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Soil wetness forecasts on a local level are needed to ensure sustainable forestry
operations during summer when the soil is neither frozen nor covered with snow.
Training gradient boosting models has been successful in predicting satellite
observation-based products into the future using Numerical Weather Prediction
(NWP) and Earth Observation (EO) climate data as inputs. The Copernicus Global
Land Monitoring Service’s Soil Water Index (SWI) satellite-based observations
from 2015 to 2023 at 10,000 locations in Europe were used as the predictand
(target parameter) to train an artificial intelligence (AI) model to predict soil
wetness with XGBoost (eXtreme Gradient Boosting) and LightGBM (Light
Gradient Boosting Machine) implementations of gradient boosting algorithms.
The locations were selected as a representative set of points from the Land Use/
Cover Area Frame Survey (LUCAS) sites, which helped evaluate the characteristics
of distinct locations used in fitting to represent diverse landscapes across Europe.
Over 40 predictors, mainly from ERA5-Land reanalysis, were used in the final
model. Over 70 predictors were tested, including the climatology of EO based
predictors like SWI and Leaf-Area Index (LAI). The final model achieved a mean
absolute error of 5.5% and a root mean square error of 7% for variable values
ranging from 0% to 100%, an accuracy sufficient for forestry use case. To further
validate themodel, SWI prediction wasmade using the 215-day seasonal forecast
ensemble from April 2021, consisting of 51 members. With this, the quality could
also be demonstrated in the way our forestry climate service (HarvesterSeasons.
com) would use the forecasts. As soil wetness is not changing as rapidly as many
weather parameters, the forecast skill appears to last longer for it than for the
weather variables. The technology demonstration and machine learning work
were conducted as a part of the HarvesterDestinE project, supported by

OPEN ACCESS

EDITED BY

Yongxiang Hu,
National Aeronautics and Space Administration,
United States

REVIEWED BY

Nazario Tartaglione,
Istituto Superiore per la Protezione e la Ricerca
Ambientale (ISPRA), Italy
Abhishek Lodh,
Swedish Meteorological and Hydrological
Institute, Sweden

*CORRESPONDENCE

Mikko Strahlendorff,
mikko.strahlendorff@fmi.fi

RECEIVED 23 December 2023
ACCEPTED 13 November 2024
PUBLISHED 20 December 2024

CITATION

Strahlendorff M, Kröger A, Prakasam G,
Kosmale M, Moisander M, Ovaskainen H and
Poikela A (2024) Forestry climate adaptation
with HarvesterSeasons service—a gradient
boosting model to forecast soil water index SWI
from a comprehensive set of predictors in
Destination Earth.
Front. Remote Sens. 5:1360572.
doi: 10.3389/frsen.2024.1360572

COPYRIGHT

© 2024 Strahlendorff, Kröger, Prakasam,
Kosmale, Moisander, Ovaskainen and Poikela.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Abbreviations: SWI, Soil Water Index; EO, Earth Observation; IFS, Integrated Forecasting System;
XGBoost, Extreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine; ERA5-Land,
ERA5-Land reanalysis; LUCAS, Land Use/Cover Area frame Survey; ECBSF, bias-adjusted ECMWF
seasonal forecast; EDTE, ECMWF Digital Twin Extremes forecast.; ECXSF, XGBoost products from
ECMWF seasonal forecast; CRPS, Continuous Ranked Probability Score; MAE, mean absolute error.

Frontiers in Remote Sensing frontiersin.org01

TYPE Technology and Code
PUBLISHED 20 December 2024
DOI 10.3389/frsen.2024.1360572

https://www.frontiersin.org/articles/10.3389/frsen.2024.1360572/full
https://www.frontiersin.org/articles/10.3389/frsen.2024.1360572/full
https://www.frontiersin.org/articles/10.3389/frsen.2024.1360572/full
https://www.frontiersin.org/articles/10.3389/frsen.2024.1360572/full
https://www.frontiersin.org/articles/10.3389/frsen.2024.1360572/full
https://www.frontiersin.org/articles/10.3389/frsen.2024.1360572/full
https://orcid.org/0000-0003-1435-6465
https://orcid.org/0000-0001-5063-6662
https://harvesterseasons.com/
https://harvesterseasons.com/
https://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2024.1360572&domain=pdf&date_stamp=2024-12-20
mailto:mikko.strahlendorff@fmi.fi
mailto:mikko.strahlendorff@fmi.fi
https://doi.org/10.3389/frsen.2024.1360572
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2024.1360572


European Union Destination Earth funding managed by the European Center for
Medium-Range Weather Forecasts (ECMWF) contract DE_370d_FMI. The authors
wish to acknowledge CSC – IT Center for Science, Finland, for computational
resources. The code for the machine learning work and the predictions are
available as open source at https://github.com/fmidev/ml-harvesterseasons (see
README-SWI2). The training data and ML models are at https://destine.data.lit.fmi.
fi/soilwater/. All data used for predictions are accessible from the SmartMet server
at https://desm.harvesterseasons.com/grid-gui and thework flow is available in the
script https://github.com/fmidev/harvesterseasons-smartmet/blob/master/bin/
get-seasonal.sh Everything is made available for ensuring reproducibility. One
will need to register and use their own https://cds.climate.copernicus.eu
credentials for doing so.
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Introduction

Forest harvesting is nowadays a year-round activity in the
bioeconomy value chain. It is both affordable and
environmentally sustainable on frozen soil or deep snow,
conditions that are constantly diminishing due to climate change
(Lehtonen et al., 2019). This creates pressure to perform harvesting
more during the summer when the soil is unfrozen. Forest soil can
endure forestry operations when conditions are dry enough,
avoiding disturbances to the soil that could make the land less
productive. Sustainable forestry requires a more efficient use of
optimal conditions for forest lands that need to be harvested in
winter and good predictions for sustainable summer conditions.
Harvesting and forwarding timber to roadsides typically takes only a
few days per site but transporting 20-ton machines to the site and
onwards requires longer planning horizons to ensure cost efficiency.
Currently, decisions are often made a week in advance but with
better long-term forecasts, longer planning will become more
common. A combination of seasonal predictions months ahead
and 10-day weather forecasts is optimal for forestry
operations planning.

The trafficability (i.e., vehicle bearing capacity) of forest soil for
harvesting during summer conditions is driven by the amount of
water present in the soil. It would be particularly important to know
the soil moisture down to a depth of 30 cm, as this has the most
significant effect on the soil’s bearing capacity when considering
forestry operations. The soil wetness product used in the
HarvesterSeasons service since 2020 has been deemed, based on
user feedback, too static and model soil-type dependent to capture
changes in soil wetness caused by weather events. It also tends to
underestimate systematic changes associated with seasonal
transitions. As a result, the service has provided, e.g.,
unrealistically optimistic long-term predictions about terrain
trafficability during a rainy fall period. The current service relied
purely on the ECMWF Integrated Forecast System (IFS), meaning
both the forecasts and reanalysis data, which provided bias
adjustment and downscaling, represented the same model.
Without independent observations, model errors remain
undetected. Therefore, updating the base information with the
satellite-based product Soil Water Index (SWI) should improve

many aspects, enabling also a more meaningful verification of
forecasts. Although the SWI product combines data from two
different satellite instruments, its 1 km resolution makes it the
best available product for this study. SWI data has been available
daily since 2015 (with two Sentinel-1 satellites until end of 2021),
providing sufficient training data for a machine learning
(ML) exercise.

The aim of this study is to use machine learning to predict new
seasonal and weather forecast based soil wetness SWI forecast
products, using the satellite-based observation product SWI as
the target parameter (predictand) in fitting. The strength of our
service is that the end user can themselves compare how well the
SWI2 forecasts matched observations in the past weeks. This has
proven to be a successful approach in weather forecasts, convincing
the end users of the services’ usefulness.

For machine learning, we use gradient boosting methods and
their implementations in Python. For tabular data fitting, gradient
boosting has won most of the machine learning competitions in
recent years. The information skill for higher resolution stems from
using 1 km or finer land cover and orography predictors, along with
high-resolution data from Earth Observation satellites for fitting the
model and predicting with it. Higher resolution Extreme Digital
Twin predictions will improve the weather-forecast time window of
the product. For seasonal forecasts at coarser resolution the forecast
ensemble allows us to assess probabilities of future predictions.
Machine learning (ML) downscaling incorporates sophisticated
climatology-based bias adjustment and distinguishing the local
distribution of wetness, but it is not forecasting weather, which
does have the greatest impact on changing conditions. One needs to
combine ML with numerical weather and seasonal predictions for
optimal information about the future on a local scale.

This study presents the new soil wetness ML prediction product.
The following sections describe the data and methods used to
develop the soil wetness model, including complete tables of
location data, ML training input data sets, and ML prediction
input/output datasets in Supplementary Material S1–S3.
Additionally, the codes used both in training and prediction are
detailed. Finally, we present the results of soil wetness model
training and prediction for the forestry service. The discussion
and conclusions address both the forecasting skill of the resulting
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product and the technology readiness for training and deploying
ML models.

Data used for machine learning

In machine learning, much of a model’s quality and capabilities
depend on the data used for training. The predictand must have a
representative time series in both spatial and temporal extent, and all
predictors need to be available for most data points. In our case,
using an EO predictand reduces some capability as SWI data is not
available in all seasons due to snow cover and is unavailable in
mountainous regions, where observation retrieval is difficult. The
quality of improvements achieved in predicting soil wetness will
need to outweigh the limitations introduced by using a restricted
predictand.

Soil water index ML target variable
(predictand)

The Soil Water Index is a Copernicus Land Monitoring Service
(CLMS) product from the global land services. It is based on a
combination of the Sentinel-1 surface soil moisture product from
CLMS and the EUMETSAT Hydrological Satellite Application
Facility (H-SAF) Metop mission ASCAT surface soil moisture
product. -Europe in a 1 km grid resolution, with data available
daily over several years, suitable for ML applications. At 12.5 km
resolution the product is also available globally, based only on
ASCAT data. The product adds to the 0–5 cm surface soil
moistures observed from satellites a two-layer water balance
model developed by Wagner et al. (1999) which, put simply,
relates deeper layer soil wetness to an accumulation of surface
conditions over several days. For a complete description of the
product, refer to Bauer-Marschallinger et al. (2018).

The SWI describes soil wetness within a 0%–100% range and
includes quality flags for eight soil depths based on the number of
days of accumulated surface moisture. For the use of SWI in relation
to the IFS model soil moisture variables, the SWI T5 is considered to
match with IFS soil layer 1 (0–7 cm), T15 matches with soil layer 2
(7–28 cm), T60 with soil layer 3 (28–100 cm) and T100 to layer 4
(100–255 cm). We refer to these here as SWI1, SWI2, SWI3 and
SWI4, respectively. SWI is more detailed locally and in its range than
the volumetric soil water layer variable, which the IFS model is
forecasting, and which was our initial summer condition indicator.

For the soil wetness ML model, the SWI product at soil layer 2
(SWI2) at 1 km resolution over Europe is used as the machine
learning target variable (predictand). This enables the prediction of a
superior downscaled soil wetness product based on seasonal and
weather forecasts. The daily data were acquired from the Copernicus
Global Land Service (land.copernicus.eu) and set up to the
Destination Earth SmartMet-server.

Locations for training

Our EO predictand and the EO or reanalysis model predictors
are available as gridded data covering nearly all of Europe, with some

grids containing even several million points. Training on all grid
points is not required to achieve a good-quality model. For a
sufficiently representative dataset to fit the model, we utilize
points from the LUCAS survey (d’Andrimont et al., 2020),

FIGURE 1
Distribution of the 63,287 LUCAS point locations over Europe.
Red points represent LUCAS locations, while the blue area represents
the base map of Europe, showing that the LUCAS is not available in all
countries. Kosovo and Bosnia-Herzegovina are
unfortunately white.

FIGURE 2
The subset of 10,000 LUCAS points over Europe for training the
soil wetness model. Red points represent LUCAS locations used, while
the blue area represents the base map of Europe. See land cover
classes representation in Supplementary Material S1 for
information on how well this subset matches the complete set
of locations.
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totaling 63,287 points with extended land cover analysis and site
photos available in Europe (Figure 1). To compute a model
reasonably fast, we selected a representative subset of
10,000 points to cover Europe’s various land types
(Supplementary Material S1) and ensure a well-distributed
sample for training (Figure 2).

Predictors for fitting the model

The predictors used in our model training include terrain statistics
from the Copernicus Digital Elevation Model (DEM) (European Space
Agency, 2020), SoilGrids 2.0 (Poggio et al., 2021) soil composition data,
IFS model parameters for terrain statistics, and weather information
from the ERA5-Land reanalysis (Muñoz Sabater, 2019), and
corresponding seasonal forecast variables and EO parameters for
predicting soil wetness. For some ERA5-Land parameters used as
predictors, such as total precipitation, rolling cumulative daily sums
over 5-day, 15-day, 60-day and 100-day intervals were calculated, like

the surface moisture accumulation method used in the SWI products,
which integrates satellite observations across comparable timewindows.
Since ERA5-Land also has the IFS model as its engine, training with it
enables compatibility with Digital Twin Engine (DTE) and ECMWF
seasonal forecast outputs. Additionally, an SWI climatology predictor
was created by averaging daily SWI values for each day of the year based
on 2015–2023 observations. In total, we tested 107 parameters of which
47 were eventually chosen as predictors for the final model to predict
SWI2. Detailed tables of the predictand and predictors datasets,
including data sources and links, are provided in Supplementary
Material S2.

Time series data for ML training, covering the period
2015–2022 for all 63,287 LUCAS locations, were retrieved from
the Destination Earth SmartMet-server using its Timeseries API.
Most datasets have been ingested to the server, data and metadata
browsing is available via Smartmet-server grid-gui interface (https://
desm.harvesterseasons.com/grid-gui) and downloading through the
new OGC Environmental Data Retrieval (EDR) interface (https://
desm.harvesterseasons.com/edr/collections). The time series query

FIGURE 3
Optuna Dashboard view of hyperparameter optimization for XGBoost with best trial values. Upper: trials and their objectives (minimized RMSE).
Middle: hyperparameter importance. Lower: best trial and its tuned hyperparameters. Optuna-run was stopped at trial number 80 for results were not
improving significantly.
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replaces some of the missing values in the SWI target parameter
using linear interpolation with the two nearest values within a four-
day time interval. The processed fitting data are stored as CSV files
on our development server, ml-harvesterseasons, where ML training
was conducted.

Machine learning methods and
training process

Gradient boosting

Gradient Boosting is an ensemble learning method that
combines predictions from multiple weak learners (decision
trees) that form a boosted ensemble, for a stronger final mean
(median) prediction model from all trees. It samples both time and
predictor dimensions of the fitting data randomly and fits trees for
each random sample one by one such that each new tree minimizes
the prediction error of the previous tree. For all the ML models
developed within HarvesterDestinE, we apply the extreme gradient

boosting method through two widely-used Python
implementations: XGBoost (Chen and Guestrin, 2016) and
LightGBM (Ke et al., 2017). XGBoost was for several years the
most probable winner in machine learning competitions, but last
year LightGBM outperformed it in some contests. We tested both
methods to find the best fit.

Hyperparameter tuning and
validation metrics

To find the optimized hyperparameters for each ML model, we
used an automatic hyperparameter optimization software Optuna
(Akiba et al., 2019). Its Optuna Dashboard also offers a convenient
way to store the optimization history with all fitting experiments and
get more information about the related hyperparameters. K-fold
cross-validation is used to find the optimal teaching/validation data
split from the training time series by sampling years. Model
performance is assessed through root mean square error (RMSE)
and mean absolute error (MAE) as measures of model accuracy.

FIGURE 4
Optuna Dashboard view of hyperparameter optimization for LightGBM with best trial values. Similar views as Figure 3.
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TABLE 1 Optuna hyperparameter optimization best parameters (trials = 100) for XGBoost and LightGBM, and validation metrics (RMSE, MAE) for fitting an
XGBoost/LightGBM model with tuned parameters.

XGBoost
hyperparameters

Explanation Tuned value
(rounded)

LightGBM
hyperparameters

Explanation Tuned value
(rounded)

learning_rate Step size of the optimization
process

0.067 learning_rate Controls the learning speed 0.19

n_estimators Number of boosting rounds 645 n_estimators Controls the number of
decision trees

1,000

num_parallel_tree Number of random forest
samples

10 num_leaves Controls the complexity of
the tree model

41

max_depth Maximum depth of a single
tree

10 max_depth To control the levels/growth
of the tree

8

alpha The L1 regularization
parameter

0.54 reg_alpha The L1/L2 regularization
Parameter

0.27

subsample Random sample size of a tree
(proportion of time steps)

0.29 subsample Specifies the percentage of
training samples to train each
tree

0.82

colsample_bytree Random sample size of a tree
(proportion of predictors)

0.56 feature_fraction Percentage of features to
sample when training each
tree

0.48

nthread Number of threads for
LightGBM (parallelize
operations)

8

Evaluation metrics for
XGBoost training

RMSE:
7.04%

MAE:
5.5%

Evaluation metrics for
LightGBM training

RMSE:
7.03%

MAE:
5.5%

FIGURE 5
Cross-correlation between all studied parameters (predictand and 107 predictors).
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Feature selection and predictor importance

The cross correlation (Pearson correlation) matrix between all
108 parameters (predictand and predictors) was computed with
Scikit-Learn (Buitinck et al., 2013) feature selection module’s r_
regression class. Predictor importance was evaluated with readily
available XGBoost/LightGBM package metrics, such as gain
(XGBoost’s F-score) which shows each predictor’s relative
contribution to the trained model, and LightGBM’s plot_
importance. Both methods were utilized for optimized training
set feature selection by eliminating low-importance predictors and
selecting only the most relevant predictors from the highly cross-
correlated ones. For instance, as the 2 m temperatures at 00 and
12 UTC were highly correlated, the 12 UTC 2 m temperature was
dropped from the training set. Using an optimized subset of
predictors both improves the model skill and decreases the fitting
execution time as well as yields a smaller model file with lesser
memory needs.

Machine learning prediction data and
validation methods

All results and trained models are stored on our ml-server. The
final model is used to predict a downscaled target variable from
seasonal and Destination Earth (DestinE) Extremes Digital Twin
forecast data as new predictions become available. Currently, once a
month a new seasonal forecast (Johnson et al., 2019) and daily an
ECMWF Extremes Digital Twin (EDTE) prediction
(Randriamampianina, 2023) is automatically processed and

uploaded to the SmartMet-server, to be used in our service. This
procedure will also be implemented for the DestinE climate
adaptation digital twin. Input data specifics for prediction with
ECMWF seasonal forecast (51 members, 50 perturbed forecasts
plus a control forecast) are detailed in Supplementary Material S3.
The same parameters are used also for the DestinE extremes
predictions as the IFS model is close to the same version and the
same parameters are available from both. In addition to the ML
forecasts, all the input data is available from our SmartMet-server as
well. Links to the seasonal forecast variables are in Supplementary
Material S3, for the extremes forecast variables and our AI product
from this source are available from the EDTE producer.

For the extremes forecast, we only have one prediction and no
other model to compare to. Validation is presented therefore for two
ensemble systems. It is also more fitting for analyzing the quality of a
climate service that is based on probability to exceed a threshold to
use ensembles. To validate the results and study the skill of the
ensemble forecasts, the continuous ranked probability score (CRPS;
Hersbach, 2000) is measured for the XGBoost downscaled ECXSF
SWI2 seasonal forecast product and, to compare to our previous
product, the ERA5-Land statistically bias-adjusted ECBSF
Volumetric soil water layer 2 product. CRPS evaluates forecast
accuracy by measuring the difference between the forecast and
the reference cumulative distribution functions (CDFs). For
deterministic forecasts, the CRPS can be interpreted as mean
absolute error (MAE). The reference can be climatology,
observation, or reanalysis. The CRPS can be decomposed into
reliability and resolution/uncertainty parts, see Equations 1, 2
below. We use the Climate Data Operators (CDO; Schulzweida,
2023) enscrps operator to determine CRPS, CRPS potential

FIGURE 6
Correlation between swi2 and each predictor. Predictors with correlation > |0.25| highlighted with red/blue.
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(resolution/uncertainty), and CRPS reliability. These are calculated
over Finland, Germany, Poland, Spain, France, Romania, Sweden,
and for the full European domain. According to Hersbach, reliability
measures the statistical properties of the forecast system and “the
resolution/uncertainty part can be related to the average spread
within the ensemble and the behavior of its outliers.”

CRPS�RELIABILITY−RESOLUTION+UNCERTAINTY (1)
CRPSpotential � UNCERTAINTY − RESOLUTION (2)

Code description

Our machine learning application requires two sets of
scripts: one for training and another for predictions. The
training phase includes tools for preparing tabular data files
needed for training, as well as scripts for XGBoost and
LightGBM fitting to test both methods. These scripts are
available in the Finnish Meteorological Institute’s (FMI)

Github repository ml-harvesterseasons. The other scripts are
needed for preparing the input data sets for prediction and the
production scripts. These are part of the FMI Github repository
harvesterseasons-smartmet, which contains the entire backend
system supporting the harvesterseasons.com service, including
data fetching, reformatting for ingestion, and production of
value-added datasets including the new ML
prediction workflows.

To prepare training data, we have several Python get-timeseries
scripts that use the requests module to make HTTP requests to our
SmartMet-server Timeseries API. These scripts retrieve for all
LUCAS locations timeseries from ERA5-Land, SWI and
climatology for SWI, and leaf area index (LAI) for each day of
year from 2015 to 2022. Additionally, static variables such as
different land covers or inland-water fractions must be formatted
as timeseries. All these predictors and the predicant SWI are
described in Supplementary Material S2. The timeseries API
allows querying thousands of locations in one request for our
time window. For optimal efficiency, we found that querying
5000 locations per request worked best within the SmartMet-
server’s memory limit. Larger requests extend the responses from
the server more than asking the 63,000 locations across
13 sequential queries.

For training, the script xgb-fit-optuna-swi2.py conducts
Optuna hyperparameter tuning, and xgb-fit-swi2.py reruns the
training using the best hyperparameter settings. Equivalent
scripts for LightGBM are prefixed lgbm-fit-. These scripts are
remarkably like each other since both XGBoost and LightGBM
integrate with scikit-learn. They use the same input training file
and differ mainly in function calls and hyperparameter
attributes. Additional scripts cover the K-Fold analysis, cross-
correlation, and scripts to plot figures for the location maps and
feature importance.

SWI2 prediction generation involves two steps. The first step is
integrated into get-seasonal.sh and get-edte.sh bash scripts. Here, all
input data is regirded to match the output grid specifications: for
seasonal forecasts, the ERA5-Land grid for Europe (from −30° W to
50° E and 25° N to 75° N at 0.1° increments) is used; for EDTE, a 0.04°

grid within the same bounds is required. This step relies heavily on
GNU parallel (Tange, 2018) and Climate Data Operators (CDO)
(Schulzweida, 2023).

The second step is carried out in our self-developed xgb-predict-
swi2-era5l.py and -edte.py scripts. These python scripts use xarray
(Hoyer and Hamman, 2017) to merge the different input grids into a
single data frame that includes all time steps for each input within
the target grid. This data frame is then used by XGBoost to calculate
the grid with the predicted SWI2 values.

Machine learning results

More than 30 model optimization runs for Soil Water Index
level 2 (SWI2) as the target parameter were performed using
subsets of 200 to 42,000 LUCAS points with XGBoost,
LightGBM, or Optuna for both methods. Each Optuna study
was run for 100 trials, meaning up to 100 models were trained
within each study to find the best hyperparameters. For different
training runs, the predictors, number of training locations

FIGURE 7
F-score (gain, predictor importance) for the SWI2 model training
with XGBoost.

Frontiers in Remote Sensing frontiersin.org08

Strahlendorff et al. 10.3389/frsen.2024.1360572

https://github.com/fmidev/ml-harvesterseasons
https://github.com/fmidev/harvesterseasons-smartmet
http://harvesterseasons.com
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1360572


(LUCAS), and/or hyperparameters were varied to assess their
impact on model skill. The final XGBoost ML SWI2 model used
time series data from 10,000 LUCAS locations (Supplementary
Material S2) and reached MAE 5.5%. The details and results for
the model are presented here, with input data specifications
provided in Supplementary Material S2. K-fold cross
validation showed that splitting the time series data (from
2015 to 2022) using 2019 and 2021 as validation years and the
remaining years for training produced the best results.

Hyperparameter tuning, feature
engineering, and validation results

Figures 3, 4 display the Optuna Dashboard views for
hyperparameter optimization (with up to 100 study trials) for
XGBoost and LightGBM, showing the best trial RMSEs. Table 1
presents the best parameters from Optuna hyperparameter
optimization for both XGBoost and LightGBM, and evaluation
metrics for model fitting with tuned parameters. XGBoost
reached RMSE 7.04% (MAE 5.5%) and LightGBM RMSE 7.03%
(MAE 5.5%). Although LightGBM ML training is faster, it tends
toward overfitting. Therefore, given the similar validation results, we
chose to use XGBoost.

Feature selection and predictor importance

The cross-correlation matrix for all 108 parameters (predictand
and predictors) is shown in Figure 5, while Figure 6 highlights the
correlation between the predictand (swi2) and each of the
107 predictors (17 EO derivatives, while rest are reanalysis/IFS
variables). From Figure 5 we see that there are highly correlated
parameters in the training set. To optimize the model, we dropped
half of the predictors, leaving only the most relevant, and avoiding
using many of the highly cross-correlated ones. For instance,
Volumetric Soil Water Layers 1–4 at 00 and 12 UTC (swvl1-4)
are highly correlated, and we ended up using swvl2-00 as predictor
as it corresponds to soil moisture at similar depth to SWI2
(7–28 cm). Similarly, for soil grids predictors, we selected
parameters at 0–30 cm depths for the training set. From the
running cumulative daily sum predictors, only the 15-day sums
were used, as the satellite-based observation product
SWI2 predictand is produced combining satellite surface soil
moisture observations over this time window.

Figure 7 illustrates the F-score (gain) of the XGBoost model,
indicating predictor importance based on usage frequency and
tree placement. Predictors with the lowest F-scores from previous
model runs (e.g., wind variables) were removed, resulting in a
final model with 47 predictors (Supplementary Material S2). The

FIGURE 8
Predictor importance plot for LightGBM trained SWI2 model.
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Soil Wetness Index layer 2 climate (swi2clim) was the most
important predictor, underscoring the effect of local
conditions that are not captured by ERA5-Land data. Swi2clim
also showed the highest correlation with the SWI2 target (see
Figure 6). Volumetric Soil Water Layer 2 (swvl2-00) was the
second most important predictor, both highest ranked predictors
affirming model’s focus on relevant soil moisture dynamics.
These were followed by Soil type (affects the amount of water
in the soil), surface solar radiation downwards, day of year, and
latitude as additional influential predictors. In comparison,
Figure 8 shows the LightGBM model’s importance plot, where
day of year, latitude, longitude, and runoff ranked the highest,
only then followed by swvl2-00 and swi2clim.

ML prediction results

XGBoost downscaling is performed for SWI2 across Europe as
the new ECXSF product for seasonal forecasts and set up to the
SmartMet-server, and as a part of the EDTE products for the
extremes digital twin predictions. Seasonal forecast production
workflow is performed in 9 km resolution (best for comparing to
the ERA5-Land statistically bias-adjusted product). The ML
prediction input data set must have comparable parameters with
the ML training input data set, detailed in Supplementary Material
S3 alongside output product details. Figure 9 displays the SmartMet-
server grid-gui view for the seasonal forecast ECXSF SWI2 product
for September 2023, providing daily data for over 200 days ahead
(approximately 6 months).

To further validate our results, we tested forecasts against data
that was not used in training. Specifically, we ran the prediction
model for April 2021 ECMWF seasonal forecast (SEAS5; Johnson
et al., 2019) for downscaling the AI ECXSF SWI2, and compared it to
the ERA5-Land climatologically bias adjusted seasonal forecast
ECBSF Volumetric soil moisture (swvl2) product. Figure 10
shows the CRPS, CRPS Reliability, and CRPS Potential for
ECXSF SWI2 seasonal forecast compared to SWI2 observations,
remapped to a 9 km grid from the original 1 km resolution for a fair
comparison. We applied a distance-weighted area fraction method
from the Climate Data Operators (CDO) software (Schulzweida,
2023). Figure 11 shows the CRPS and its decomposition for the
ECXSF SWI2 seasonal forecast against SWI2 climate remapped to
the 9 km resolution, while Figure 12 presents the CRPS for the
ECBSF SWVL2 seasonal forecast compared to ERA5-Land
SWVL2 reanalysis. In these figures, the x-axis represents time
from 2021-04-10 to 2021-10-27 the graph colors are red for
Germany, bright green for Spain, blue for Finland, yellow for
France, light blue for Poland, pink for Romania, green for
Sweden, black for Europe as a whole.

These results indicate that the ECXSF climate has a better CRPS
performance than observations. Forecasting upcoming weather with
seasonal forecasts is difficult, but representing climatic trends should
be achievable. Since the CRPS, which for an ensemble forecast
represents the same as MAE for a deterministic forecast, is lower
than our model’s validation scores, the model demonstrates skill.
Furthermore, CRPS Potential scores surpass those for Reliability,
suggesting that climate serves as a strong predictor for soil wetness.
Notably, skill levels vary a lot across different countries and forecast

FIGURE 9
Seasonal forecast ECXSF SWI2 product displayed in SmartMet-server grid-gui plugin for HarvesterSeasons DestinE. Link for a better view here.
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lengths. Most countries have difficulties across the forecast range
without a clear deterioration of skill with longer forecast lead times.
This also suggests that climate overall is a good predictor for soil
wetness. Why certain countries like Poland consistently exhibit
issues over the whole forecast length has likely to do with the
unusual weather during the summer of 2021, making climate-
based predictions challenging. As neighboring country Germany
is similarly a bit less difficult to predict, unusual local weather is a
plausible explanation. Further verifications across different seasons
and the year 2019 could provide deeper insights, though time
constraints limited our analysis in this project.

In Figure 12, the ECBSF and ERA5-Land based bias adjustment
appears to outperform SWI2; however, this comparison may be
biased, as it essentially measures the model against itself, questioning
only the seasonal prediction system’s forecasting skills. An objective
assessment of soil wetness representation skill is therefore absent.
However, the findings indicate that the seasonal forecasts are
gradually improving and approaching climate. Nonetheless, end-

users should be aware when predictions diverge from climate,
especially when such variations are substantial.

Figure 13 examines details for a specific location in central
Finland. The predicted ensemble members, shown in blue, exhibit
over 10% spread, with outliers naturally deviating from the ensemble
median. Compared to SWI2 observations, only a few observations
fall outside the ensemble spread. When compared to
SWI2 climatology (monthly averages from 2015-2022), the
ensemble generally spreads around the observations/climatology
(red lines) but deviates clearly more to wetter or drier conditions
at times. This indicator represents the key information the service
aims to convey to the end-user, successfully predicting a wetter
summer than usual and drier autumn for this location.
Supplementary Material S4 contains similar figures for six
additional locations (one in each CRPS-assessed country), with
results from Sweden, Germany, and France comparable to those
in Finland, while forecasts failed for Romania and Poland. Spain
displayed limited ensemble spread in late summer but performed

FIGURE 10
ECXSF SWI2 against SWI2 observations as reference with decomposition. Top: CRPS. Bottom left: Potential (resolution/uncertainty). Bottom right:
Reliability. Units %.
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well in spring forecasting. The challenges in Romania and Poland
are due to atypical extreme summer weather in 2021, which is
difficult to predict with climate-based skill. Supplementary Material
S4 also includes SWVL2 forecasts based on the bias adjusted
seasonal forecast for the same period compared to the
SWI2 climate. It is noticeably clear that this product lacks
sufficiently strong seasonal signal or ensemble spread.

Discussion

The results indicate that transitioning from reanalysis-based bias
adjusted model data to an Earth Observation-based approach will
answer to our service’s key shortcoming experienced by users related
to summer bearing capacity. The model in its current state is too
close to climate and lacks sufficient spread, seldom signaling the
probability for extremes that are crucial for climate adaptation. The
ML model predicting an EO product offers a more refined and

accurate downscaling, but a service more beneficial to end-users
needs also to be able to indicate extremes without being too tied to
climatological boundaries. The latter cannot yet be concluded in
more statistics, but the location-based figures strongly indicate a
useful product, notably much better than bias adjusted seasonal
forecasts. Supplementary Material S4 verification time series show
that ECBSF SWVL2 is a weak product and requires an update.
Broader analysis across additional locations and forecasts is
recommended for a more comprehensive evaluation of the
ECXSF SWI2 product’s quality.

The Extremes Digital Twin SWI2 forecasts have been
operational only for a brief period. With them verification can be
performed that will also become practical for end-users, providing
them with insights into the forecast’s performance in the past weeks.
In Finland, where the current users are located, SWI2 observations
are only available outside of the snow season, so with winter having
begun early this year, this verification will become useful for the next
summer season.

FIGURE 11
ECXSF SWI2 against SWI2 climate as reference with decomposition. Top: CRPS. Bottom left: Potential (resolution/uncertainty). Bottom right:
Reliability-. Units %.
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Applying ML to downscale model outputs to match EO
products has proven to be feasible. The success of XGBoost was
explainable by logical physical relationships by its feature
importance compared to a similar quality result for LightGBM.
LightGBM’S reliance on features such as dayOfYear, latitude, and
longitude suggests a limited understanding of the physical processes
affecting soil wetness, whereas XGBoost’s key predictors - SWI
climatology, reanalysis soil moisture, soil type, and soil
temperature – offer more physically interpretable results. In the
latter case, the final model is also easier for end-users to understand.
This is a principal factor when applying AI solutions, particularly
when the training dataset must be a subset of the entire available
data. When all available data are used for training, one can assume
that the ML model will fit optimally to the full dataset. However,
when only a subset is used, concerns arise regarding whether this
subset is sufficiently representative of the full dataset. We limited the
training locations in Europe to sites with known land cover
characteristics, derived from LUCAS surveys. While a fully

randomized subset could have worked too, interpretability would
be compromised.

Soil wetness emerges as a robust candidate for climate
applications that use EO data to match high resolution
observations with coarse models for refined forecasts. Soil
wetness captures the cumulative effects of weather over time,
which often helps bridge the gap between spatially differing
observations and model scales. This is particularly true for soil
wetness in-situ measurements, which are highly localized, so a single
measurement is seldom well correlated to model estimates that are
describing the wetness for larger grid areas. The Soil Water Index at
a one-square-kilometer resolution is a bridge between reliable
observations and well-performing models on their respective
scales. Focusing on soil wetness at a depth of 7–28 cm improves
the predictability of our target variable, as changes in subsurface soil
are an accumulation of surface condition variations over multiple
days. Climate is defined as the long-term statistical pattern of a
variable’s states over many years. Combining short periods of

FIGURE 12
CRPS for ECBSF SWVL2 against ERA5-Land reanalysis as reference with decomposition. Top: CRPS. Bottom left: Potential (resolution/uncertainty).
Bottom right: Reliability. Units m3/m3.
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measurements helps align the model with the EO products, as
indicated by the feature importance of both 15-day accumulated
evaporation and precipitation in Figures 7, 8.

Feature engineering of predictors in this ML exercise involved
recognizing the production characteristics of the SWI predictand
and incorporating its seasonal climatology. According to the SWI
documentation, our SWI2 layer should correspond to either the
original SWI10 or SWI15 datasets, where the number signifies the
days over which surface soil moisture observations are aggregated.
We selected SWI15, expanding predictors for precipitation,
evaporation, and runoff to include 15-day running cumulative
sums in addition to daily, 5-day, 60-day and 100-day sums (5 =
SWI1, 60 = SWI3 and 100 = SWI4). Testing with 107 predictors
revealed that the 15-day sums held higher feature importance
compared to other sums. Ultimately, SWI climatology, calculated
as the monthly mean of the years 2015–2022 and interpolated for
each day of the year to ensure a smooth transition throughout the
year, emerged as the most important predictor. Using the average
seemed better than using minimum and maximum bounds, as it
allows the model to project extreme events beyond recorded data.
The nature of decision trees as the underlying AI logic might limit
this capability when relying on minimum and maximum values.

On the technical side, the ability to retrieve data across various
model grids or EO product rasters has been essential for assembling
the training dataset. The FMI open-source data dissemination
system SmartMet-server has proven effective, with most training
data fetched directly from it in tabular form. Its Timeseries interface
handles interpolation to precise locations automatically, based on
the variable’s configuration. While some high-resolution EO data
was retrieved from cloud-optimized GeoTiff files using the
gdallocationinfo program (GDAL/OGR contributors, 2023), the
comparison of these two methods illustrates the strength of APIs
like SmartMet-server’s Timeseries for EO data dissemination.
GDAL allows retrieving data only one file at a time with just two
different output formats. Therefore, depending on timesteps and
variables present in the files, the query must be adapted accordingly.
Unlike GDAL, SmartMet-server’s Timeseries query can include
multiple producers and timesteps and allows data aggregation

and simple math operations between variables, simplifying ML
data preparation significantly.

Conclusion

The key conclusion from our application is positive: an EO-
based AI model can significantly improve the prediction of soil
wetness in Europe. The model is driven by IFS data, combining the
predictive skill of numerical weather prediction and the ability to
distinguish local conditions from satellite-based EO data. AI, and in
our case gradient boosting methodologies, serves as an effective
bridge between these two datasets. A minimum of 5 years of data is
required for the predictand, with ERA5 or ERA5-Land reanalysis
consistently available, offering a broad variety of variables relevant
to the predictand. Since the reanalysis is based on the ECMWF IFS
model system, predictions can be produced across weather, sub-
seasonal, seasonal, and climate periods. The IFS is employed for all
these applications, with data openly available for seasonal and
climate, and with some limitations for weather forecasts.
Applications can be developed globally and for various uses. In
our forestry example, the weather period is directly related to actual
harvesting operations, the seasonal timeframe addresses long-term
operational planning, and the climate considerations assist in
planning investments throughout the forestry production
chain–from forest owners to bio factories.

From a technological standpoint, attention in machine learning
must focus on the representativeness of training data and feature
engineering. In our case, incorporating climatology for SWI
observations was important for success. Eight years of SWI
observations effectively represented both the climate and
sufficient variability across Europe for different soil wetness
events in varying seasons. Utilizing locations with prior
knowledge of their characteristics facilitates the evaluation of
representativeness, and the LUCAS survey locations in Europe
enabled us to achieve this conveniently. Reanalysis data supports
complex feature engineering by combining variables and generating
temporal statistics.

FIGURE 13
Location in Finland ECXSF SWI2 ensemble members timeseries (blue) plot against SWI2 observations (red, left) and SWI2 climate (red, right). Units %.
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There are excellent software tools available for AI development,
making machine learning a user-friendly experience. Gradient
boosting methods are effective when training locations and
predictors can be limited based on the memory available in the
computing system. The challenge in our case will be to expand the
prediction area to grids with higher resolution; however, we still
managed to operate on a system with 225 GB of memory and
64 CPUs for both training and prediction. For more flexible
production, it is essential to enable XGBoost to support
predictions in chunks, rather than requiring the entire grid at once.

Integrating climate adaptation into day-to-day decision making
is challenging, as new predictions are produced many years apart
and the significant changes within one’s domain often seem distant.
Seasonal forecasts provide a monthly evaluation of whether an
application domain faces risks of extraordinary conditions. This
helps to prepare and gradually adapt to a changing climate in a more
tactical manner. Encouraging end-users to utilize this information is
challenging, as most domains, such as forestry, typically plan only
within the period of weather forecasts. Our service,
harvesterseasons.com, has gradually gained more attention, but
for broader success, the information provided must be of high
quality. The outlook for soil wetness appears promising, and the
upcoming summer season will be revealing.
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