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Biological sources are significant contributors to aquatic soundscapes.
Soniferous fish can dominate the soundscape in certain locations, at specific
times and frequencies, particularly during the production of choruses. Passive
acoustic monitoring of fish choruses can provide important ecological
information about soniferous fish populations. This study presents the
Australian Fish Chorus Catalogue, an inventory of fish choruses detected from
83 locations in Australian estuarine andmarine waters. The Australian Fish Chorus
Catalogue contains data on fish chorus occurrence and the spectral and temporal
measurements, spectrographic images, and audio examples of 301 fish choruses.
This catalogue has been developed to establish the foundations of an ongoing
effort to document, quantify, compare, and track Australian fish choruses. We
hope this open-access data depository will be used as a reference for future
research and will facilitate an increase in understanding of fish choruses, which
can then be applied to the monitoring and management of fish populations and
their respective ecosystems.

KEYWORDS

fish chorus, unknown fish sounds, passive acoustics, spatiotemporal distribution,
soundscape, spectral analysis, data repository

1 Introduction

Fishes are prolific sound producers. Over 1,000 fish species have been documented to
produce sound passively or actively (Slabbekoorn et al., 2010; Looby et al., 2022). Active fish
sounds are typically produced through the oscillation of the swim bladder by specialised
sonic muscles or through the stridulation of bony body parts such as fin rays or pharyngeal
teeth (Kaatz, 2002; Kasumyan, 2008; Fine and Parmentier, 2015). Fishes produce sound in
support of key life functions, including: feeding, courtship, breeding, aggregation, and
territorial aggression (Moulton, 1958; Fish and Mowbray, 1970; Ladich, 2015). Many
species produce sound en masse during these behavioural functions (Mok and Gilmore,
1983; Connaughton and Taylor, 1995; McCauley, 2012; Borie et al., 2019), which is referred
to as a fish chorus.

A standardised definition of a fish chorus has yet to be established. The definition of a
biological chorus outlined by Cato (1978) (“when noise from many individuals is
continuously above background for an extended period using an equipment averaging
time of 1 s”) is widely applied in fish chorus literature and, therefore, will be utilised for this
study. However, it is important to note that there are variations across the literature

OPEN ACCESS

EDITED BY

Delwayne Roger Bohnenstiehl,
North Carolina State University, United States

REVIEWED BY

T. Aran Mooney,
Woods Hole Oceanographic Institution,
United States
Aude Pacini,
University of Hawaii at Manoa, United States
Joseph John Luczkovich,
East Carolina University, United States

*CORRESPONDENCE

Lauren Amy Hawkins,
laurenhawkins799@gmail.com

RECEIVED 30 July 2024
ACCEPTED 25 October 2024
PUBLISHED 12 December 2024

CITATION

Hawkins LA, Erbe C, Becker A, Browne CE,
McCordic J, McWiliam J, Parnum IM,
Parsons MJ, Rivero N, Ward R, White-Kiely D
and McCauley RD (2024) The Australian fish
chorus catalogue (2005–2023).
Front. Remote Sens. 5:1473168.
doi: 10.3389/frsen.2024.1473168

COPYRIGHT

© 2024 Hawkins, Erbe, Becker, Browne,
McCordic, McWiliam, Parnum, Parsons, Rivero,
Ward, White-Kiely and McCauley. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Remote Sensing frontiersin.org01

TYPE Original Research
PUBLISHED 12 December 2024
DOI 10.3389/frsen.2024.1473168

https://www.frontiersin.org/articles/10.3389/frsen.2024.1473168/full
https://www.frontiersin.org/articles/10.3389/frsen.2024.1473168/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2024.1473168&domain=pdf&date_stamp=2024-12-12
mailto:laurenhawkins799@gmail.com
mailto:laurenhawkins799@gmail.com
https://doi.org/10.3389/frsen.2024.1473168
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2024.1473168


regarding the exact parameters (and their quantities) that constitute
a fish chorus. This variation is mainly in regards to the number of
individuals producing the sound, the duration of the chorus, and the
increase in sound levels within the fish chorus characteristic
frequency band. Fish choruses can be species-specific (Mok and
Gilmore, 1983; Luczkovich et al., 1999; Parsons et al., 2009) and are
typically categorised into types based on spectral and temporal
characteristics.

A variety of spectral parameters have previously been used to
delineate fish chorus types. These include: the characteristic
frequency band, peak frequency, and centre frequency of the
chorus, as well as the call duration, pulse repetition frequency,
and pulse number of the calls of which the chorus was
comprised (Parsons et al., 2016; Parsons et al., 2017; McWilliam
et al., 2018; Di Iorio et al., 2018). The spectral parameters of a fish
chorus can be species-specific (Sprague et al., 1998; Luczkovich et al.,
1999; Parsons et al., 2013c) as they can be related, in large part, to the
sound-producing mechanisms of the individual fish (Brawn, 1961;
Fine et al., 1997; Kaatz, 2002; Lagardère and Mariani, 2006; Parsons
et al., 2013a; McCauley and Cato, 2016). For example, the swim
bladder and its associated musculature have long been associated
with sound production across many fish species (Brawn, 1961; Fine
et al., 2001; Fine, 2012; Fine and Parmentier, 2015; Mok et al., 2020).
Fish chorus types are also characterised by patterns in the
chorusing activity.

Diel, lunar, seasonal, and annual patterns in fish chorus presence
and activity have been used to define the temporal characteristics of
fish choruses (Wall et al., 2013; Mahanty et al., 2016; Siddagangaiah
et al., 2021a). Fish choruses commonly demonstrate characteristic
and, in some circumstances, species-specific patterns in the presence
or activity across these temporal extents (McCauley, 2012; Parsons
et al., 2016; McWilliam et al., 2017; Siddagangaiah et al., 2021a). The
nature of these temporal patterns often provides insights into the
biological function of the respective chorus. For example, it has been
hypothesised that choruses that are present every evening, year-
round may be associated with feeding behaviours (McCauley, 2012;
McCauley, 2001; McCauley and Cato, 2016; Panicker and Stafford,
2023); however, this has yet to be ground-truthed in the field. Fish
choruses that demonstrate seasonality in their presence are more
likely to be associated with courtship or breeding behaviours
(McCauley, 2001; Van Hoeck et al., 2023; Montie et al., 2015;
Connaughton and Taylor, 1995). The temporal distribution of
these choruses and the biological functions they are associated
with are typically driven by environmental rhythms.

Fish chorus activity has previously been associated with
particular environmental cues. Siddagangaiah et al. (2021a),
McWilliam et al. (2017), Parsons et al. (2016), McCauley (2012),
Locascio and Mann (2011), and Parsons (2009) (just to name a few)
have reported significant relationships between fish chorus activity
and temperature, lunar phase, and tidal regime. Parsons (2009)
identified salinity as one of the drivers of deviations observed in the
mean sound pressure levels of a mulloway (Argyrosomus japonicus)
chorus recorded in the Swan River, Western Australia, and Mann
and Grothues (2009) reported a correlation between advection
events in the mid-Atlantic Ocean and a significant reduction in
fish chorusing. Luczkovich et al. (2024) determined that chorus
activity was impacted by hypoxia events, and McWilliam et al.
(2017) highlighted a significant negative relationship between wind

speed and calling intensity of fish choruses recorded off Lizard
Island, Queensland. Variations in fish chorus activity have also been
associated with anthropogenic noise (Ceraulo et al., 2021;
Siddagangaiah et al., 2021b) and significant natural events such
as cyclones (Mahanty et al., 2019; Locascio and Mann, 2005).
Identification of the patterns of fish chorus behaviour facilitates
the tracking of the response of the chorus source species to these
different types of environmental stimuli. Tracking these patterns
over time will enable researchers and managers to understand how
natural and anthropogenic changes may currently affect these fish
populations and predict future impacts. For this to be achieved, the
distribution, diversity, drivers, and characteristics of fish choruses
need to be better understood.

Over 50 suspected fish chorus types have been identified in
Australian waters since 1978 (Cato, 1978; Kelly et al., 1985;
McCauley, 2001; McCauley and Cato, 2000; McCauley and Cato,
2016; Parsons et al., 2013b; Parsons et al., 2016; Parsons et al., 2017;
McWilliam et al., 2018; Ward et al., 2019; Parsons, 2009; Hawkins
et al., 2023). These fish choruses were recorded in aquatic
environments ranging from riverine, estuarine, and coastal to
coral reefs; islands; the continental shelf; deep offshore waters;
and submarine canyons. Some Australian recording sites have
demonstrated a high diversity of fish chorus types (Parsons et al.,
2017; Parsons et al., 2016; Hawkins et al., 2023), varying across times
of the day or during different seasons (Parsons et al., 2017; Parsons
et al., 2016; McWilliam et al., 2017; Parsons et al., 2013b). Given the
variety, abundance, and dominance of fish choruses in Australian
soundscapes, documenting those of known and unknown origins
provides valuable information for monitoring and management
purposes (Di Iorio et al., 2021; Parsons et al., 2022).
Documenting fish choruses can assist in delineating fish
distribution (Pagniello et al., 2019; Rountree and Juanes, 2017)
and habitat use (Walters et al., 2009; Ricci et al., 2017;
Luczkovich et al., 2008), monitoring spawning aggregations
(Monczak et al., 2017; Picciulin et al., 2020; Ricci et al., 2017),
indicating biodiversity (Hawkins et al., 2023), and in certain
circumstances, quantifying the abundance of fish populations
(Parsons, 2009; Rowell et al., 2017; Sprague and Luczkovich,
2011). Baselines of fish chorus distribution and spatiotemporal
patterns can be utilised for comparisons with future records to
assess the impacts of natural and/or anthropogenic change. Future
studies may also use fish chorus parameters and descriptions as part
of a weight-of-evidence approach to identify chorus source species
(McCauley and Cato, 2016). Large-scale mapping of fish choruses is
also essential to enhance the scientific understanding of how
acoustic communities interact and how they are related. To
achieve this, fish choruses need to be identified and baselines of
long-term distribution and chorusing patterns documented across
significant spatial and temporal extents.

Historically, passive acoustic monitoring (PAM) data have been
collected across limited spatial and temporal extents (Ross et al.,
2023). However, there is now a movement to prioritise mapping,
analysis, and comparison of soundscapes and particular soniferous
species at a regional to global scale (Looby et al., 2022; Parsons et al.,
2022; Looby et al., 2023a; Darras et al., 2024). The viability of
collecting large acoustic datasets has traditionally been restrained by
storage and data processing requirements, in addition to the time
and effort required to manually analyse all of the data (Napier et al.,
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2024). Recent technological advances are starting to tackle these
challenges, making PAM more accessible (Gibb et al., 2019). Cloud
storage is evolving, facilitating the storage of larger volumes of data
and allowing for much faster upload and download speeds (Napier

et al., 2024). Additionally, machine learning and signal processing
techniques are evolving rapidly, significantly shortening data
analysis times, which is allowing large amounts of raw data to be
analysed (Napier et al., 2024). Raw acoustic data are increasingly

FIGURE 1
Conceptualisation of the four stages of the AFCC development process.
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being shared with greater accessibility. For instance, federally
funded acoustic data in the U.S. have been made available
online through NOAA’s National Centres for Environmental
Information (NCEI) (Wall et al., 2021), and long-term PAM
data collected at several locations in Australian waters have been
made available on the Australian Ocean Data Network (AODN),
collected from a series of passive acoustic observatories as part of
Australia’s Integrated Marine Observing System (IMOS, 2023).
These are just a few examples; for a more comprehensive list of
open-access underwater acoustic datasets, please refer to The UK
Acoustics Network (2024). Despite this increase in data
availability, PAM research is still hindered by the lack of
standardisation and transparency in acoustic data collection,
processing, and analysis protocols, as well as the limited
availability of open-access reference sound libraries (Gibb
et al., 2019).

Reference libraries are an essential tool for the application of
PAM in ecological research. An audio reference library is defined as
“a collection of (annotated) audio recordings with known species
identities, used as type-specimen references for identifying species in
new recordings” (Ross et al., 2023). These annotated collections
provide essential baselines for the comparison of known and
unknown sounds (Browning et al., 2017; Parsons et al., 2022).
Several open-access reference libraries feature recordings of fish
calls (Fish and Mowbray, 1970; Vigness-Raposa et al., 2012;
Kaschner, 2012; Scholes, 2015; Looby et al., 2023b, Ocean
Networks Canada, 2024; Sonothèque, 2024, The British Library,
2024; Tierstimmenarchiv, 2024; FonoZoo, 2024); however, to the
authors’ knowledge, limited effort has been made to create a library
of fish choruses beyond a local-scale extent. In this data paper, we
present the Australian Fish Chorus Catalogue (2005–2023) (AFCC,
Hawkins et al. (2024)). This catalogue is the first benchmark
reference library of 301 described fish choruses, produced by
predominantly unknown fish species and recorded at
83 locations in marine and estuarine waters around Australia.
Each fish chorus entry includes audio and spectrographic
records, seasonal presence data, and measurements of chorus
spectral parameters extracted using reproducible methodologies.
The catalogue is an open-access data repository available on the
AODN. Development of the AFCC is ongoing, and future work will
focus on expanding the coverage of Australian soundscapes,

undertaking classification of fish chorus types, and identifying
source species.

2 Methods

The AFCC has been developed to document
previously unreported Australian fish choruses and
collate them alongside previously reported Australian fish
choruses in a format that allows for comparisons with
existing and future fish chorus recordings. The catalogue
was created in four stages, and these are conceptualised
in Figure 1.

2.1 Stage 1: data collection

The acoustic recordings analysed in this study were collected
from 169 underwater acoustic recorder deployments undertaken at
83 locations in Australian marine and estuarine waters from
2005 to 2023 (Supplementary Table S1; Figure 2). Data
collection was undertaken by the Centre for Marine Science and
Technology (CMST), the Australian Institute of Marine Science
(AIMS), the New South Wales Department of Primary Industries
(NSW DPI), Parks Australia, and the National Oceanic and
Atmospheric Administration (NOAA). Recording lengths
ranged from 8 days to over a year in duration, sampling
frequencies ranged from 3 to 96 kHz, and sampling schedules
varied between locations (Supplementary Table S1). Twenty
deployments were undertaken as part of the Australian
Integrated Marine Observing System (IMOS (2022)). The IMOS
is a nationally coordinated program that consists of a network of
oceanographic observing equipment (historically including passive
acoustic observatories at selected sites) deployed throughout
Australia’s coastal areas and open oceans (IMOS, 2022; Lynch
et al., 2010). Recordings from the IMOS deployments are freely
accessible under a Creative Commons Attribution 4.0
International License (IMOS, 2023). Seven types of acoustic
recorders were used to collect the acoustic recordings. The
details of these recorder types are outlined in Table 1. These
include the Centre for Marine Science and Technology and
Defence Science and Technology Organisation underwater
sound recorders (CMST-DSTO USRs, McCauley et al. (2017))
and Ocean Instruments SoundTraps. CMST-DSTO USRs were
most commonly deployed recorder type (Supplementary Table
S1); these included all the IMOS deployments. The remaining
acoustic recordings were acquired using SoundTrap ST500, ST300,
or ST202s. Data pre-processing and analysis were tailored to the
respective recorder type.

2.2 Stage 2: data pre-processing

The acoustic recordings were pre-processed using a MATLAB
(The MathWorks Inc., Natick, MA, United States) toolbox, the
CHaracterisation Of Recorded Underwater Sound (CHORUS)
(Gavrilov and Parsons, 2014). CHORUS and its respective User
Guide are available free for download at http://cmst.curtin.edu.

FIGURE 2
Locations of the AFCC recording sites.
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au/products/chorussoftware/ under a single-user license
agreement (Gavrilov and Parsons, 2014). This toolbox was
designed and built at CMST. Recorder-specific settings were
used to pre-process the data. The timing data of each
recording were extracted, the calibrated power spectral density
(PSD) of each recording file was calculated, and the
PSDs were corrected for the frequency response of the
respective hydrophone and system. The CHORUS toolbox pre-
processing functions that were used in this process included
the following: 1) CMST_LF_data_preprocessing, 2) CMST_HF_

data_preprocessing, and 3) ST_data_preprocessing. The
CHORUS_GUI function was then used to manually identify
fish choruses.

2.3 Stage 3: data analysis

2.3.1 Manual fish chorus identification
For each dataset, fish choruses were identified via manual

scrutiny of 1) long-term spectral averages (LTSA, 7 days in

TABLE 1 Information of the hydrophones used for acoustic data collection.

Acoustic
recorder type

Hydrophone
type

Manufacturer Calibration References

CMST-DSTO USR HTI 90-U High Tech Inc., Long Beach, MS,
United States of America.

Calibrated from 1 Hz to the Nyquist frequency
before each independent recording was taken
using a white noise generator at −90 dB re
1 V2/Hz.

McCauley and Cato (2016),
McCauley et al. (2017), and
Parsons et al. (2017).

HTI-99-HF High Tech Inc., Long Beach, MS,
United States of America.

Massa TR1025C Massa, Hingham, MA,
United States of America.

Reson TC4033-1 Teledyne Marine, Thousand
Oaks, CA, United States of
America.

SoundTrap ST500 Ocean Instruments,
Auckland, NZ.

Piston phone calibrated at 250 Hz by the
manufacturer for both low- and high-gain
settings.

Ocean Instruments NZ (2021b)
and Ocean Instruments NZ
(2021a).ST300

ST202 Piston phone calibrated at 250 Hz by the
manufacturer at 121 dB re 1 μPa.

Ocean Instruments NZ (2021a)

FIGURE 3
Annotated screenshot of the CHORUS_GUI function interface. It displays the tools available in the interface that were used to identify and extract the
fish chorus spectrographic and audio records from the AFCC datasets.
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length at a time), 2) figures of high-resolution relative acoustic
amplitude (referred to as oscillograms), and 3) high-resolution
spectrograms created using the CHORUS_GUI function
(Figure 3). LTSAs were visualised in CHORUS with a constant
time window of 1,000 s. Spectrograms were plotted on a logarithmic
scale ranging from 5 to 48,000 Hz, with a colour scale from 40 to
120 dB re 1 μPa2/Hz. Fish calling events identified in the CHORUS_
GUI were classified as a fish chorus if they met all of the
following criteria:

1. It consisted of overlapping fish calls from many individuals, to
the extent that, at times, individual calls within the chorus
could not be distinguished.

2. It increased background sound levels within a characteristic
frequency band (when using an averaging time of 1 s) to an
observable degree in a 7-day LTSA (Hamming window =
sampling frequency of respective recording and no overlap).

3. It displayed a prolonged duration (approximately 1 hour
or longer).

4. It displayed temporal variation on a diel, lunar, seasonal, or
annual scale.

The criteria used for this study were based on a review of fish
chorus definitions in the literature; examples of some of these
definitions are outlined in Table 2. Fish choruses were
distinguished from other biological choruses using characteristic
features of fish calls. Fish calls are typically low frequency (<5 kHz),
contain repetitive sound elements of short duration, and can often
demonstrate multiple frequency harmonics (Amorim et al., 2006;
Fish and Mowbray, 1970).

All datasets were reviewed twice. The first round of fish
chorus identifications was undertaken by five operators
(Authors, L.H., M.J.P., J.M., D.W K., and R.W). M.J.P
analysed the Port Hedland and Darwin Harbour datasets; J.M.
analysed the Lizard Island sets (except for Lizard Island North
Point 2); D.W K analysed the Bonaparte Gulf 2, North West Shelf

1, North West Shelf 3, North West 1, Timor Sea, and Thevenard
1 datasets; R.W analysed the Fowlers Bay 1 and 2 datasets; and
L.H analysed all other datasets. The manual chorus identification
process outlined above was followed by all operators. To address
observer bias and ensure all fish choruses had been identified, all
datasets were reviewed a second time, and the above process was
repeated for all 169 datasets by L.H.

2.3.2 Fish chorus naming convention
Each fish chorus was assigned a unique identifier. The identifier was

associated with the recording location of the specific fish chorus and
followed the naming convention “SiteLabel_FishChorusNumber.” For
example, the first fish chorus identified at the Bremer Bay recording site
was named “BB_1.”Australian fish choruses described in eight previous
studies were also included in the catalogue. These choruses and their
corresponding catalogue identifiers are outlined in Table 3. The
catalogue also provides descriptions of the fish choruses identified
by Hawkins et al. (2023). The recording site, label, and number of each
fish chorus reported by Hawkins et al. (2023) correspond to the unique
identifier of the respective chorus in the AFCC. Please note that only
previous studies where raw data were available could be included; thus,
several previously recorded choruses are not included here. These
include (but are not limited to) fish choruses reported by Cato
(1978), Cato (1980), Kelly et al. (1985), McCauley and Cato (2000),
and McCauley (2001).

2.3.3 Recording of presence/absence
Daily fish chorus presence/absence was recorded in

Microsoft Excel spreadsheets after the manual inspection of
LTSAs of each dataset (one 7-day spectrogram at a time). Each
analysed day in every recording was designated one of four
classifications: 0 = fish chorus absent, 1 = fish chorus present,
2 = unable to discern presence due to masking from ambient
noise, and 3 = unable to discern presence due to lack of available
recordings. These daily categorisations provided a record of the
seasonal presence/absence for each fish chorus, at every

TABLE 2 Examples of common fish chorus definitions and descriptions reported in scientific literature.

Study Definition

Cato (1978) “When the noise from many individuals is continuous above background for an extended period (usually an hour or more) using an
equipment averaging time of 1 s.”

McCauley (2012) Fish “call en masse, to form choruses where it becomes difficult if not impossible to discriminate individual calls amongst the cacophony of
noise produced by the fish school.”

D’Spain et al. (2013) “Underwater biological choruses occur when a large number of animals, often of a single species, create sound simultaneously over a
significant period of time.”

McCauley and Cato (2016) “Choruses typically occur when many individuals of the same species vocalise near-simultaneously in reasonably close proximity to each
other (from a sound transmission perspective) to produce a cacophony of sound” and “are characterised by showing daily patterns,
predominantly, although not always, occurring at night and usually with some seasonal component.”

Parsons et al. (2016) “vocalizations . . . are often produced en masse, increasing the sound pressure levels (SPLs) significantly before or during the activity.”

McWilliam et al. (2017) “A fish chorus is defined as the continuous sound produced by vocalising fish that significantly raises the background noise level in a
characteristic frequency band by > 3 dB for an extended period.”

Butler et al. (2021) When “fishes will aggregate into large groups and call persistently, creating underwater choruses and adding substantial acoustic energy to
the marine soundscape.”

Siddagangaiah et al. (2021a) When “fish species vocalize in large numbers and produce sustained choruses that result in a unique sound signature of the marine
soundscape.”
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location, and were subsequently collated to provide a monthly
presence/absence measure. If the respective fish chorus was
detected on any day of a particular month, it was marked as
present (1), and if the fish chorus was not detected across any
days of the respective month, it was marked as absent (0). Fish
chorus monthly presence/absence has been made available as
part of the catalogue.

2.3.4 Extraction of spectrographic and
audio records

Each fish chorus entry in the AFCC includes spectrographic and
audio records. The spectrographic records for each chorus include
the following: 1) a soundscape spectrogram, 2) a high-resolution
chorus spectrogram, 3) a composition of a spectrogram and
oscillogram of the individual call/s making up the specific chorus,

TABLE 3 Australian fish choruses described in previous studies in relation to the fish choruses reported in the AFCC. Chorus type refers to the type number
assigned to the chorus in its respective publicationa.

Study Chorus type Recording location Fish chorus ID

McCauley (2012) 1 Maret Island MI_1

2 Maret Island MI_4

Parsons et al. (2013b) 1 Cowaramup 1 CW1_3

2 Cowaramup 1 CW1_2

3 Cowaramup 1 CW1_1

McCauley and Cato (2016) 1 Perth Canyon PC_1

Parsons et al. (2016) 1 Darwin Harbour 1 DH1_1

2 Darwin Harbour 1 DH1_2

3 Darwin Harbour 1 DH1_3

4 Darwin Harbour 1 DH1_4

5 Darwin Harbour 1 DH1_5

6 Darwin Harbour 3 DH3_6

7 Darwin Harbour 1 DH1_6

8 Darwin Harbour 1 DH1_7

9 Darwin Harbour 1 DH1_8

Parsons et al. (2017) 1 Swan River SW_1

Parsons et al. (2017) 1 Port Hedland PH_1

2 Port Hedland PH_2

3 Port Hedland PH_3

4 Port Hedland PH_4

5 Port Hedland PH_5

6 Port Hedland PH_6

7 Port Hedland PH_7

McWilliam et al. (2018) 1 Lizard Island North Point LNP_1

2 Lizard Island Offshore LIO_6

3 Lizard Island North Point LNP_2

4 Lizard Island Offshore LIO_1

5 Lizard Island Offshore LIO_3

6 Lizard Island Offshore LIO_4

Ward et al. (2019) 3 Fowlers Bay 1 FB1_3

aSeveral fish choruses outlined here were included in the study by Hawkins et al. (2023). These included the fish choruses reported byMcCauley (2012), McCauley and Cato (2016), Parsons et al.

(2016), and Parsons et al. (2017).
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and 4) a mean power spectrum plot. The spectrograms and
oscillograms were extracted manually from LTSAs created in the
CHORUS_GUI (Figure 3) during the fish chorus identification
process. The mean power spectrum plots were created using a
custom-written MATLAB function to illustrate the frequency
content of the respective fish chorus. Two audio records for each
fish chorus were included in the catalogue. The first was an audio
recording featuring the chorus, and the second was a shorter
recording, featuring the individual call/s of the respective fish
chorus. Both audio record types were also extracted manually
using the CHORUS_GUI function (Figure 3) and saved as .wav files.

2.4 Stage 4: spectral measurements

2.4.1 Spectral characteristic extraction
A series of parameters were measured for each fish chorus to describe

the spectral characteristics of the chorus. These parameters included the
following: minimum frequency, maximum frequency, peak frequency,
3 dB bandwidth, 3 dB bandwidth low frequency, 3 dB bandwidth high
frequency, 10 dB bandwidth, 10 dB bandwidth low frequency, 10 dB
bandwidth high frequency, 20 dB bandwidth, 20 dB bandwidth low
frequency, 20 dB bandwidth high frequency, centre frequency, root-mean-
square (RMS) bandwidth, RMS bandwidth low frequency, RMS
bandwidth high frequency, 90% energy bandwidth, 90% energy signal
duration, peak chorus band level, ambient level, and chorus band level
increase over ambient level (SNR). Descriptions and definitions of each
spectral parameter are outlined in Supplementary Table S2. The start time,
end time, minimum frequency, and maximum frequency of each fish
chorus were manually selected from spectrograms in a conservative
manner (i.e., by over-predicting the boundary box and thus over-
predicting duration and bandwidth) by operator L.H. The more robust
and exact measurements (such as 90% energy duration and 90% energy
bandwidth) were automatically computed within the boundary boxes
using custom software in MATLAB (this software can be accessed in the
AFCC data repository, titled “AFCC_Mcode.m” (Hawkins et al., 2024)).
Centre frequencywas calculated using the equation provided byAu (1993)
(page 217, Equation 10.3). RMS bandwidth low and high frequencies, 90%
energy duration, and 90% energy bandwidth were calculated using their
respective equations taken from Erbe et al. (2022). It is important to note
that if the fish chorus signal-to-noise ratio (SNR) was low (i.e., below 3, 10,
or 20 dB), the spectral variables 3 dB bandwidth, 3 dB bandwidth low
frequency, 3 dB bandwidth high frequency, 10 dB bandwidth, 10 dB
bandwidth low frequency, 10 dB bandwidth high frequency, 20 dB
bandwidth, 20 dB bandwidth low frequency, and 20 dB bandwidth
high frequency could not be measured; this occurrence is noted in the
spectral measurement spreadsheet as NA.

Measurements of each parameter were taken over the course of one
chorusing event per fish chorus (generally within a 24-h period) and,
therefore, are not representative of the fish chorus over the entire
recording period of the specific recorder deployment. The extent of
these calling events is defined in the spectral measurement spreadsheet
(see Section 3.3). The chorusing events used for these measurements
typically occurred during a period of high chorusing activity with
minimal masking from ambient noise sources. On occasion, full
spectral analysis of fish choruses was impossible due to masking
from ambient noise or if the fish chorus exceeded the Nyquist
frequency of the sampling regime. In the case of the former, fish

choruses were partially analysed during periods of minimal or no
masking. Where ambient noise masked the chorus to an extent that
spectral characteristics could not be accurately determined at any point
in the recording or when a fish chorus exceeded the frequency cut-off,
the maximum and minimum frequency of the chorus were estimated
from the scrutiny of the LTSAs, and all other spectral characteristics
were omitted as the entire chorus energy could not be sampled.

2.5 Technical validation

The analyses undertaken in this study followed previously
reported protocols that have been adapted in this study where
appropriate. The technical quality of the catalogue data is assured
by the use of these protocols, which have been validated through
the peer-review process. Such protocols include the pre-processing
techniques outlined by McCauley and Cato (2016) and McCauley
et al. (2017) for data recorded by the CMST-DSTO USRs,
McWilliam et al. (2018) and Marley et al. (2017) for data
recorded by SoundTraps (ST500 and ST300 STD), and Gavrilov
and Parsons (2014) for the use of the CHORUS toolbox in the data
pre-processing and fish chorus identification stages of the analysis.
The fish chorus identification process followed protocols
established by Parsons et al. (2016), Parsons et al. (2017), and
McWilliam et al. (2018). During the identification process, each
acoustic dataset was reviewed twice to ensure all fish choruses
present in the soundscape were identified. The spectral
measurements of each fish chorus were validated manually.
Validation was undertaken through the scrutiny of a series of
spectrograms, and PSD and mean spectrum figures were created
during the spectral measurement process.

3 Data records

The AFCC has been deposited at the AODN repository (https://
doi.org/10.26198/qfj2-jj93, Hawkins et al. (2024)). This is a full copy
of all data at the date of submission of this publication. The catalogue
holds an inventory of fish chorus records and online spreadsheets,
including a file for each fish chorus, which contains the respective

FIGURE 4
Example of the 7-day LTSA record provided for each fish chorus
in the AFCC. This figure displays the PSD (dB re 1 μPa2/Hz) and diel
presence of fish chorus BB_1 (highlighted in the black box) over 7 days
at local time. This spectrogram was produced with an averaging
time of 0.25 h and a FFT window length of 300 s. The acoustic data at
this location were collected at a 6 kHz sampling frequency.
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spectrographic records and audio files. Three online spreadsheets
have been made available; these provide deployment information
and the seasonal presence, duration, and spectral measurements of
each fish chorus.

3.1 Spectrographic records

Each fish chorus file presented in the catalogue includes four
spectrographic records. These records provide a range of graphical
representations of each fish chorus. The first spectrographic record
is a 7-day LTSA, and it displays the PSD (dB re 1 μPa2/Hz) of the
fish chorus across time in days (x-axis) and frequency in kHz
(y-axis). These records are created using a Hamming fast-Fourier
transform (FFT) window equal to the sampling frequency of the
respective recording (so that the frequency resolution equaled
1 Hz) with no overlap (Gavrilov and Parsons, 2014). The
recording-specific sampling frequency can be found in
Supplementary Table S1. This record demonstrates the diel
pattern of a respective fish chorus over 1 week, at local time. If
there were multiple sound sources visible in the 7-day LTSA, the
respective fish chorus was highlighted using a black or white box as
demonstrated in the example record, shown in Figure 4. Please
note that the time scale of the LTSA may be slightly shorter for
some fish choruses due to limitations of the respective
recording schedules.

The second spectrographic record features a high-resolution
spectrogram of a respective fish chorus, displaying the PSD (dB re
1 μPa2/Hz) of the fish chorus across frequency (kHz) and time over a
time scale ranging 100–600 s. These spectrograms are produced with
an FFT window length of 0.5 s and an overlap of 50 or 60%. An
example of this record is shown in Figure 5. The third record is a
composition of a high-resolution spectrogram again depicting PSD
(dB re 1 μPa2/Hz) across time and frequency (with time scales
ranging from 1 to 100 s) and a corresponding oscillogram to display
the energy and relative amplitude of the individual call/s making up
the respective fish chorus (if possible). The spectrograms of these
figures were produced with an FFT length of 0.05 or 0.1 s and an
overlap of 80 or 90%. The FFT window length and overlap

combination were dependent on the peak frequency of the fish
chorus calls. An example of this composition figure is demonstrated
in Figure 6. It is important to note that it is often difficult to
distinguish single calls within a chorus. Therefore, for some fish
chorus records, the call composition figures have yet to be included
in the catalogue.

The final spectrographic record is a mean power spectrum plot
of a respective fish chorus. It displays the mean (i.e., averaged over
the duration of the chorus) frequency content of the fish chorus over
one chorusing event per fish chorus (generally within a 24-h period).
The two black lines on each mean power spectrum plot show the
maximum and minimum frequencies of the respective fish chorus
(Figure 7). The timing and extent of each chorusing event were
chosen to exclude (as much as possible) the contribution of ambient
sound to the chorus frequency band. On the occasion that a fish
chorus was significantly masked by ambient sounds, a mean
spectrum plot was not produced for that particular chorus. This
was also the case for fish choruses with a frequency that exceeded the
Nyquist frequency of the respective USR. As the mean power
spectrum plot was produced from one chorusing event only, it is
important to note that it is not representative of the frequency
content of the respective fish chorus over the entire recording
period. The extent of each calling event is defined in the spectral
measurement spreadsheet (see Section 3.3).

Each spectrographic record is available in the .tif file format. The
records are named using the following conventions:

1. ChorusIdentifier_soundscape_spectrogram.tif.
2. ChorusIdentifier_chorus_spectrogram.tif.
3. ChorusIdentifier_call_composition.tif.
4. ChorusIdentifier_meanspectrum.tif.

3.2 Audio records

A 100–600 s .wav audio file of each fish chorus is featured in the
AFCC. Each chorus audio record is named using the convention
“ChorusIdentifier_chorus_audiofile.wav.” This audio file aligns with
the sounds shown in the respective chorus spectrogram figure. If
possible, an additional, shorter .wav audio file of the individual calls
making up the chorus is also provided. These audio records were
named using the convention “ChorusIdentifier_call_audiofile.wav.”
The shorter audio file aligns with the sounds shown in the respective
call composition figure.

3.3 Online spreadsheets

Three online spreadsheets are featured in the AFCC. They
include 1) deployment information, 2) fish chorus seasonal
presence/absence, and 3) fish chorus duration and spectral
measurements. The online deployment information table
contains the latitude, longitude, start time, and end time of each
deployment. This table has been made available in the .pdf file
format. The file is named “AFCC_deployment_information.pdf.”
The seasonal presence/absence spreadsheet has been made available
as a Microsoft Excel spreadsheet in the .csv file format. The columns
of the spreadsheet are as follows:

FIGURE 5
Example of the high-resolution spectrogram record provided for
each fish chorus in the AFCC. It displays the PSD (dB re 1 μPa2/Hz) of
fish chorus BB_1 over a 300 s resolution. This spectrogram was
produced with an FFT window length of 0.5 s and 60%
overlap. The acoustic data shown here were collected at a 6 kHz
sampling frequency.
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• “Loc”: location (the name of the location where the recording
of the fish chorus was taken).

• “Label”: a shortened version of the location name to help with
the fish chorus naming conventions.

• “ID”: chorus identifier (the unique name for each fish chorus).
• “Seasonal presence”: the seasonal presence or absence of each
fish chorus at the recording location. Each letter corresponds
to the months of the year in order from January to December,
0 indicates fish chorus absence, 1 indicates fish chorus
presence, 2 indicates that the presence of the fish chorus
could not be discerned due to masking by ambient sound
sources, and 3 indicates that the presence of the fish chorus
could not be discerned due to the lack of acoustic recordings
available for that respective period.

The spreadsheet file is named “AFCC_seasonal_presence.csv.”A
snapshot of this spreadsheet is displayed in Table 4.

FIGURE 6
Example of the call composition record provided for each fish chorus in the AFCC. It comprises a high-resolution spectrogram and oscillogram,
displaying the PSD (dB re 1 μPa2/Hz) of the fish chorus calls (collected over 0.3 s) and the relative amplitude of the fish chorus calls of chorus BB_1,
respectively. The spectrogram component of the figure was produced with an FFT window length of 0.01 s and 90% overlap. The acoustic data shown
here were collected at a 6 kHz sampling frequency.

FIGURE 7
Example of the mean power spectrum record that is provided for
each fish chorus in the AFCC. It displays the spectral content of the
BB_1 fish chorus. The black lines denote the minimum and maximum
frequency of the fish chorus, respectively. The acoustic data
shown here were collected at a 6 kHz sampling frequency.
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The fish chorus spectral measurement spreadsheet has been
made available in a Microsoft Excel spreadsheet in the .csv file
format. The file is named “AFCC_measurement_spreadsheet.csv.”
The definitions of each measurement variable are outlined in
Supplementary Table S2. In addition to the variables shown in
Supplementary Table S2, the following columns are also included in
the online spreadsheet:

• “SD”: extraction start date and time (start date and time of fish
chorus recording used for spectral measurements in Universal
Coordinated Time (UTC)).

• “ED”: extraction end date and time (end date and time of fish
chorus recording used for spectral measurements in UTC).

• “HRS”: the number of hours ahead (+) or behind (−) the UTC
of the recording location of the respective fish chorus.

• “ANLS”: analysis type was designated with one of four
classifications: 1) full analysis, 2) partial analysis due to
ambient noise masking, 3) no analysis undertaken due to
the chorus frequency exceeding the Nyquist frequency of the
sampling regime, where the minimum frequency was
estimated from the scrutiny of spectrograms, and 4) no
analysis undertaken due to ambient noise masking, where
the minimum and maximum frequency were estimated from
the scrutiny of spectrograms.

4 Discussion and future work

The AFCC is the first open-access data repository of fish chorus
data at a national scale. It holds spectral, spatial, and temporal
distribution records of 301 fish choruses recorded across
83 locations in Australian estuarine and marine waters. The
majority of these 83 locations are spread across marine waters all
around the continent; however, few or no acoustic recordings could
be sourced for several key marine areas. These include the Gulf of
Carpentaria, the Great Barrier Reef, waters around Tasmania, and
waters off the western side of the Great Australian Bight. Studies
have shown that Australian recording sites with similar
environments exhibit high fish chorus diversity (Parsons et al.,
2017; McWilliam et al., 2018; Ward et al., 2019; Hawkins et al.,
2023). This suggests a significant potential for identifying new types
of fish choruses in these areas. The same can be said for Australian
estuarine and freshwater environments. The AFCC contains very
few fish choruses recorded in estuarine environments and none
from freshwater environments. This is also due to a lack of available
acoustic recordings. However, fish choruses have been extensively
documented in estuarine environments globally (Lagardère and
Mariani, 2006; Luczkovich et al., 2008; Montie et al., 2015; Zhi-
Tao et al., 2017), and acoustic recordings in an Australian estuary

have demonstrated a particularly high fish chorus diversity (Parsons
et al., 2016). Little is known regarding fish chorus contributions to
freshwater soundscapes. Only a few freshwater fish choruses have
been described (Borie et al., 2014; Linke et al., 2018; Borie et al.,
2019), including a fish chorus recorded in the Einasleigh River in
Northern Australia (Linke et al., 2018). Many more fish choruses
likely exist in these yet-to-be-recorded marine, estuarine, and
freshwater environments. Consequently, the authors recommend
prioritising future acoustic data collection in these under-
represented areas. Fish choruses will continue to be added to the
AFCC using a standardised methodology as more acoustic
recordings become available.

A standardised methodology for the extraction of these records
has been outlined here to ensure reproducibility to facilitate analysis
of new recordings and comparisons with new fish chorus data. The
spectral and temporal measurements included in the repository are
indicative characterisations of the respective fish choruses; however,
it is important to note that while these measurements represent the
spectral characteristics of these fish choruses in acoustic conditions
as close to ideal as possible, the authors acknowledge that the
spectral measurements of these fish choruses may vary with time.
This may be associated with alterations in the behaviour of the
source species or may be due to changes in the acoustic habitat at the
respective recording location. As such, this potential for variation
needs to be taken into account when using the AFCC records for
comparison. The spectral and temporal measurements have been
used to differentiate fish chorus types per recording location
within the AFCC, but they can also be used in combination
with the spectrographic and audible records for fish chorus
identification. The AFCC records can be compared with
ground-truthed fish vocalisations in established sound
libraries, such as the Audio Gallery (Discovery of Sound in
the Sea) (Vigness-Raposa et al., 2012), Fish Sounds (Fish and
Mowbray, 1970), The SOUND Table (Kaschner, 2012), the
Macaulay Library (Scholes, 2015), Ocean Networks Canada
(Ocean Networks Canada, 2024), Sonothèque (Sonothèque,
2024), the British Library Sound Archive (The British Library,
2024), FishSounds (Looby et al., 2023b), the Animal Sound
Archive (Tierstimmenarchiv, 2024), and FonoZoo (FonoZoo,
2024), to assist with the identification of fish chorus source
species and delineation of their distribution. Identification of
fish chorus source species enhances the effectiveness of using
ecological information from the AFCC records to monitor and
manage these species.

The AFCC has contributed to the development of PAM of fish
choruses to be applied to the monitoring and management of fish
populations in Australian waters. The presence, distribution, and
diversity of Australian fish choruses have been mapped and made
accessible for managers and researchers, not only as a reference

TABLE 4 Snapshot of the seasonal presence spreadsheet made available in the AFCC. This snapshot displays the seasonal presence of the fish choruses
identified at the Bremer Bay recording location from January (J) to December (D). 0 = fish chorus absent and 1 = fish chorus present.

Location Label Chorus ID J F M A M J J A S O N D

Bremer Bay BB BB_1 1 1 1 1 1 1 1 1 1 1 1 1

Bremer Bay BB BB_2 1 1 1 1 1 0 1 1 1 1 1 1

Bremer Bay BB BB_3 0 0 0 0 0 1 1 1 1 1 1 0
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library but also as a source of ecological data. If the source species
and biological function of the AFCC choruses are discerned, the
AFCC can provide information on the distribution, behaviour,
habitat use, and spawning dynamics of specific fish species. The
value of PAM of ground-truthed fish choruses has been
demonstrated in several monitoring applications, including the
delineation of spawning seasons (Connaughton and Taylor, 1995;
Barrios, 2004; Tellechea et al., 2011; Ricci et al., 2017; Monczak et al.,
2017), identification of important spawning habitats (Saucier and
Baltz, 1993; Luczkovich et al., 1999; Luczkovich et al., 2008; Ricci
et al., 2017), and the tracking of invasive species (Rountree and
Juanes, 2017). This would be particularly valuable for important
commercial fish species (Stratoudakis et al., 2024) or for endangered
or cryptic species (Mann and Grothues, 2009; Parsons et al., 2017;
Rowell et al., 2015). Even if the AFCC fish choruses are not ground-
truthed to species, the records of these choruses still provide
important ecological information.

The value of identifying and documenting unknown
underwater biological sounds has recently been brought to
attention (Parsons et al., 2022). Unidentified sounds not only
assist in the process of source species elucidation but can also be
used to measure biodiversity and indicate habitat conditions
(Rountree et al., 2012; Krause and Farina, 2016; Di Iorio et al.,
2018; Lin et al., 2019; Parsons et al., 2022). The AFCC provides
valuable baselines of the distribution, diversity, seasonal
presence, and spectral and temporal characteristics of
Australian fish choruses, which can be applied to a variety of
research or monitoring efforts. The potential application of the
AFCC is demonstrated in the study by Hawkins et al. (2023). The
study counted the number of fish choruses recorded at
29 locations that are also included within the AFCC. This
measure of fish chorus diversity was used to highlight
potentially important foraging and spawning habitats for fish
aggregations and to identify spatial drivers of fish chorus
diversity (Hawkins et al., 2023). The AFCC records can also
be used as a baseline to monitor fish chorus contributions to a
specific location over time. Fish can be used as effective indicators
of ecosystem conditions (Harris, 1995; Schiemer, 2000; Whitfield
and Elliott, 2002; Dulvy et al., 2008). Long-term monitoring of
fish choruses has the potential to reveal impacts of environmental
and anthropogenic change on soniferous fish populations and
their respective habitats (Locascio and Mann, 2005; Indeck et al.,
2015; Luczkovich et al., 2024) and be used to predict the response
of vulnerable species to climate change (Monczak et al., 2019;
Vieira et al., 2022). The AFCC aims to not only support future
research, monitoring, and management efforts in Australian
waters but also to inspire similar studies on fish choruses and
their contributions to underwater soundscapes worldwide, even
when the source species are yet to be confirmed.

Moving forward, the creation and development of fish
chorus reference libraries will need to address several issues.
Standardisation in acoustic data collection, processing, and
analysis methods needs to be prioritised, facilitating
comparisons and ensuring consistency and reliability across
various studies (Browning et al., 2017; Gibb et al., 2019; Parsons
et al., 2022). Enhanced collaboration among researchers and
institutions needs to be encouraged to pool resources and share
data and knowledge, thereby expanding the availability,

diversity, and volume of raw acoustic data and of ground-
truthed fish sounds. For example, the spatial scope of the
AFCC would not have been possible without raw data
contributions from CMST, AIMS, NSW DPI, Parks Australia,
and NOAA. Advanced technologies, such as machine learning,
signal processing, and artificial intelligence, need to be
integrated into reference library development and
maintenance. This will facilitate automated analysis and
classification of sounds, making it easier and less time-
consuming to identify and catalogue fish species (Napier
et al., 2024). A strong emphasis needs to be placed on
metadata quality to enhance the usability of the libraries for
comparative research purposes and for monitoring efforts
(Bradbury et al., 1999; Parsons et al., 2022). Additionally,
data continuity needs to be safeguarded. Long-term financial
security is needed to ensure the maintenance of these libraries
(Parsons et al., 2022), such as the support provided for the
NOAA NCEI passive acoustic data archive (Wall et al., 2021).
Finally, the promotion of open-access needs to be prioritised to
facilitate acoustic data availability to a wider audience, fostering
greater innovation, continued development of data analysis
techniques, and knowledge sharing in this field (Parsons
et al., 2022).
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