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Satellites are now routinely used for measuring water and land surface
reflectance and hence environmentally relevant parameters such as aquatic
chlorophyll a concentration and terrestrial vegetation indices. For each
satellite mission, radiometric validation is needed at bottom of atmosphere for
all spectral bands and covering all typical conditions where the satellite data will
be used. Existing networks such as AERONET-OC for water and RadCalNet for
land provide vital information for validation, but (AERONET-OC) do not cover all
spectral bands or (RadCalNet) do not cover all surface types and viewing angles.
In this Perspective Article we discuss recent advances in instrumentation,
measurement methods and uncertainty estimation in the field of optical
radiometry and put forward the viewpoint that a new network of automated
hyperspectral radiometers is needed for multi-mission radiometric validation of
water and land surface reflectance. The HYPERNETS federated network concept
is described, providing a context for research papers on specific aspects of the
network. This network is unique in its common approach to both land and water
surfaces. The common aspects and the differences between land and water
measurements are explained. Based on early enthusiasm for HYPERNETS data
from validation-oriented workshops, it is our viewpoint that this new network of
automated hyperspectral radiometers will be useful formulti-mission radiometric
validation of water and multi-angle land surface reflectance. The HYPERNETS
network has strong synergy with other measurement networks (AERONET,
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AERONET-OC, RadCalNet, FLUXNET, ICOS, skycam, etc.) and with optional
supplementary measurements, e.g., water turbidity and fluorescence, land
surface temperature and soil moisture, etc.

KEYWORDS

satellite validation, hyperspectral reflectance, in situ measurements, automated network,
radiometry

1 Introduction

1.1 Motivation

Satellites are now routinely used for measuring water and land
surface reflectance and hence parameters such as aquatic
chlorophyll a concentration and terrestrial vegetation indices.
Since these remotely sensed parameters may be significantly
affected by errors in top of atmosphere calibration and
atmospheric correction, radiometric validation at the bottom of
atmosphere is needed for quality control, ensuring that data
reaching end-users are of known quality and that quality issues
are reported to satellite data providers for improvement.

For each satellite mission, radiometric validation is needed
for all spectral bands and covering all typical conditions where
the satellite data will be used, including various water/land types,
sun angles, atmospheric conditions (aerosols, absorbing gases,
scattered and semi-transparent clouds), surface altitudes, spatial
heterogeneity, etc.

1.2 User needs

The users of in situ measurements of water and land surface
reflectance are identified as:

• Satellite operators, including international and national space
agencies and “Newspace” commercial data providers—see
Supplementary Material S1 for a list of target missions.

• Developers of atmospheric correction algorithms
and software.

• Environmental agencies and scientists using in situ
measurements to monitor water or land surface properties.

The user requirements for in situ measurements of water and
land surface reflectance are identified as (Goyens et al., 2018):

• Hyperspectral coverage 380–1020 nm for water and
minimally 380–1700 nm but preferably 380–2500 nm for land.

• Spectral resolution of 5 nm Full Width at Half Maximum
(FWHM) for 380–1020 nm and 10 nm FWHM for
1020–1700 nm.

• Measurements every 30 min during daylight.
• Data provided publicly in Near Real Time (e.g., <1 day) by
web service.

• Fiducial Reference Measurement (FRM) quality, including full
estimate of uncertainty.

• Full nadir/azimuth coverage up to 60° nadir for land surface
reflectance.

In addition to the reflectance measurements, users request
pictures from cameras and information on aerosols and direct/
diffuse irradiance ratio.

Atmospheric applications are specifically excluded here because
aerosol parameters are already well-measured by AERONET
(Holben et al., 1998) and because measurement of absorbing
atmospheric gases (Verhoelst et al., 2021) generally requires
much finer spectral resolution, e.g., sub-nanometre.

1.3 Precursor networks

The user needs of Section 1.2 are partially met by the existing
networks, AERONET-OC for water and RadCalNet for land.

The AERONET-OC 12 band instrument (Zibordi et al., 2021)
matches well the spectral bands of “ocean colour” sensors, but less
well the wide bands of “land” sensors such as Sentinel-2/MSI,
Landsat-8/9, Planet Superdoves, etc.—see Figure 1. Validation of
the new generation of hyperspectral sensors by multispectral ground
measurements is also insufficient (Giardino et al., 2020; Braga et al.,
2022). While aerosol correction can be assessed by a limited set of
multispectral bands, the new potential of hyperspectral satellite data,
e.g., spectral curvature/derivative algorithms (Dierssen et al., 2020;
Lavigne et al., 2022), will require hyperspectral in situ data.

RadCalNet (Bouvet et al., 2019) is designed to provide hyperspectral
radiance at top of atmosphere for the purpose of satellite vicarious (in-
flight) calibration. RadCalNet sites are located in optimal locations with
horizontal homogeneity of the surface and clear, stable atmosphere and
do not cover the more difficult surfaces required for a complete sensor
validation plan. Some sites do not use hyperspectral instruments.
RadCalNet provides only nadir-viewing data.

While both AERONET-OC and RadCalNet must continue to
provide vital data for calibration and validation of satellite missions, it
is our viewpoint that a new in situmeasurement network is needed
to fully satisfy the user requirements for multi-mission water and
land surface reflectance validation. This was the motivation for
setting up HYPERNETS, a federated network of sites running
autonomous hyperspectral radiometer systems to provide
validation data at all spectral bands in the range 380–1700 nm for
all satellite missions with a surface reflectance product.

1.4 The difference between land and water

The land and water optical remote sensing communities have
traditionally operated very separately with different data processing
chains, atmospheric correction algorithms, etc. This separation is driven
by the different user groups and data products, and by different physical
processes, particularly those relevant for atmospheric correction.
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Water is generally much darker than land, exacerbating challenges
for aerosol correction, adjacency effect correction, vicarious calibration,
absorbing aerosol detection/correction, etc. Removal of air-water
interface reflection is an additional challenge, particularly as regards
sunglint removal for near nadir-viewing sensors. However, there are
algorithms that can apply over both water and land surfaces, e.g., iCOR
(Keukelaere et al., 2018) and ACOLITE/DSF (Vanhellemont, 2019).

Land surfaces may have higher spatial heterogeneity at short
length scales (<30 m) and high angular but low temporal variability
of upwelling radiance.

Despite these differences, the HYPERNETS consortium decided to
develop instrumentation and processing for bothwater and land surfaces,
benefitting from the economy of scale for radiometer, host system and
processor development and offering a larger customer base for the new
radiometer. The commonality in data processing and distribution for the
land and water network will also facilitate validation of land and water
surface reflectance simultaneously and open up new opportunities to
study complex interactions between water and land environments.

1.5 Scope and overview of this
Perspective Article

In this Perspective Article we discuss recent advances in
optical radiometry and describe the HYPERNETS federated

network concept (Figure 2). HYPERNETS integrates two
branches for the different surface types: WATERHYPERNET
(Ruddick et al., 2024) and LANDHYPERNET (De Vis et al.,
2024a). Both branches use the newly developed HYPSTAR®
radiometer system, which is the main focus of this article. The
PANTHYR/TriOS radiometer system (Vansteenwegen et al.,
2019) is also included in WATERHYPERNET and in the
summary of results of Section 3.

2Optical radiometry state of the art and
HYPERNETS network design

2.1 Measurement method

For water reflectance measurements, automated above water
radiometry (Zibordi et al., 2009) has proven to be cost-effective.
HYPERNETS adopts the same approach as AERONET-OC for
measurement of water-leaving radiance, Lw, but makes direct
measurement of downwelling irradiance, Ed, using a flat diffuse

FIGURE 1
Spectral bands of typical satellite missions to be validated compared with (top row) the CIMEL CE318TV-12 used in AERONET-OC. The two versions of
the CE318TV-12 instrument are displayed with common bands in red and optional bands in violet. The variant CE318TV-12-LC (“lake colour”) has bands
681 nmand 709 nm,while theCE318TV-12-OC (“ocean colour”) variant CE318TV-12-OC has bands 400 nmand 779 nm. The CE318-TU12 instrument used
for multispectral land surface reflectance measurements (Meygret et al., 2011) has a different set of 9 or 12 spectral bands.1 Satellite bands with central
wavelength falling inside aCE318TV-12 common/optional bandare shown ingreen/blue respectively and those fallingoutside suchbands are shown in black.

1 https://www.cimel.fr/solutions/ce318-t/#specifications
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collector with approximately cosine angular response instead of sun
photometry—see Ruddick et al. (2024).

For land surface reflectance measurements, protocols for
automated radiometry are less mature. Most measurements are
supervised and use a reflectance based method with a reflectance
standard as a reference (Slater et al., 1987). An autonomous
multiangle surface reflectance protocol was developed by Meygret
et al. (2011) for measurement of Hemispherical Conical Reflectance
Factor (HCRF) with a multispectral instrument. This protocol could
not be implemented by HYPERNETS due to the hyperspectral
measurement time, power and data transfer requirements.
HYPERNETS developed a sequential acquisition protocol (De Vis
et al., 2024b), measuring Ed before and after a series of upwelling
radiance, Lu, measurements at nadir and azimuth angles
corresponding to typical viewing geometries of polar-orbiting
satellites—see Supplementary Material S3.

While the basic water and land reflectance measurement
scenarios are sufficient, complementary measurements can be
added, e.g., sunglint pointing for estimation of wave slope
statistics (Goyens and Ruddick, 2023); direct sun radiance
measurement, potentially supplemented with various sky radiance
measurements, for comparison with the direct Ed measurement; a
more complete measurement of land surface HCRF, etc.

2.2 Hyperspectral radiometers

The user requirements of Section 1.2, particularly the spectral
requirements and the need for a pointable radiometer could not be
met by any Commercial Off The Shelf (COTS) radiometer—see Kuusk
et al. (2024). The HYPERNETS consortium therefore designed a new

hyperspectral radiometer, the HYPSTAR®. This innovative design
(Kuusk et al., 2024) is based on spectrometers covering
380–1020 nm at 3 nm FWHM with 0.5 nm sampling interval and
(land units only) 1020–1680 nm at 10 nm FWHM and 3 nm sampling
interval. The spectrometers are multiplexed between alternative optical
paths, one for radiance and one for irradiance, reducing cost and
minimising impact of thermal sensitivity and some absolute calibration
uncertainties on reflectance products. One innovative feature of the
HYPSTAR® radiometer design is the integration of an external LED
source, which can be used at night formonitoring the long term stability
of radiometric calibration. Another useful feature, first suggested in the
OSPREY design (Hooker et al., 2012), is an embedded RGB camera.
This camera has proven extremely useful for troubleshooting
equipment failures and strange radiometric data—at some sites it is
not unusual to see a bird sitting on the radiometer, partially obscuring
the field of view!

2.3 Autonomous system

The HYPSTAR® system integrates the radiometer with a
pointing system, a PC, a power source and data transmission
hardware and associated software/firmware (Doxaran et al., 2024;
Kuusk et al., 2024).

For autonomous systems deployed with minimal maintenance
requirements, and in potentially hostile environments (hot, cold,
wet, salty), remote connection capabilities should be ensured and all
components must be selected for reliability. HYPSTAR® has only
two moving parts, the radiometer multiplexer and the
pointing system.

FIGURE 2
Overall concept of the HYPERNETS network.
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Over the last decade, technological improvements and mass
COTS production have been significant for: pointing systems (now
ubiquitous for security cameras), data transmission (4G),
photovoltaic power and solid state drives.

The HYPSTAR® system (Kuusk et al., 2024), integrates a Will-
Burt Bowler RX pointing system with a Cincoze rugged PC and a
custom-made board integrating relays for efficient power
management. Components were selected for an operating
temperature range of −25°C to +45°C and housings are rated
with Ingress Protection IP66, IP67 or IP68.

Power supply is site-specific, preferably grid power, but
otherwise photovoltaic or wind power with associated battery
and controller. Data transmission is generally by cellular or
cabled internet, but may be manual for some locations, e.g.,
Gobabeb and Antarctica.

System components are attached to mounting structures, which
vary from large platforms to standalone masts. The choice of
platform and mounting location is important for data quality
and should be made to limit optical perturbations of the
radiometric targets by the structure and maximise acceptable
viewing angles—see Section 3.3 of Ruddick et al. (2024).

2.4 Validation sites

A validation network should include sites covering a wide range
of surface types and atmospheric conditions, in particular including
the “difficult cases” where atmospheric correction may fail or
produce poor results.

Water sites should cover a range of turbidity, phytoplankton
biomass and species, Coloured Dissolved Organic Matter
absorption, sun zenith angle, clouds, aerosols, etc. Sites at high
altitude and with strong adjacency effects are also needed.

Land sites should cover a range of substrates and vegetation
including non-vegetated, snow/ice, grassland, agricultural with
various crops and practices, forest with various species, age and
canopy cover, etc.

When comparing satellite and matchup in situmeasurements
it is necessary to consider additional uncertainties associated
with the different wavelength, space, time and angular
coordinates.

A key question for each validation site is the spatial
heterogeneity. Each validation site should be characterised in
terms of spatial variability to give the additional uncertainty
involved in a matchup comparison as function of length scale,
e.g., Dogliotti et al. (2015), Dogliotti et al. (2024), Doxaran et al.
(2024) for water and Morris et al. (2024) for land.

Temporal variability at a validation site, also of importance in
satellite/in situ matchups, can be characterised from time series of
the in situ radiometer measurements (Doxaran et al., 2024).

For land sites, the angular variability of upwelling radiance is
very high for many surface types, particularly for vegetated surfaces
and shadowing surfaces. The BRDF needs to be modelled for each
site (Schunke et al., 2023), using measurements at multiple sun and
viewing zenith and azimuth angles. The separation of spatial and
angular variability may be complex, but should be feasible if data are
collected over sufficient time and for multiple sun and
viewing angles.

The list of currently operated HYPERNETS validation sites is
provided in Supplementary Material S2.

2.5 Data processing and quality control

Network data processing and quality control (De Vis et al., 2024a)
must be centralised and automated to ensure efficient operations and
reliability of data provided to users. Measurements are acquired at the
validation sites every 15–30 min during daylight. Raw data and
metadata are transmitted to computer servers, one for water and
one for land processing.

Identical processing is applied for water and land sites up to the
level of calibrated radiances and irradiances with associated
uncertainties. The derivation of water and land surface
reflectance then uses different measurement functions, but within
a common software framework. This integration of land and water
processing facilitates joint use of quality control tests, e.g.,
comparison of Ed with a clear sky model to check for clouds and
obstructions (including birds).

2.6 Uncertainty estimation

An important feature of the HYPERNETS processor, of
relevance to Fiducial Reference Measurements (Donlon and
Zibordi, 2014; Goryl et al., 2023), is the propagation of
measurement uncertainties from their sources to the final
reflectance data using a Monte Carlo approach (International
Standards Organisation ISO, 2008). The implementation, using
the open source CoMet toolkit,2 preserves temporal and spectral
uncertainty covariance. The covariance information (De Vis et al.,
2024b) provided with the output reflectance ensures that the
uncertainty of downstream products, such as Normalised
Difference Vegetation Index (NDVI) or aquatic chlorophyll a
concentration, can be correctly evaluated.

2.7 Data distribution and network
user support

For optimal user uptake, data from the network will be publicly
distributed through an interactive user interface, and an Application
Programming Interface (API). Data are provided in NetCDF format
with relevant metadata, following the INSPIRE directive, and are
covered by a CC-BY-ND open data licence.

HYPERNETS provides support for both site operators and data
users. Site operators receive installation and troubleshooting advice,
share experiences on site operations and data exploitation in
scientific discussions and receive radiometer calibration and
characterisation services.

A common request from space agencies is for a list of validation
site coordinates to be used in prioritising acquisitions, e.g., during a

2 https://www.comet-toolkit.org/
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commissioning phase. The coordinates of HYPERNETS sites are
provided in Supplementary Material S2.

3 Summary of demonstration results

In Supplementary Material S4, findings from exploitation of
early prototype HYPERNETS data can be found. This includes both
the new HYPSTAR® system and the PANTHYR system
(Vansteenwegen et al., 2019), which is based on the mature
COTS TriOS/RAMSES radiometer.

So far, PANTHYR (Vanhellemont, 2020; Vanhellemont and
Ruddick, 2021; Braga et al., 2022; Vanhellemont, 2023; Ruddick
et al., 2024) and HYPSTAR® (Dogliotti et al., 2024; Doxaran et al.,
2024; Gonzalez Vilas et al., 2024; Ruddick et al., 2024) data have been
used for validation of water reflectance from Landsat-8&9/OLI,
Sentinel-2/MSI, Sentinel-3/OLCI, PRISMA, Aqua/MODIS,
SNPP&JPSS1/VIIRS, and the constellation of PlanetScope Dove
and Superdove satellite data, generally comparing different
atmospheric correction algorithms.

HYPSTAR® data have been used for validation of land surface
reflectance from Sentinel-2/MSI and Landsat-8&9/OLI for a
deciduous forest site (Morris et al., 2024).

HYPERNETS data have also been used for monitoring of water
quality and phytoplankton species (Goyens et al., 2022; Ruddick
et al., 2024).

Finally, the HYPERNETS instrument system and data
processing is also relevant for vicarious calibration of satellites at
top of atmosphere if the deployment site is sufficiently spatially
homogeneous and well-characterised. E.g., De Vis et al. (2024a)
demonstrates use of the HYPSTAR® at Gobabeb (Namibia) and the
Princess Elisabeth Antarctica base for vicarious calibration of
Sentinel-2, Landsat-9 and PRISMA. The HYPSTAR®/Gobabeb
site (Sinclair et al., 2023) has been submitted to the official
application process to become a RadCalNet site.

4 Discussion

We suggest that a new network of automated hyperspectral
radiometers is needed for multi-mission radiometric validation of
water and land surface reflectance. The corresponding HYPERNETS
federated network, now at the stage of demonstrated prototype, has
been described.

A new hyperspectral radiometer has been designed,
manufactured and tested. This radiometer provides high quality
data according to user needs and will be commercialised by the new
company RSware OÜ (https://hypstar.eu).

A host system, built from both COTS and customised
components has been assembled and tested with improvements
in reliability (uptime) over the successive prototype versions.

The new hyperspectral radiometer and associated host system
have been deployed at 22 sites, of which 10 water and 8 land sites are
expected to continue in 2024. The network is expected to expand
slowly in 2024–26 by addition of new international partners.

Data are transmitted from validation sites to central servers, and
are processed daily using automated routines. Data distribution will
be public from web data portals. Pending completion of these data

portals, prototype “beta-release” datasets have been publicly
distributed via www.zenodo.org—see Supplementary Material S5.

Measurement uncertainties are propagated in data processing
using Monte Carlo modelling. The current status includes
uncertainties from replicate noise and radiometric calibration.
Measurement uncertainties from the following processes are in
preparation for future implementation: a) radiometer thermal
sensitivity, straylight and angular response, b) mounting platform
optical perturbations (shading/reflection) and, for water, c) air-
water interface reflected light. Additional uncertainties relating to
space and time differences when using HYPERNETS data for
satellite validation are also being addressed (Dogliotti et al., 2024;
Doxaran et al., 2024; Morris et al., 2024).

While HYPERNETS is designed as a standalone single
measurand network there is a strong interest in collaboration
with other networks. Some HYPERNETS sites are already co-
located with sites from the AERONET, AERONET-OC,
RadCalNet, FLUXNET, IR-ILICO, ICOS, ROMA3 and skycam
networks, and co-location of one or more sites with the
PANDONIA4 network is foreseen. The synergy between co-
located networks provides both economic and scientific benefits:
site infrastructure and maintenance visits can be combined for
multiple instruments providing an economy of scale; data from
HYPERNETS can be intercompared directly with similar
measurands using different methods/instruments from other
networks, e.g., surface reflectance from AERONET-OC and
RadCalNet; HYPERNETS could benefit from information on
aerosol properties from AERONET and atmospheric absorbing
gases from PANDONIA4. HYPERNETS sites can be
supplemented by other measurements, e.g., water turbidity and
fluorescence, land surface temperature and soil moisture, etc.

Based on early enthusiasm from data users, HYPERNETS seems
useful for radiometric validation of water and multi-angle land
surface reflectance. The cost effectiveness of the approach is
clearly demonstrated, e.g., validation of Landsat-8&9/OLI,
Sentinel-2/MSI, Sentinel-3/OLCI, the PlanetScope/SuperDoves
constellation, SNPP&JPSS1/VIIRS, AQUA/MODIS and PRISMA
satellite data at the La Plata Estuary site (Dogliotti et al., 2024).
Exploitation of HYPERNETS data for other applications, e.g.,
satellite vicarious calibration (De Vis et al., 2024b) and water
quality monitoring (Goyens et al., 2022), is also promising.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

3 https://aeronet.gsfc.nasa.gov/; https://aeronet.gsfc.nasa.gov/new_web/

ocean_color.html; https://ceos.org/home-2/wgcv-radcalnet/; https://

fluxnet.org/; https://www.ir-ilico.fr/; https://www.icos-cp.eu/; https://

roma.conicet.gov.ar/

4 https://www.pandonia-global-network.org/
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