. The estimated soil moisture
from the radiative transfer model had lower correlations to
validation data in May 2022 and August 2022, with more
accurate results in May 2023. The grassland locations performed
better than the forested locations, with a tendency to overpredict soil
moisture for forested lands, especially for higher soil moisture
values. Soil moisture content from each map generally agreed
with the averages for the corresponding validation dataset, with
some exceptions (Tables 1, 2). The soil moisture mapmade using the
radiative transfer method was wetter than the TDR measurement
average, with a VSM of 0.20 m3/m3. A similar result was found for
August 2022, except the radiative transfer model result using TDR
measurements agreed and averaged 0.07 m3/m3, similar to the TDR
measurements for August 2022 that averaged 0.06 m3/m3.

The higher resolution May 2023 soil moisture maps from the
E2 (Figure 5B) were validated using 73 of the original 419 TDR
measurements that fell within the higher resolution footprints.
The validation statistics when combined across high resolution
areas HR1, HR2, and HR3 resulted in the same R2 of 0.24 for the
lower resolution and higher resolution flights. The lower
resolution May 2023 VSM tended to underpredict VSM in the
0.15–0.25 m3/m3 range compared to TDR measurements over
grassland yet resulted in an R2 of 0.47 (Figure 6). The higher
resolution May 2023 flights resulted in a good statistical
relationship when visually comparing against the 1:1 line
(Figure 6) but had a lower R2 of 0.24 m3/m3. This is due to
the overprediction of VSM at the 0.3–0.4 m3/m3 range. The
ubRMSE was slightly improved for the higher resolution
flights—0.05 m3/m3 compared to 0.08 m3/m3 for the lower
resolution flights (Table 2). The average VSM across the lower
resolution May 2023 flights was 0.27 m3/m3 (Table 2), or 0.02 m3/
m3 higher than the TDR measurements indicated (Table 1), yet
the high-resolution maps indicated a wetter average VSM of
0.26 m3/m3, 0.05 m3/m3 higher than the TDR
measurement average.

The May 2022 and August 2022 campaigns were some of the
first operational missions for this sensing system in this unique
environment, which includes potentially hot temperatures, steep

terrain, and a mix of open and forested areas. Each of these
campaigns included significant iteration and hardware changes to
the soil moisture system to improve issues seen with the previous
campaign. These improvements included algorithms to correct
for steep slope angles, a new noise source in the radiometer that
is less susceptible to environmental temperature changes, and
flying trajectories on a multirotor UAS that accurately holds a
height above the ground for the full mission, while providing a
longer integration time for the radiometric data. This can be
seen by looking at the improvement of the brightness
temperature results from the first campaign to the last
(Figures 4A, C).

5 Discussion

The ability to deploy UAS quickly to map soil moisture in
natural landscapes would be highly beneficial for drought and
wildfire risk, assessing watershed conditions before storms, and
landslide early detection. Several studies have used UAS to map
soil moisture, using wide band active synthetic aperture radar (SAR)
(Kaundinya et al., 2018; Simpson et al., 2021), P-band reflectometer
(Yueh et al., 2018), hyperspectral sensors (Eon and Bachmann,
2021), GPS signals (Senyurek et al., 2022), and optical and
thermal sensors (Babaeian et al., 2019; Paridad et al., 2019; de
Lima et al., 2022). Ye et al. (2023) mapped soil moisture using
an L-band radiometer over an irrigated farm in Australia with an
RMSE of 0.05–0.06 m3/m3 and found it was more accurate than
using thermal and optical data alone, which resulted in an RMSE of
0.05–0.09 m3/m3. Most of these studies mapped soil moisture over
agricultural land, and none of these used L-band radiometer sensors
to attempt to map areas with complex topography and natural
vegetation types.

This study assessed a novel passive L-band UAS-mounted
sensor to map near-surface soil moisture in a natural landscape
using three flights conducted over 1 year to capture seasonal changes
in soil moisture. Extensive field sampling was undertaken to evaluate
the accuracy of the resulting radiative transfer model. Although this
L-band UAS sensor combination has been tested in agricultural
settings with success (Dai et al., 2018; Kim et al., 2024), there are
research opportunities to produce accurate fine-scale soil moisture

TABLE 1 Soil moisture field TDR statistics for three dates.

Campaign Footprint n Average VSM
(m3/m3)

Maximum VSM
(m3/m3)

Minimum VSM
(m3/m3)

Standard
deviation
(m3/m3)

Skewness Kurtosis

May 2022 All 344 0.13 0.34 0.02 0.07 0.61 −0.43

Aug 2022 All 165 0.06 0.17 0.01 0.03 1.15 1.13

May 2023 All 419 0.25 0.50 0.10 0.10 0.63 −0.73

May 2023 HR1 21 0.21 0.35 0.12 0.08 0.71 −0.86

May 2023 HR2 32 0.17 0.33 0.11 0.04 1.84 5.10

May 2023 HR3 20 0.27 0.35 0.17 0.07 −0.26 −1.79

May 2023 HR combined 73 0.21 0.35 0.11 0.07 0.76 −0.78

n, number of samples; m3/m3, meters cubed per meters cubed; VSM, volumetric soil moisture; UAS, uncrewed aircraft system.
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maps in natural landscapes with complex topography and multiple
vegetation types using UAS remote sensing and the radiative
transfer model. Future work can build on the results presented
by improving vegetation and soil calibrations, increasing the
automation of soil moisture mapping from L-band brightness
temperature and the thermal and optical data.

There is a high degree of uncertainty in soil moisture
measurements and models due to many factors. TDR soil
moisture measurements themselves are an indirect measurement
of soil moisture, and in this study, VSM from TDR field
measurements underestimated VSM calculated from cores
by −0.03 m3/m3 (Supplementary Table S1). The soil sensors have
a measurement accuracy of 0.03 m3/m3 for soils with solution

electrical conductivity less than or equal to 6.5 decisiemens per
meter (dS/m) (Campbell Scientific, 2020). This confirms that the
TDR measurements are within an acceptable range of uncertainty
according to the TDR sensor specifications. Soil moisture and other
soil properties are highly spatiotemporally variable and can be
difficult to characterize for a specific application. Each
application may have a level of accuracy that is acceptable and
that may change for different time intervals, geography, or
by season.

Remote sensing data contains uncertainty due to many factors,
including missing data related to clouds and other interferences,
sensor failures, or bias in retrieval algorithms. Some applications of
high-resolution soil moisture data may require a daily or finer time

FIGURE 3
(A) orthoimagery, (B) Normalized Difference Vegetation Index (NDVI), and (C) thermal imagery from uncrewed aircraft system (UAS) campaigns in
May 2022 August 2022, and May 2023.
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step for risk management, yet satellite data are available at weekly or
longer intervals. There are many methods that can be used to fill in
data between satellite overpasses, but sub-daily time intervals are not
common except in UAS imagery. Generally, L-band data can
penetrate up to 10 cm into soil or vegetation, but sensing depth
depends on water content and therefore is constantly changing.
Thus, in dry conditions, the sensing depth of the L-band brightness

temperature may represent an average of the top 0–10 cm, whereas
the wet season measurements may only represent the top 0–5 cm of
soil. Since the TDR sensors provide an estimate of VSM averaged
over the top 12 cm, the evaluation using TDR measurements to
validate remote sensing estimates of VSM is an imperfect
comparison. Generally, VSM increases with depth; therefore,
TDR measurements may have a wetter bias than the remote

FIGURE 4
(A) L-band brightness temperature, (B) estimated emissivity calculated as brightness temperature divided by thermal data, and (C) soil moisture
calculated using the radiative transfer model from campaigns in May 2022 August 2022, and May 2023. VSM = volumetric soil moisture, in cubic meters
per cubic meter, UAS = uncrewed aircraft systems.
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sensing based VSM. This may be especially true during wet
conditions when remote sensing effective depths are lowest.
L-band data are also highly sensitive to surface roughness,

which can change over time and sometimes substantially
after a wildfire or other disturbances. In addition, there are
errors associated with radio frequency interferences (RFI) that

TABLE 2 Summary statistics comparing measured soil moisture data to predicted soil moisture maps at different scales using different methods, and the
average VSM for each map.

Campaign n Average VSM
(m3/m3)

R2 Mean percent
error

Mean error
(m3/m3)

RMSE
(m3/m3)

ubRMSE
(m3/m3)

May 2022 331 0.20 0.02 76.1% 3.1 × 10−2 0.08 0.07

Aug 2022 165 0.07 0.02 70.3% 3.3 × 10−2 0.07 0.07

May 2023 419 0.27 0.24 8.0% −1.0 × 10−4 0.08 0.08

May 2023 HR1 21 0.20 0.05 9.5% −2.4 × 10−3 0.06 0.06

May 2023 HR2 32 0.22 0.05 38.7% 5.8 × 10−2 0.07 0.04

May 2023 HR3 20 0.37 0.04 48.4% 1.0 × 10−1 0.10 0.01

May 2023 HR
combined

73 0.26 0.24 33.0% 5.3 × 10−2 0.08 0.05

n, number of validation points; RMSE, root mean squared error; ubRMSE, unbiased RMSE; VSM, volumetric soil moisture; m3/m3, meters cubed per meters cubed.

FIGURE 5
(A) L-band brightness temperature, and (B) soil moisture calculated using the radiative transfer model from the higher resolution flights in May 2023.
VSM = volumetric soil moisture, in cubic meters per cubic meter.
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are known to affect L-band radiometer retrievals (Wigneron
et al., 2021). These interferences vary in space and time and are
difficult to remove, however, development of a digital correlator
may help to reduce the impacts of RFI on retrievals using this
system in future applications. Future work could include the
calibration of scattering albedo and soil roughness parameters
used in the retrieval algorithm.

6 Conclusion

This study supports two main conclusions related to the remote
sensing of soil moisture: (1) high-resolution UAS data can be
valuable for understanding fine-scale soil moisture variability and
(2) there are research opportunities for UAS-mounted L-band
radiometers in natural landscapes with complex terrain. The
validation statistics for the radiative transfer model (average R2 =
0.13 and ubRMSE = 0.07 m3/m3) showed that more research could
improve the accuracy of near surface soil moisture maps in natural
vegetation and variable terrain. However, soil moisture estimations

in forested land were not noticeably better or worse than grassland
soil moisture estimates (Figure 6), except for the May 2023 flight. In
addition, soil moisture retrieval accuracy increased significantly
from the May 2022 and August 2022 flights to the May
2023 flight as improvements were made to the sensors,
configuration, and algorithms. Importantly, to represent the
extreme dry and wet soil moisture conditions, it is recommended
to sample seasonally and across the landscape, including south and
north facing slopes, springs or seeps, and other natural variations.
Future research could improve the radiative transfer model by
including vegetation types, higher resolution soil properties, and
terrain following to prevent high uncertainties from changes
in elevation.

Data availability statement

The datasets presented in this study can be found in online
repositories. The data can be found at this link: doi.org/10.
5066/P9L6GTA9.

FIGURE 6
Measured and modeled soil moisture comparison from uncrewed aircraft system (UAS) campaigns in May 2022 August 2022, and May 2023 for
lower (10m) and higher (3–4m) resolution flights. Green squares indicate soil moisture points in grasslands; black triangles indicate soil moisture points in
forested areas. Note the different scale for the May 2023 results, and the higher resolution May 2023 flights were only over grassland.

Frontiers in Remote Sensing frontiersin.org10

Stern et al. 10.3389/frsen.2024.1337953

https://doi.org/10.5066/P9L6GTA9
https://doi.org/10.5066/P9L6GTA9
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1337953


Author contributions

MiS: Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Investigation, Methodology, Project
administration, Resources, Supervision, Validation, Visualization,
Writing–original draft, Writing–review and editing. RF: Data
curation, Investigation, Methodology, Writing–review and editing.
LF: Methodology, Visualization,Writing–review and editing. MK: Data
curation, Writing–review and editing. DA: Data curation,
Writing–review and editing. JE: Writing - review and editing, Data
curation, Methodology, Validation, Visualization. MaS: Writing -
review and editing, Data curation, Methodology, Validation,
Visualization. ED: Writing - review and editing, Methodology,
Validation. JT: Methodology, Resources, Writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
work was funded by the USGS National Innovation Center,
USGS Next-Generation Water Observing System Research and
Development, and USGS/DWR Agreement #
20ZGJFA46013573.

Acknowledgments

The authors thank Jonathon Stock, Bruce Quirk, Russ Lotspeich,
and Lisa Micheli for their support of this work. The authors thank
the reviewers for their thoughtful comments and suggestions that
greatly improved this manuscript. The authors are very grateful to
the field teams who assisted in collecting soil moisture data,
including Makayla Freed, Michelle Halbur, and Michael Gillogly
who collected data at the grassland transects, and Jashvina Devadoss,

Raphaela Elise Floreani Buzbee, XiaoshanWang, andMakayla Freed
who collected soil moisture at the vegetation plots. Additional soil
moisture data were collected by Gwen Davies, Todd Caldwell, and
Noah Hoffman. Without the enormous field effort, this work would
not have been possible.

Conflict of interest

Author LF was employed by Earth Knowledge Inc. Author ED
was employed by Weather Stream Inc. Authors JE and MS were
employed by Black Swift Technologies.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Any use of trade, firm, or product names is for descriptive
purposes only and does not imply endorsement by the U.S.
Government.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/frsen.2024.1337953/
full#supplementary-material

References

Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., and Notarnicola, C. (2015).
Review of machine learning approaches for biomass and soil moisture retrievals from
remote sensing data. Remote Sens. 7 (12), 16398–16421. doi:10.3390/rs71215841

Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., and Tuller, M.
(2019). Ground, proximal, and satellite remote sensing of soil moisture. Reviews of
Geophysics 57 (2), 530–616.

Campbell Scientific (2020). HS2 and HS2P (HydroSense II) product manual. Revision
02/2020. Logan, UT: Campbell Scientific, Inc.

Chaparro, D., Vall-Llossera, M., Piles, M., Camps, A., Rüdiger, C., and Riera-Tatché,
R. (2016). Predicting the extent of wildfires using remotely sensed soil moisture and
temperature trends. IEEE J. Sel. Top. Appl. earth observations remote Sens. 9 (6),
2818–2829. doi:10.1109/jstars.2016.2571838

Colliander, A., Jackson, T. J., Bindlish, R., Chan, S., Das, N., Kim, S. B., et al. (2017).
Validation of SMAP surface soil moisture products with core validation sites. Remote
Sens. Environ. 191, 215–231. doi:10.1016/j.rse.2017.01.021

Crow, W. T., Berg, A. A., Cosh, M. H., Loew, A., Mohanty, B. P., Panciera, R., et al.
(2012). Upscaling sparse ground-based soil moisture observations for the validation of
coarse-resolution satellite soil moisture products. Rev. Geophys. 50 (2). doi:10.1029/
2011rg000372

Dai, E., Gasiewski, A. J., Venkitasubramony, A., Stachura, M., and Elston, J. (2020).
High spatial resolution soil moisture mapping using a lobe differencing correlation
radiometer on a small unmanned aerial system. IEEE Transactions on Geoscience and
Remote Sensing 59 (5), 4062–4079.

Dai, E., Venkitasubramony, A., Gasiewski, A., Stachura, M., and Elston, J. (2018).
“High spatial soil moisture mapping using small unmanned aerial system,” in IGARSS

2018-2018 IEEE international geoscience and remote sensing symposium (IEEE),
6496–6499.

de Lima, R. S., Li, K. Y., Vain, A., Lang, M., Bergamo, T. F., Kokamägi, K., et al. (2022).
The potential of optical UAS data for predicting surface soil moisture in a peatland
across time and sites. Remote Sens. 14 (10), 2334. doi:10.3390/rs14102334

De Nevers, G. (2013). Vascular flora: Santa Rosa. Santa Rosa, California: Pepperwood
Foundation.

Eon, R. S., and Bachmann, C. M. (2021). Mapping barrier island soil moisture using a
radiative transfer model of hyperspectral imagery from an unmanned aerial system. Sci.
Rep. 11 (1), 3270. doi:10.1038/s41598-021-82783-3

Harpold, A.A., Sutcliffe, K., Clayton, J., Goodbody, A., andVazquez, S. (2017).Does including
soil moisture observations improve operational streamflow forecasts in snow-dominated
watersheds? JAWRA J. Am.Water Resour. Assoc. 53 (1), 179–196. doi:10.1111/1752-1688.12490

Hettiarachchi, S., Wasko, C., and Sharma, A. (2019). Can antecedent moisture
conditions modulate the increase in flood risk due to climate change in urban
catchments? J. Hydrology 571, 11–20. doi:10.1016/j.jhydrol.2019.01.039

Hossain, A. A., and Easson, G. (2016). Soil moisture estimation in South-Eastern New
Mexico using high resolution synthetic aperture radar (SAR) data. Geosciences 6 (1), 1.
doi:10.3390/geosciences6010001

Jennings, C. W. (1977). Geologic map of California: California division of mines and
geology geologic data, Map number 2, scale 1:750,000.

Karthikeyan, L., and Mishra, A. K. (2021). Multi-layer high-resolution soil moisture
estimation using machine learning over the United States. Remote Sens. Environ. 266,
112706. doi:10.1016/j.rse.2021.112706

Frontiers in Remote Sensing frontiersin.org11

Stern et al. 10.3389/frsen.2024.1337953

https://www.frontiersin.org/articles/10.3389/frsen.2024.1337953/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frsen.2024.1337953/full#supplementary-material
https://doi.org/10.3390/rs71215841
https://doi.org/10.1109/jstars.2016.2571838
https://doi.org/10.1016/j.rse.2017.01.021
https://doi.org/10.1029/2011rg000372
https://doi.org/10.1029/2011rg000372
https://doi.org/10.3390/rs14102334
https://doi.org/10.1038/s41598-021-82783-3
https://doi.org/10.1111/1752-1688.12490
https://doi.org/10.1016/j.jhydrol.2019.01.039
https://doi.org/10.3390/geosciences6010001
https://doi.org/10.1016/j.rse.2021.112706
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1337953


Kaundinya, S., Arnold, E., Rodriguez-Morales, F., and Patil, A. (2018). “A UAS-based
ultra-wideband radar system for soil moisture measurements,” in 2018 IEEE radar
conference (RadarConf18) (IEEE), 0721–0726.

Kim, K. Y., Zhu, Z., Zhang, R., Fang, B., Cosh, M. H., Russ, A. L., et al. (2024). Precision soil
moisturemonitoringwith passivemicrowave L-bandUASmapping. IEEE J. Sel. Top. Appl. Earth
Observations Remote Sens. 17, 7684–7694. doi:10.1109/jstars.2024.3382045

Loew, A. (2008). Impact of surface heterogeneity on surface soil moisture retrievals
from passive microwave data at the regional scale: the Upper Danube case. Remote Sens.
Environ. 112 (1), 231–248. doi:10.1016/j.rse.2007.04.009

Mohanty, B. P., Cosh, M. H., Lakshmi, V., and Montzka, C. (2017). Soil moisture remote
sensing: state-of-the-science. Vadose Zone J. 16 (1), 1–9. doi:10.2136/vzj2016.10.0105

Oldfather, M. F., Britton, M. N., Papper, P. D., Koontz, M. J., Halbur, M. M., Dodge,
C., et al. (2016). Effects of topoclimatic complexity on the composition of woody plant
communities. AoB Plants 8, plw049. doi:10.1093/aobpla/plw049

O’Neill, P., Bindlish, R., Chan, S., Njoku, E., and Jackson, T. (2018). Algorithm
theoretical basis document. Level 2 and 3 soil moisture (passive) data products.

Paridad, P., Dal Sasso, S. F., Pizarro, A., Mita, L., Fiorentino, M., Margiotta, M. R.,
et al. (2019). Estimation of soil moisture from UAS platforms using RGB and thermal
imaging sensors in arid and semi-arid regions. IX Int. Symposium Irrigation Hortic.
Crops 1335, 339–348. doi:10.17660/actahortic.2022.1335.42

Robinson, D. A., Jones, S. B., Wraith, J. M., Or, D., and Friedman, S. P. (2003). A
review of advances in dielectric and electrical conductivity measurement in soils using
time domain reflectometry. Vadose zone J. 2 (4), 444–475. doi:10.2136/vzj2003.4440

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., et al.
(2010). Investigating soil moisture–climate interactions in a changing climate: a review.
Earth-Science Rev. 99 (3-4), 125–161. doi:10.1016/j.earscirev.2010.02.004

Senyurek, V., Farhad, M. M., Gurbuz, A. C., Kurum, M., and Adeli, A. (2022). Fusion
of reflected GPS signals with multispectral imagery to estimate soil moisture at subfield
scale from small UAS platforms. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
15, 6843–6855. doi:10.1109/jstars.2022.3197794

Simpson, C. D., Kolpuke, S., Awasthi, A. K., Luong, T., Memari, S., Yan, S., et al.
(2021). “Development of a UAS-based ultra-wideband radar for fine-resolution

soil moisture measurements,” in 2021 IEEE radar conference (RadarConf21)
(IEEE), 1–4.

Soil Survey Staff (2024). Natural resources conservation service, United States
department of agriculture. Soil survey geographic (SSURGO) database. Available at:
https://sdmdataaccess.sc.egov.usda.gov (Accessed July 02, 2019).

Stern, M. A., Elston , J., and Stachura , M. (2024). Aerial imagery and other remotely-
sensed data from a UAS survey of Pepperwood Preserve, Sonoma County, CA. U.S.
Geological Survey data release. doi:10.5066/P9L6GTA9

Vinnikov, K. Y., Robock, A., Speranskaya, N. A., and Schlosser, C. A. (1996). Scales of
temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res. Atmos. 101
(D3), 7163–7174. doi:10.1029/95jd02753

Wigneron, J. P., Jackson, T. J., O’neill, P., De Lannoy, G., de Rosnay, P., Walker, J. P.,
et al. (2017). Modelling the passive microwave signature from land surfaces: a review of
recent results and application to the L-band SMOS and SMAP soil moisture retrieval
algorithms. Remote Sens. Environ. 192, 238–262. doi:10.1016/j.rse.2017.01.024

Wigneron, J. P., Li, X., Frappart, F., Fan, L., Al-Yaari, A., De Lannoy, G., et al. (2021).
SMOS-IC data record of soil moisture and L-VOD: historical development, applications
and perspectives. Remote Sens. Environ. 254, 112238. doi:10.1016/j.rse.2020.112238

Wood, A. W., Hopson, T., Newman, A., Brekke, L., Arnold, J., and Clark, M. (2016).
Quantifying streamflow forecast skill elasticity to initial condition and climate
prediction skill. J. Hydrometeorol. 17 (2), 651–668. doi:10.1175/jhm-d-14-0213.1

Ye, N., Walker, J. P., Gao, Y., PopStefanija, I., and Hills, J. (2023). Comparison
between thermal-optical and L-band passive microwave soil moisture remote sensing at
farm scales: towards UAV-based near-surface soil moisture mapping. IEEE J. Sel.
Top. Appl. Earth Observations Remote Sens. 17, 633–642. doi:10.1109/jstars.2023.
3329015

Yueh, S., Shah, R., Xu, X., Elder, K., Margulis, S., Liston, G., et al. (2018). UAS-based
P-band signals of opportunity for remote sensing of snow and root zone soil moisture.
Sensors, Syst. Next-Generation Satell. XXII, SPIE 10785, 39–46. doi:10.1117/12.2325819

Zhai, X., Guo, L., Liu, R., and Zhang, Y. (2018). Rainfall threshold determination for
flash flood warning in mountainous catchments with consideration of antecedent soil
moisture and rainfall pattern. Nat. Hazards 94, 605–625. doi:10.1007/s11069-018-
3404-y

Frontiers in Remote Sensing frontiersin.org12

Stern et al. 10.3389/frsen.2024.1337953

https://doi.org/10.1109/jstars.2024.3382045
https://doi.org/10.1016/j.rse.2007.04.009
https://doi.org/10.2136/vzj2016.10.0105
https://doi.org/10.1093/aobpla/plw049
https://doi.org/10.17660/actahortic.2022.1335.42
https://doi.org/10.2136/vzj2003.4440
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1109/jstars.2022.3197794
https://sdmdataaccess.sc.egov.usda.gov
https://doi.org/10.5066/P9L6GTA9
https://doi.org/10.1029/95jd02753
https://doi.org/10.1016/j.rse.2017.01.024
https://doi.org/10.1016/j.rse.2020.112238
https://doi.org/10.1175/jhm-d-14-0213.1
https://doi.org/10.1109/jstars.2023.3329015
https://doi.org/10.1109/jstars.2023.3329015
https://doi.org/10.1117/12.2325819
https://doi.org/10.1007/s11069-018-3404-y
https://doi.org/10.1007/s11069-018-3404-y
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1337953

	Fine-scale surficial soil moisture mapping using UAS-based L-band remote sensing in a mixed oak-grassland landscape
	1 Introduction
	2 Study area
	3 Materials and methods
	3.1 UAS remote sensing
	3.2 Field-collected soil moisture validation data

	4 Results
	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


