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Two L-band passive microwave satellite sensors, onboard the Soil Moisture and
Ocean Salinity (SMOS) launched in 2009 and Soil Moisture Active Passive (SMAP)
launched in 2015, are specifically designed for surface soil moisture (SM)
monitoring. The first global continuous fused L-band satellite SM product
based on SMOS and SMAP observations (SMOS-SMAP-INRAE-BORDEAUX, the
so-called Fused-IB) was recently released to the public. Currently, the
performance of Fused-IB has only been evaluated collectively over the entire
data records in the study period, without specific evaluation for individual
seasons. To fill this gap, this study intercompared the Fused-IB and the
enhanced SMAP-L3 version 6 (SMAP-E) SM products against in situ SM data
from the International Soil Moisture Network (ISMN) from 2016 to 2020 regarding
the whole period and different seasons. We aim to investigate the performance of
these two products at different time scales and to explore the potential eco-
hydrological factors (i.e., precipitation and vegetation) driving their seasonal
variations. Results show that both SM products are in good agreement with
the in situ measurements, demonstrating high median correlation (R) and low
ubRMSD (median R = 0.70 and ubRMSD = 0.058 m3/m3 for Fused-IB vs. R =
0.68 and ubRMSD = 0.059 m3/m3 for SMAP-E) during 2016–2020. For most land
use and land cover (LULC) types, Fused-IB outperformed SMAP-E with higher
accuracy and lower errors, particularly in forests, partly due to the advantage of
the robust SMAP-IB (SMAP-INRAE-BORDEAUX) algorithm used to generate
Fused-IB in forests, which avoids the pronounced saturation effects of
vegetation optical depth caused by relying on optical information. Besides,
both products had superior performances across most LULC types in summer
(JJA) and autumn (SON), yet increased uncertainties were observed in forests,
grasslands, and croplands during spring (MAM) and winter (DJF). These
uncertainties could be mainly attributed to the effects of vegetation growth in
forests, grasslands and croplands, and the interception of water from rainfall
events in grasslands. The results of this study can serve as a reference for
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algorithm developers to enhance the accuracy of SM and thus promote hydro-
meteorological applications that benefit from L-band radiometer soil moisture
products.
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1 Introduction

Surface soil moisture (SM) is a key parameter in the exchange of
mass and energy at the soil-atmosphere boundary, as well as in eco-
hydrological processes, weather, climate, and agricultural
monitoring (Miralles et al., 2013). Over the last two decades, two
L-band passive microwave remote sensing satellites, Soil Moisture
and Ocean Salinity (SMOS) launched in 2009 (Kerr et al., 2010) and
Soil Moisture Active Passive (SMAP) launched in 2015 (Entekhabi
et al., 2010), have demonstrated a strong ability to monitor surface
SM on a global scale (Xing et al., 2023). Recently, Li et al. (2022b)
developed the first global continuous fused L-band SM dataset
retrieved from merging brightness temperature (TB) observations
of both SMOS and SMAP (SMOS-SMAP-INRAE-BORDEAUX,
hereafter the Fused-IB). Fused-IB SM presents advantages over
previous single-sensor-based SM products by increasing the
number of daily overpasses, thus enhancing data coverage for
global hydro-meteorological and ecological applications. In
addition, the fusion of SMOS and SMAP SM products could
ensure continuous availability of L-band SM data, in case one of
the sensors fails.

Comprehensive knowledge of the satellite SM performance at
the seasonal scale or during the growing season is necessary because
1) SM is one of the most important drivers in crop production
estimations and ecology applications which are mainly associated
with seasonal dynamics, and 2) evaluating SM products over the
entire data record may suffer from seasonal biases (Hornbuckle
et al., 2016). For example, Walker et al. (2019) have found that the
SMAP Level 2 SM products fail to meet mission goals in the U.S.
Corn Belt and there is a clear seasonal pattern in the validation
metrics according to their seasonal evaluation. Besides, the
vegetation cycle or intense precipitation periods may reduce the
accuracy of satellite SM retrievals in different seasons (Pratola et al.,
2014). However, most studies have currently evaluated satellite SM
products over the entire data records (e.g., Li et al., 2022a; Li et al.,
2022b; Yi et al., 2023), and there is a lack of assessment regarding
their performances at the seasonal scale. Therefore, exploring the
performance of SM products on a seasonal scale under the effects of
related eco-hydrological factors including precipitation and
vegetation can enhance the identification of uncertainties in SM
products and thus improve their retrieval algorithms. The inter-
comparison of SM products over the entire data records has shown
that the Fused-IB outperformed another well-known merged
satellite SM product, the European Space Agency Climate
Change Initiative (ESA CCI), as well as single products from the
SMOS-IC and original SMAP (Li et al., 2022b). However, as of now,
the robustness of the Fused-IB SM product and its influencing
factors in different seasons have not been investigated.

In this study, we aim to evaluate the performances of global
satellite-based Fused-IB and SMAP-E SM products over the entire

period (overall) and different seasons (seasonal), and carefully
examine the potential errors associated with eco-hydrological
factors that affect the accuracy of the two SM products in
different seasons under different land use and land cover (LULC)
types. The results of this analysis could benefit the long-term
practical applications of the Fused-IB and the SMAP-E SM
products, especially in the eco-hydrological sector, as well as the
improvement of their retrieval algorithms.

2 Data and method

2.1 Satellite-based and ground-based
SM datasets

Two L-band satellite SM products including the Fused-IB
version 1 in the Equal-Area Scalable Earth Grid v2 (EASE-Grid
2) with a 25 km resolution (https://ib.remote-sensing.inrae.fr,
accessed on 2024.05.01) and the enhanced SMAP-L3 version 6
(SMAP-E) in EASE-Grid 2 with a 9 km resolution (https://nsidc.
org./data/ease/index.html, accessed on 2024.05.01) were considered
here. Fused-IB is the first global continuous fused L-band satellite
SM dataset, which was retrieved based on merging TB observations
from SMOS and SMAP sensors at an incidence angle of 40° using the
SMAP-IB algorithm (Li et al., 2022b). Here, the descending Fused-
IB SM dataset from 2016 to 2020 was used since this is the only
available orbit for this product. SMAP-E is derived from the TB of
SMAP Level-1C with the Backus-Gilbert interpolation technique
(O’Neill et al., 2021). The SMAP-E was selected for the comparison
because its measured TB data were used as the inputs of the Fused-IB
SM retrievals. Here, the descending SMAP-E SM product based on
the new baseline algorithm [i.e., Dual Channel Algorithm (DCA)]
from 2016 to 2020 was used. The period of 2016–2020 is a
comprehensive consideration of the available periods of the
Fused-IB (2010–2020) and SMAP-E (April 2015–present) SM
products. Note that despite the validation period of this study
(2016–2020) not being the most recent due to the availability of
SM products, this has little impact on the relative performance
between the products, only potentially affecting the absolute values
of the metrics (Xing et al., 2023).

Following the recommendations provided with the dataset’s
quality control documents, Fused-IB SM pixels were excluded
when “Scene flag > 1” to filter out SM retrievals impacted by
strong topography, pixels covered by urban and water fractions
and frozen soils, and “RMSE > 8 K” to reduce the impact of strong
radio frequency interference (Li et al., 2022b), and contaminated
pixels of SMAP-E were processed following the same quality control
procedures in Xing et al. (2023). Besides, the SM values of both
products out of the range (0–0.6 m3/m3) were also removed. To
ensure consistency with the spatial resolution of Fused-IB, the

Frontiers in Remote Sensing frontiersin.org02

Xing et al. 10.3389/frsen.2024.1440891

https://ib.remote-sensing.inrae.fr/
https://nsidc.org./data/ease/index.html
https://nsidc.org./data/ease/index.html
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1440891


SMAP-E SM product was resampled to a 25 km grid scale with a
bilinear sampling technique.

The ISMN SM observations were regarded as the most
accurate SM product and widely used as the reference product
in the satellite SM-based calibration/validation activities (Dorigo
et al., 2021). Here, the observations measured at the top soil layer
of 5 cm covering from 2016 to 2020 from all sparse and dense
networks were collected (available at https://ismn.geo.tuwien.ac.
at/, accessed on 2024.05.01) to assess the performance of the
Fused-IB and SMAP-E SM products. Besides, the ISMN
observations labeled as “Good” quality within the same 25 km
pixel were spatially averaged, to ensure the high quality of the SM
observations and narrow the spatial resolution discrepancy
between remotely sensed data at a pixel scale and in situ
measurements at a point scale (Li et al., 2022b). In particular,
472-pixel locations at a global 25 km grid were retained and
distributed over distinct LULC types such as forests (covering
95 pixels), shrublands (64), savannas (17), grasslands (175),
croplands (117), and barren land (4) (Figure 1).

2.2 Ancillary datasets

The 25 km EASE-Grid 2 global IGBP Land Cover Classifications
from the Boston University MODIS/Terra Land Cover Data was
utilized to interpret the SM inter-comparison results over the
different land cover types (Knowles, 2004). A total of twelve
MODIS IGBP LULC types covering the corresponding
472 selected pixels were extracted. For convenience, these twelve
LULC types were merged into six main categories of land cover
classifications (i.e., forests, shrublands, savannas, grasslands,
croplands, and barren). More specifically, ENF, EBF, DBF, and
MF were merged as forests, CS, and OS were merged as

shrublands, S and WS were merged as savannas, and C and
CNVM were merged as croplands.

The temporal variability of two potential eco-hydrological
factors including vegetation density and precipitation were used
to investigate the uncertainties associated with the performance of
SM retrievals at the whole and seasonal periods. Vegetation Optical
Depth (VOD), often regarded as a vegetation index, highly
influences the precision of the microwave SM retrievals over the
vegetated regions (Wigneron et al., 2017; Wigneron et al., 2024) and
was used to represent vegetation density, and precipitation is also
strongly related to the quality of satellite SM products (Pratola et al.,
2014). Here, the annual mean VOD provided by the L-band SMAP-
E DCA (SMAP-E DCA L-VOD) and the annual mean total
precipitation derived from the fifth-generation reanalysis global
atmosphere dataset from the European Center for Medium-
Range Weather Forecasts (ERA5) from 2016 to 2020 were
employed (https://www.ecmwf.int/en/forecasts/dataset/ecmwf-
reanalysis-v5, accessed on 2024.05.10). The ERA5 precipitation
data was reprojected to EASE-Grid 2 format and resampled to a
25 km grid scale to be consistent with the Fused-IB SM product with
a bilinear sampling technique.

2.3 Evaluation methods

To ensure a fair comparison, the two satellite SM products were
assessed at the same descending overpass time during the period
from 2016 to 2020. The in situ measurements were matched to the
overpass time of the satellite SM products at each pixel within a
maximum time discrepancy of 1 h. To assess the overall (5 years)
and seasonal (MAM: spring (Mar.–May), summer (JJA: Jun.–Aug.),
autumn (SON: Sept.–Nov.), and winter (DJF: Dec.–Feb.)
performance of the SM products, four commonly used statistical

FIGURE 1
Distribution of the used SMAP footprints. The International Geosphere-Biosphere Programme (IGBP) LULC is shown in the background and was
aggregated to the 25 km grid by dominant class and combined into 17 land cover types including Water, ENF (Evergreen Needleleaf Forest), EBF
(Evergreen Broadleaf Forest), DNF (Deciduous Needleleaf Forest), DBF (Deciduous Broadleaf Forest), MF (Mixed Forests), CS (Closed Shrublands), OS
(Open Shrublands), WS (Woody Savannas), S (Savannas), G (Grasslands), PM (Permanent Wetland), C (Croplands), U (Urban), CNVM (Cropland/
Natural vegetation mosaics), Snow/Ice and Barren. The in situ sites from ISMN are indicated in blue dots.
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metrics including the Pearson correlation coefficient (R), Root Mean
Square Difference (RMSD), unbiased RMSD (ubRMSD), and Bias,
together with the Taylor diagrams were used (Taylor, 2001;
Entekhabi et al., 2010). A more detailed description of these
statistical metrics and Taylor diagram can be found in Fan et al.
(2022), R and ubRMSD are regarded as the top evaluation criteria
following Xing et al. (2021) and Li et al. (2022b) since the spatial
mismatches between the satellite footprints and in situ sites can
affect the bias and RMSD metrics. Besides, the calculated metrics
were only kept for the sites where at least one SM product obtained
significantly positive R values that were higher than 0.4 following
(Al-Yaari et al., 2019; Li et al., 2022a) (this step allows us to further
filter in situ observations that do not adequately represent satellite
observations due to spatial mismatches between them), and the
number of data pairs for each footprint was above 31 (Kolassa
et al., 2017).

3 Results and discussion

3.1 Overall and seasonal performance of the
SM products

Table 1 shows the overall performance of the Fused-IB and
SMAP-E SM products, which were evaluated against the in situ SM
measurements from 2016 to 2020 regarding median values of R,
ubRMSD, RMSD, and Bias for all footprints and six different LULC
types. Evaluation results showed that Fused-IB performed slightly
better than SMAP-E with a higher R and lower ubRMSD value
(median R = 0.70 and ubRMSD = 0.058 m3/m3 for Fused-IB vs. R =
0.68 and ubRMSD = 0.059 m3/m3 for SMAP-E). Particularly in
forests, the median R value and ubRMSD, RMSD value of Fused-IB
is, respectively, 0.68, 0.062 m3/m3 and 0.098 m3/m3, vs. 0.61,
0.070 m3/m3 and 0.107 m3/m3 for SMAP-E, suggesting that
Fused-IB had an advantage over SMAP-E in estimating the
temporal variations of the in situ SM in forests. This is consistent
with the results of Li et al. (2022b), who reported that Fused-IB led to

metrics that were equally good or better than the official SMAP
products. The superior performance of Fused-IB at the global scale
over different LULC types compared to that of SMAP-E could be
partly due to the robustness of the SMAP-IB algorithm compared to
the DCA retrieval algorithm (Table 1), as reported in Xing et al.
(2023). In addition, Fused-IB also has advantages over SMAP-E in
practice due to its higher number of daily overpasses than SMAP-E.
For illustration, the spatial distribution of the number of available
SM retrievals for Fused-IB and SMAP-E in 2016 is shown in Figures
2A, B, respectively. It can be seen the number of available SM
retrievals for Fused-IB is twice as much as SMAP-E, especially in the
mid-low latitude areas. This is because Fused-IB SM merges the
retrievals derived from both SMAP and SMOS data, and thus the
data number at each grid is greatly increased (Figures 2C–H).

Besides, under different LULC types, regarding R, both products
performed better in sparse vegetation areas (e.g., savannas,
grasslands, and croplands) than in dense vegetation areas (e.g.,
forests and shrublands). The lowest R for both SM products on
drylands could be due to the inherent aridity of these areas and the
limited number of footprints for evaluation. The limited dynamic
range of SM time series on barren land may not be sufficient to be
effectively detected by radiometers (Figure 2H). In terms of
ubRMSD, RMSD, and Bias, slightly larger errors were found in
forests, grasslands, and croplands with a median ubRMSD, RMSD
and absolute Bias value higher than 0.059 m3/m3, 0.096 m3/m3 and
0.049 m3/m3 for Fused-IB and 0.058 m3/m3, 0.074 m3/m3 and
0.009 m3/m3 for SMAP-E, respectively. Although the evaluation
results over the whole study period showed high accuracy in
catching the temporal variations in in situ SM, some
uncertainties were observed in forests, grasslands, and croplands,
which could be partly due to the seasonal biases of the SM retrievals
(Walker et al., 2019). To better investigate the performance of the
two SM products at the seasonal scale, the statistical metrics for
Fused-IB and SMAP-L3 SM products under different LULC types
for each season were considered.

Figure 3 shows the Taylor diagrams of the three metrics for
Fused-IB and SMAP-L3 SM products under different LULC

TABLE 1 Statisticalmetrics (i.e., R, ubRMSD, RMSD, and Bias) of Fused-IB and SMAP-E comparedwith ISMNdata from 2016 to 2020. The best performance of
the three SM datasets for all footprints and six different IGBP LULC types is highlighted in bold. The number of footprints and average data pairs (Fused-IB/
SMAP-E) for each LULC are also shown. Red <Orange < Yellow < Light green <Green <Dark green represents the code of colors from the poorest to the best
metrics for each product and performancemetrics across the six LULC types. The p-values for the t-tests between the overall statisticalmetrics obtained by
the two SM products are lower than 0.05.

IGBP LULC Forests Shrublands Savannas Grasslands Croplands Barren Overall

R Fused_IB 0.68 0.63 0.77 0.71 0.72 0.50 0.70

SMAP_ E 0.61 0.64 0.76 0.68 0.73 0.52 0.68

ubRMSD Fused_IB 0.062 0.046 0.056 0.059 0.059 0.030 0.058

SMAP_ E 0.070 0.048 0.055 0.063 0.058 0.036 0.059

RMSD Fused_IB 0.098 0.068 0.069 0.099 0.096 0.040 0.094

SMAP_ E 0.107 0.069 0.082 0.074 0.078 0.063 0.079

Bias Fused_IB −0.049 −0.037 −0.006 −0.075 −0.064 −0.003 −0.061

SMAP_ E 0.047 0.016 0.050 −0.009 0.013 0.053 0.009

No. of footprints 95 64 17 175 117 4 472

No. of data (mean) 585\(510) 692\(546) 622\(488) 590\(466) 765\(624) 428\(346) 646\(524)
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types in the four seasons. It can be seen that the performance of
the Fused-IB SM product was generally better than that of
SMAP-E in the four seasons, as the scatters for Fused-IB are
closer to the observations, in line with the overall evaluation
result (Table 1). Regarding different seasons, both products had
higher performance across most LULC types in the summer
(JJA) and autumn (SON) seasons, with the normalized STD
values lower than 1 and R values ranging from 0.5 to 0.7. In
contrast, larger uncertainties were observed in forests,
grasslands, and croplands during the spring (MAM) and
winter (DJF) seasons with STD values higher than 1 and
centered RMSE higher than 0.7. The dispersed scatters in DJF

for both Fused-IB and SMAP-E could be due to the limited
number of data and sites available in this season considering the
influence of frozen ground.

3.2 Sensitivity of the SM products’
performance to eco-hydrological factors

The potential eco-hydrological factors affecting these seasonal
performances, including vegetation density and precipitation, were
collected to carefully investigate the errors associated with the two
SM retrievals at different time scales. To achieve this, the R values

FIGURE 2
Overview of the number of available SM retrievals in 2016. (A,B) show the spatial distribution of the number of SM retrievals available for Fused-IB and
SMAP-E, respectively. The other six subplots show illustrations of the time series of the two SM products and in situ measurements in the sites
corresponding to (C) forests (109.08°W, 48.36°N), (D) shrublands (5.42°W, 41.38°N), (E) savannas (120.80°W, 38.17°N), (F) grasslands (116.01°W, 41.53°N), (G)
croplands (120.80°W, 53.32°N), and (H) barren (115.31°W, 33.80°N). Daily precipitation obtained from the ERA5 product is indicated by orange
vertical bars.
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between the potential factors and the overall and seasonal
performances of the two SM products [the latter were
represented by the performance metrics (i.e., R, ubRMSD, RMSD,
and absolute Bias) between the SM products and the observations
shown in Table 1; Figure 3A] were calculated (Figure 4). Then, to
explore the errors associated with SM product under different LULC
types and time scales, further statistics were made by calculating the
R values between the potential factors and the R of the two SM
products in different LULC types over the overall study period and
for different seasons (Table 2). To ensure the robustness of the
results, only the potential factors that obtained a significant
(p-value < 0.05) correlation with the metrics of the SM products
were discussed.

3.2.1 Vegetation density
Regarding the whole study period, significant negative R

values between L-VOD and the accuracy (i.e., R values calculated
between each of the two SM products and ISMN observations) of
the two SM products were observed (R = −0.10 for Fused-IB and
R = −0.18 for SMAP-E), and almost all the other three error
metrics (i.e., ubRMSD, RMSD and Bias values calculated
between each of the two SM products and ISMN
observations) of the two SM products had significant positive
correlations with L-VOD (Figures 4A, B). This suggests that
both Fused-IB and SMAP-E performed better in sites covered
with sparse vegetation than in sites with dense vegetation covers.
This can be explained by the fact that the soil signal contributing

FIGURE 3
Taylor diagrams of the three metrics for Fused-IB (blue) and SMAP-E SM (red) products under different IGBP LULC in (A) spring (MAM), (B) summer
(JJA), (C) autumn (SON) and (D) winter (DJF). The long dashed curves represent the centered Root Mean Square Error (cRMSE).
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FIGURE 4
Bars of the correlation coefficients (R) between the four metrics of (A) Fused-IB and L-VOD, (B) SMAP-E and L-VOD, (C) Fused-IB and precipitation,
and (D) SMAP-E and precipitation under the overall study period and different seasons (i.e., spring (MAM), summer (JJA), autumn (SON) and winter (DJF)).
The relationship with correlation coefficients significant (P-Value < 0.05 or 0.01) is labeled with * or ** above each bar.

TABLE 2 Statistics of the spatial correlation coefficients (R) between the R metrics (obtained by validating each SM products with the ISMN observations)
and eco-hydrological factors (i.e., L-VOD, precipitation) across all in situ sites for different seasons [i.e., spring (MAM), summer (JJA), autumn (SON), and
winter (DJF)] in various IGBP LULC types.

Environment factors in
different seasons

L-VOD Precipitation

MAM JJA SON DJF MAM JJA SON DJF

Fused-IB Forests −0.35* 0.05 0.08 −0.24 −0.17 −0.02 0.11 0.11

Shrublands −0.09 −0.31* 0.07 −0.23 0.09 −0.04 −0.04 −0.04

Savannas −0.53 −0.39 −0.50* 0.21 0.01 0.01 0.44** 0.44**

Grasslands −0.27** 0.03 0.28** −0.05 −0.28** 0.35** 0.18 0.18

Croplands −0.22* 0.01 −0.05 −0.13 −0.08 −0.02 −0.27 −0.27

Overall −0.28** 0.01 0.01 −0.17* −0.12* 0.17** 0.06 0.06

SMAP-E Forests −0.37* 0.08 0.02 −0.05 0.04 0.12 0.18 0.18

Shrublands −0.21 −0.35** −0.23 −0.15 −0.03 −0.19 −0.07 −0.07

Savannas −0.04 −0.40 −0.53* 0.24 0.51* −0.09 0.36* 0.36*

Grasslands −0.27** 0.06 0.13 −0.22 −0.29** 0.31** 0.01 0.01

Croplands −0.18 0.07 −0.02 0.09 0.04 −0.05 −0.15 −0.15

Overall −0.21** 0.01 −0.06 −0.12 0.03 0.13** 0.05 0.05

The relationship with significant correlation coefficients (p-value < 0.05 or 0.01) is labeled with * or **.
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to the total above canopy emission is more attenuated over dense
vegetation, leading to higher uncertainties in SM retrievals over
densely vegetated regions than over sparse ones (Grant et al.,
2008). Besides, higher absolute R values between the metrics
obtained between SM retrievals and L-VOD were generally
found for SMAP-E rather than for Fused-IB, indicating the
performance of SMAP-E SM was more sensitive to the
attenuation effect of vegetation than Fused-IB. This could be
because SMAP-E incorporates optical information into the
algorithms, leading to the compromise of the independence of
L-VOD in accurately reflecting the real-time dynamic in the
vegetation water content and biomass (Li et al., 2022a).

As for different seasons (Table 2), significant negative R values
between L-VOD and the accuracy of the two SM products were
observed mainly in MAM (R = −0.28 for Fused-IB and R = −0.21 for
SMAP-E). Significant negative R values between L-VOD and the R
of SM retrievals in forests (R = −0.35), grasslands (R = −0.27), and
croplands (R = −0.22) for Fused-IB and forests (R = −0.37) and
grasslands (R = −0.27) for SMAP-E were found in MAM. Namely,
for forests, grasslands, and croplands, the decreasing performance of
the SM retrievals in densely vegetated regions could be mainly
attributed to the uncertainties in the SM retrievals in MAM. This
could be explained by the fact that changes in soil surface roughness
occur simultaneously with changes in vegetation effects
(parameterized by L-VOD during the growing season), while the
roughness parameter is assumed to be static (Patton and
Hornbuckle, 2013), and any increases in surface roughness are
interpreted by the DCA or SMAP-IB algorithm as increasing
vegetation (Walker et al., 2019). For example, as illustrated in
Figure 2G, the SM products were too wet and noisy for
croplands in early MAM, suggesting that the changes in
croplands caused by land management activities and vegetation
growth led to wetter SM retrievals. Using a dynamic soil surface
roughness in MAM may be useful to better retrieve the L-VOD
variations and thus improve the accuracy of SM retrievals during
this season.

3.2.2 Precipitation
SM is mainly driven by precipitation which is partly linked

to antecedent SM as wet soil evaporates water into the
atmosphere (Koster et al., 2004). As indicated in Figures 4C,
D, positive R values between precipitation and the R values of
the two SM products were observed except for in MAM for
Fused-IB. This can be explained by the fact that precipitation
events can lead to high amplitude in the SM dynamics and thus
enhance the ability of SM retrievals to catch the temporal
variations of in situ SM (i.e., R values calculated between SM
retrievals and in situ measurements) (Table 2). However,
negative R values between precipitations and R values
calculated between Fused-IB and in situ measurements in
MAM. The potential reasons could be the frequent and heavy
rainfall during this period. In many regions, MAM is
characterized by frequent and heavy rainfall. This frequent
rainfall causes rapid changes in SM, making it challenging
for remote sensing observations to capture these changes
accurately, thereby affecting SM inversion accuracy (Suman
et al., 2021). Furthermore, similar to L-VOD, almost all the
three metrics (i.e., ubRMSD, RMSD, and Bias) calculated

between the two SM products and the in situ measurements
had significant positive correlations with precipitation during
the whole study period and at most seasonal scales. This could
be attributed to the influence of water interception by the
vegetation canopy and ground litter effects, which have a
significant effect on the upwelling microwave radiative TB
observations (Saleh et al., 2006; Grant et al., 2007; Wigneron
et al., 2007). For example, some results have shown that the
effects of precipitation interception by the vegetation canopy
may increase retrieved L-VOD by two or three times during and
after rainfall in natural grass (Saleh et al., 2006). Although, no
general rules can be used to define how precipitation
interception affects the accuracy of SM retrievals
(Hornbuckle et al., 2006; Saleh et al., 2006), accounting for
some specific effects linked to precipitation interception by the
canopy and litter would be of great importance to improve SM
retrievals derived from passive microwave satellite data as
suggested by Wigneron et al. (2017).

4 Conclusion

The satellite-based Fused-IB and SMAP-E SM products were
intercompared against the ISMN observations from 2016 to
2020 over the whole period and different seasons, allowing
the investigation of the accuracy performance of these two
products at different time scales and exploring the potential
eco-hydrological factors that influence their performance. The
results from the evaluation over the whole period showed that
both Fused-IB and SMAP-E SM are in good agreement with the
in situ measurements with high median R and low ubRMSD
(median R = 0.70 and ubRMSD = 0.058 m3/m3 for Fused-IB vs.
R = 0.68 and ubRMSD = 0.059 m3/m3 for SMAP-E). Besides,
Fused-IB performed well compared to SMAP-E with higher
accuracy and lower errors in most LULC types when both SM
products were intercompared under the same number of
footprints, particularly in forests. This result could be partly
due to the advantage of the robust SMAP-IB algorithm over the
dense vegetation regions, and the high daily coverage of the
Fused-IB SM product. Regarding the evaluation over the four
seasons, the Fused-IB SM product generally outperformed
SMAP-E. Besides, both products had superior performance
under most LULC types in JJA and SON, but presented
higher uncertainties in forests, grasslands, and croplands,
particularly during MAM and DJF. The lower performance
found in DJF for both Fused-IB and SMAP-E could be due to
the limited number of data and sites in this season considering
the influence of frozen ground. The uncertainties of both SM
products in MAM could be mainly attributed to the impact of
vegetation growth in forests, grasslands, and croplands, and the
rainfall in grasslands. This suggests that utilizing a dynamic soil
surface roughness parameterization in the retrieval algorithm
may improve the L-VOD retrievals (Konkathi and Karthikeyan,
2022) and thus improve the accuracy of the SM retrievals during
that season, accounting for some specific effects linked to
precipitation interception by the canopy and litter in the SM
retrieval algorithms may also contribute to improving accuracy
of the retrieved SMOS and SMAP SM products.
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