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With a large footprint size, multiple scattering measurements of clouds from
spaceborne lidar provide useful information about cloud physical properties, such
as cloud optical depths and cloud droplet size, both during daytime and nighttime. A
neural network algorithm, with a subset of cloud backscatter profiles of dual-
polarization and dual-wavelength Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) lidar measurements during daytime as input
variables and cloud physical properties derived from collocated Moderate
Resolution Imaging Spectroradiometer (MODIS) multi-spectral measurements as
output, is developed and evaluated with an independent subset of the collocated
CALIPSO and MODIS measurements. The study suggests that with a receiver
footprint size of 110 m, CALIPSO lidar measurements are sensitive to liquid-phase
cloud optical depth variations from0 to 25. A larger footprint size, thusmoremultiple
scattering, is required for lidar to have sensitivities to all liquid-phase clouds. The
technique can be applied to all 17 years of CALIPSO daytime and nighttime
measurements and, thus, provides useful information about global distributions of
cloud physical properties both during day and night.
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1 Introduction

Satellite remote sensing of clouds is important for understanding Earth’s hydrological
cycle and quantifying the radiative energy balance. Moderate Resolution Imaging
Spectroradiometer (MODIS) and other passive sensors can provide cloud information
in daytime, although nighttime information has to be from active sensors, e.g., Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO).

Lidar measurements provide unique information about clouds. The cloud
thermodynamic phase determined by space-based lidars (Hu et al., 2009) is considered
the gold standard (Wang et al., 2020; Wang et al., 2024). In recent studies, water cloud
microphysical properties were derived from CALIPSO’s space-based lidar measurements
(Hu et al., 2021).

Cloud properties, such as droplet size and optical depth, can be acquired frommulti-spectral
measurements (e.g., MODIS) during daytime (Platnick et al., 2003). These cloud properties can
be used for training collocated lidar measurements. The knowledge from the training can be
applied to lidar measurements at night to produce unique cloud properties at night.

In this study, we use MODIS daytime measurements of cloud optical depths and effective
particle sizes of water clouds to train collocated CALIPSOmeasurements withmachine learning.
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We then apply the algorithms on all daytime and nighttime CALIPSO
measurements. The objectives of this study are to

A. evaluate the accuracy of the CALIPSO water cloud data product,
B. assess the sensitivity of CALIPSO measurements to water

cloud optical depth,
C. estimate global statistics of nighttime water cloud physical

properties.

2 Spaceborne lidar measurement of the
water cloud optical depth and effective
droplet size: information content and
machine learning algorithm

CALIPSO lidar measurements are highly sensitive to
cloud properties. For example, a huge portion of the cloud

layer-integrated backscatter comes from multiple scattering of
laser light bouncing among cloud particles. Thus, they are
sensitive to cloud physical properties such as optical depths
(Figure 1) and particulate sizes. The layer-integrated backscatter
is inversely proportional to the so-called cloud lidar ratio, which
is the ratio of extinction to the backscatter cross section. The
cloud lidar ratio is a function of the effective droplet size (Mace
et al., 2020; Hu et al., 2021) and the so-called “multiple scattering
factor,” which is a simple function of CALIPSO depolarization
ratio measurements of the cloud backscatter (Hu, 2007)
(Figure 2). The cloud backscatter ratio of the infrared
(1,064 nm) and green (532 nm) wavelengths provide
additional information about droplet sizes (Figure 2). The
path length distribution of laser-light multiple scattering
inside clouds is also sensitive to the physical thickness and
extinction coefficient of the cloud layer (Hu et al., 2022; Hu
et al., 2023).

FIGURE 1
Left panel: CALIPSO water cloud layer-integrated backscatter (also called reflectance), γ, increases linearly with the logarithm of the MODIS optical
depth, γ. Right panel: depolarization ratio, δ, of CALIPSOwater cloud layer-integrated backscatter also increases linearly with the logarithm of the MODIS
optical depth.

FIGURE 2
Sensitivity of the water cloud effective radius to the depolarization ratio (left panel) and color ratio (right panel) of CALIPSO layer-integrated lidar
backscatter measurements of the water clouds.
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Although cloud properties are highly sensitive to CALIPSO
lidar measurements, deriving cloud properties from CALIPSO
data requires good estimates of laser-light attenuation by
molecules and background aerosols above clouds, which are
sensitive to the CALIPSO lidar measurements of aerosol and
molecular backscatter profiles.

The MODIS level-2 water cloud optical depth derived from
MODIS band 6 (1.6 μm) and band 20 (3.7 μm) and the effective
radius derived from MODIS band 20 are used for training the
collocated CALIPSO daytime measurements. The output
parameters of the machine learning algorithm, based on
MATLAB neural network software fitnet with 2 hidden layers
(10 neurons for the first hidden layer and 6 for the second hidden
layer), are the water cloud optical depth and effective
radius (Figure 3).

The input parameters of the neural network fitnet (Figure 3) are
the following CALIPSO measurements.

• Three channel-integrated backscatter of the
atmosphere above clouds (532-nm parallel component,

532-nm perpendicular component, and 1,064 total
backscatter),

• Layer-integrated cloud backscatter of the three channels,
• Layer mean cloud backscatter of the three channels,
• Backscatter-weighted mean path lengths (<L>) of the three

channels, where <L>=
∫

Cloud Base

CloudTop
2 × z × βcloud(z)dz

∫
Cloud Base

CloudTop
βcloud(z)dz

, where βcloud(z) is

the attenuated backscatter coefficient at altitude z.
• Peak backscatter intensity of the three channels,
• Cloud top height and temperatures at the centroid of the
CALIPSO backscatter.

These CALIPSO properties are obtained from CALIPSO version
4 level-1 and level-2 data products.

3 Evaluating cloud properties
derived from CALIPSO and
machine learning

After the neural network algorithms that link CALIPSO
measurements to water cloud optical depths and effective radii
are trained with a limited amount (2 months: January and July in
2008) of collocated daytime CALIPSO and MODIS
measurements, the algorithms are applied to daytime
CALIPSO measurements from the other months of a whole
year (2009) to derive water cloud optical depths and effective
radii. Figure 4 shows that the biases between the CALIPSO and
MODIS water cloud effective radii are nearly zero, with an
averaged difference of CALIPSO/MODIS effective radii of
approximately 3 μm. Similarly, there is very little bias in the
CALIPSO cloud optical depths for cloud optical depths below
20 and the averaged difference of CALIPSO/MODIS optical
depths is less than 2. The result suggests that the CALIPSO
water cloud property can be derived reliably using the neural
network algorithms.

FIGURE 3
Flowchart of the neural network in this study.

FIGURE 4
Comparisons of daytime water cloud optical depths (left panel) and effective radii (right panel) derived from the neural network algorithms to
collocated MODIS measurements.
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4 Global statistics of the nighttime
water cloud optical depth and effective
radius and comparison with daytime
measurements

Only daytime measurements of MODIS cloud optical depths and
effective radii are available for the training of the neural networks. We
applied the neural network algorithm to both daytime and nighttime
CALIPSO measurements, enabling us to derive cloud optical depths
and effective radii for both day and night (Figures 5, 6).

It is important to measure cloud properties at night because
these properties are important constraints of weather and climate
models to simulate the water and energy cycle (Liu et al., 2008).
Passive remote sensing, such as MODIS, mostly relies on spectral
measurements of sunlight reflected by water clouds to derive their
physical properties. Thus, it is difficult to obtain water cloud physical
properties, such as particle size and cloud optical depth from passive
remote sensing (e.g., MODIS) measurements at nighttime (Pérez
et al., 2009).

CALIPSO lidar measurements can provide the same cloud
information during daytime and nighttime. Thus, it is possible to
acquire nighttime water cloud properties using CALIPSO
measurements with the neural network algorithms developed
with daytime collocated CALIPSO and MODIS measurements.

Although the effective droplet radii of water clouds at night
derived from CALIPSO lidar measurements are slightly larger
than those at daytime (Figure 5), nighttime water cloud optical
depths derived from CALIPSO lidar measurements are
significantly larger than daytime water cloud optical depths
(Figure 6). As the cloud liquid water path is proportional to
the product of water cloud optical depth and droplet effective

radius (e.g., Li and Min, 2013), the day and night contrast in
CALIPSO cloud optical depths (Figure 6) suggests that the
nighttime water cloud liquid paths are significantly larger than
daytime cloud liquid water paths, which is consistent with the
diurnal cloud liquid water path measurements from collocated
AMSR-E measurements (O’Dell et al., 2008). The nighttime and
daytime differences in water cloud effective radii and optical
depths are likely due to the enhanced condensation at night due
to difference in the radiative cooling rate near the cloud top
between day and night.

5 Summary

A neural network lidar measurement algorithm for water cloud
property estimation is introduced in this study. Water cloud optical
depths and effective radii from MODIS daytime measurements are
used for training collocated CALIPSO lidar measurements.
Applying the algorithm to daytime CALIPSO measurements
different from the training dataset, the cloud properties compare
very well with the cloud properties from the collocated MODIS
measurements. The biases of droplet effective radii are near zero,
with a standard deviation of the CALIPSO/MODIS effective radius
difference of approximately 3 μm. The biases of CALIPSO water
cloud optical depths are near zero for a cloud optical depth of less
than 20, with a standard deviation of the CALIPSO/MODIS optical
depth difference of 2.

This algorithm is applied to both daytime and nighttime
CALIPSO measurements. The nighttime global statistics of the
water cloud droplet effective radius are similar to that of
daytime, with a slightly larger droplet size at night. The

FIGURE 5
Global statistics of the annual mean water cloud effective droplet
radii during daytime (upper panel) and nighttime (lower panel).

FIGURE 6
Global statistics of the annual mean water cloud optical depths
during daytime (upper panel) and nighttime (lower panel).
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nighttime water cloud optical depths are significantly larger than
daytime cloud optical depths.
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