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Kingdom

Phytoplankton occupy the oceans’ euphotic zone and are responsible for its
primary production; thus, our ability to monitor their patterns of abundance and
physiology is vital for tracking ocean health. Ocean colour sensors mounted on
satellites can monitor the surface patterns of phytoplankton daily at global scales
but cannot see into the subsurface. Autonomous robotic platforms, like
Biogeochemical-Argo (BGC-Argo) profiling floats, do not have the coverage
of satellites but can monitor the subsurface. Combining these methods can help
track phytoplankton patterns throughout the euphotic zone. In this study, using a
global array of BGC-Argo floats (76,043 profiles, spanning from 2010 to 2023), we
revisit empirical relationships between the surface and column-integrated
concentrations of chlorophyll-a (a proxy for phytoplankton abundance and
physiology), originally developed using ship-based profiling data. We show
that these relationships agree well with BGC-Argo float data. We then extend
the relationships, removing the binary switch in parameters between mixed and
stratified waters and trophic conditions such that the column-integrated
chlorophyll-a concentration can be estimated as a continuous function of
surface chlorophyll-a and a proxy for stratification (we use the optical mixed-
layer depth, the mixed-layer depth multiplied by the diffuse attenuation
coefficient, which is proportional to the ratio of the euphotic depth to the
mixed layer depth when it approaches 1). The new model is shown to
perform well in statistical tests (using separate training and independent
validation data, with a correlation coefficient > 0.73) and has fewer parameters
than the earlier version. The model can be applied to satellite observations of
surface chlorophyll-a and diffuse attenuation, together with fields of mixed-layer
depth (e.g., from Argo), to track changes in column-integrated chlorophyll-a.
Such fields may be useful for obtaining estimates of primary production,
evaluating ecosystem models, and quantifying trophic energy transfer. The
model may also be used to evaluate the influence of changing stratification
patterns on phytoplankton abundance and physiology.
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1 Introduction

Phytoplankton are primary producers found in the ocean that
contribute to carbon sequestration. Since their origin over two billion
years ago, phytoplankton have had a profound influence on Earth’s
biogeochemistry (Falkowski et al., 2003). Although their biomass only
accounts for 1%-2% of the global total, they contribute around 50% of
the global net primary production (Longhurst et al., 1995; Field et al.,
1998). This primary production plays a central role in the ocean
biological carbon pump, which transfers carbon from the surface to
the deep ocean, where it can be stored for centuries (Boyd et al., 2019;
Nowicki et al., 2022). This uptake and storage of atmospheric carbon
dioxide (CO,) helps control the global climate (Falkowski, 1994;
Legendre and Rassoulzadgan, 1996). Phytoplankton also represent the
foundation of oceanic food webs and are responsible for providing the
energy that maintains the pelagic ecosystem. Phytoplankton
production is closely coupled with the biomass and health of
(Kigrboe, 1993). As
phytoplankton get eaten by consumers, carbon, energy, and other

pelagic fish and other marine life
substances they contain are propagated to the upper trophic levels
with relatively constant efficiency (Barnes et al., 2010).

In recent years, many changes have been observed in the
abundance, physiology, and community composition of
phytoplankton, caused by climate variability, ocean warming,
shifts in ocean stratification, increasing numbers of extreme
events, and eutrophication (Ardyna et al, 2014; Cheng et al,
2019; Dai et al., 2023; Deppeler and Davidson, 2017; Ferreira
et al., 2022; Lu et al., 2022; Xiao et al., 2018; Sridevi et al., 2019;
Trainer et al., 2020; Wang et al., 2021; 2022). Considering the
profound impact phytoplankton have on ocean biogeochemical
cycles and food webs, and considering current uncertainty in
climate projections (IPCC, 2021), tracking the abundance and
physiology of marine phytoplankton is of high importance. The
chlorophyll-a concentration (Chl-a), a photosynthetic pigment
present in one form or another in all marine phytoplankton, can
be used to monitor phytoplankton abundance and physiology
because it can be measured relatively easily through optical
sensors mounted on satellites or in situ autonomous platforms
and ship-based profiling rigs.

Satellites can observe the colour of the surface ocean remotely
with high spatial coverage and temporal frequency and use changes
in its colour to infer Chl-a concentrations (Groom et al., 2019).
Satellite-observed ocean colour has provided oceanographers data to
monitor temporal and spatial trends in Chl-a at global and regional
scales (Garnesson et al., 2019; Le Traon et al., 2015; McClain et al.,
2004). It is thought that by 2029, the ocean colour record will be long
enough to discriminate between the effects of climate change and
natural variability on phytoplankton (Groom et al., 2019), although
some work has suggested that we have already reached this point
(Cael et al., 2023). Yet, satellite remote sensing of ocean colour can
only observe the surface layer of the ocean (typically <40 m), and
phytoplankton features below this level, such as deep chlorophyll
maxima (DCM) common in stratified regions (Cullen, 2015) and
capable of contributing significantly to stocks and fluxes of
phytoplankton of carbon (Brewin et al., 2022; Cox et al., 2023;
Ma et al,, 2023; Viljoen et al, 2024), are missed. Consequently,
water-column stocks of Chl-a cannot be directly measured by the
passive satellite ocean colour.
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Historically, ship-based methods were used to collect critical
data on phytoplankton in deeper layers of the euphotic zone (sunlit
region of the ocean) using profiling rigs equipped with bottles for
water sampling or in vivo fluorometic sensors. However, the sparsity
of ship-based sampling meant that these observations were not
useful for monitoring phytoplankton over large spatial scales (e.g.,
global). One solution to this issue was to use ship-based sampling to
establish Chl-a
concentrations and column-integrated concentrations within the
euphotic zone (Morel and Berthon, 1989; Uitz et al., 2006). These
empirical relationships could then be used with surface Chl-a

empirical  relationships  between  surface

concentrations from satellite remote sensing of ocean colour to
predict global stocks of Chl-a pigment concentrations. These
empirical relationships have proven useful for estimating
phytoplankton stocks globally and quantifying energy transfer
and biomass of higher trophic levels (e.g., Hatton et al, 2021).
Yet, these relationships were developed using relatively few vertical
profiles (Morel and Berthon, 1989; Uitz et al., 2006) and switch
parametrisations, in a binary manner, between environmental
(stratified or well-mixed waters) and trophic conditions.

Over the past few decades, increasing numbers of autonomous
profiling floats have been deployed at a global scale to increase the
vertical profiling of the ocean (Chai et al., 2020; Claustre et al., 2020),
providing real-time and delayed-mode calibrated data that are freely
available (Gould et al., 2013; Roemmich et al., 2009). The core Argo
floats collect physical ocean data from which variables such as
mixed-layer depth (MLD) can be calculated (Oka et al., 2007).
More recently, the Biogeochemical-Argo (BGC-Argo) programme
includes a network of floats holding additional sensors that observe
biogeochemical properties Chl-a and particulate
backscattering (Claustre et al.,, 2020). These profiling floats have

such as

significantly expanded the number and distribution of vertical
profiles of Chl-a in the ocean, filling gaps in ocean observations
at global and regional scales (Claustre et al., 2020; Jayne et al., 2017;
Mignot et al., 2014).

In this paper, we use vertical profiles of Chl-a collected using the
global network of BGC-Argo floats to revisit empirical relationships
between surface and column-integrated Chl-a concentrations within
the euphotic zone, developed by Morel and Berthon (1989) and Uitz
et al. (2006). We then explore whether these relationships can be
refined to produce a more parsimonious relationship, not dependent
on a binary classification of physical and trophic conditions, with a
view to improve our ability to estimate stocks of phytoplankton Chl-
a concentration in the euphotic zone from satellite remote sensing.

2 Methods
2.1 Study area—the global ocean

In line with the studies by Morel and Berthon (1989) and Uitz
et al. (2006), our work focused on the global ocean. Consequently,
we needed a dataset representative of all oceans. Our dataset needed
to include high-productivity regions commonly found in upwelling
zones such as some coastal waters, around the equator, and at high
latitudes due to an abundance of nutrients in the euphotic zone (Lalli
and Parsons, 1997). Additionally, data from the large subtropical
gyres were required, known for their extremely low productivity as a
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result of nutrient limitations and the presence of DCMs (Miller,
2004). Our dataset also needed to cover high-nutrient low-
chlorophyll (HNLC) regions, such as the Southern Ocean, with
high levels of nutrients but low phytoplankton biomass (Le Moigne
et al., 2013; Sergi et al., 2020), due to a range of limiting variables
including the supply of micronutrients, principally iron (Ardyna
et al., 2017; Bazzani et al., 2023; Strzedek et al., 2019).

2.2 Data collection

2.2.1 A global BGC-Argo dataset

Global BGC-Argo float data (synthetic files; S-prof) were
downloaded on 28 November 2023 from the Argo Global Data
Assembly Centre (GDAC) using a customised Python functions
from the GO-BGC float toolbox (https://www.go-bgc.org/
getting-started-with-go-bgc-data) that are available on GitHub
The
was adapted to download data from all global BGC-Argo

(https://github.com/go-bgc/workshop-python). function
floats equipped with sensors for both Chl-a fluorescence and
particulate backscattering. The resulting dataset included data
from 922 BGC-Argo floats, which operated between 30 May
2010 and 27 November 2023.

All floats were equipped with sensors collecting data on pressure
(dBar, approximately proportional to the depth in metres);
(°C); salinity (PSU); Chl-a (mg m™); and
backscattering by particles (at a wavelength of 700 nm, m™') at

temperature

each profile location, with some also containing measurements of
downwelling irradiance (photosynthetically active radiation [PAR],
pmol photons m~2 s71). All profiles included a quenching correction
for Chl-a-adjusted profiles and a standardising adjustment for
pressure to facilitate work between core-Argo and BGC-Argo
variables (Bittig et al., 2019; Schmechtig et al., 2023).

The original dataset, representative of all ocean basins,
contained 130,354 profiles. For each profile, the following
metrics were computed: (1) surface Chl-a (Cgrp) was
computed as the median of Chl-a in the top 10 m of the water
column (typically within the mixed-layer; Boyer Montégut et al.,
2004); (2) diffuse attenuation coefficient (K;) was computed by
fitting a Beer-Lambert law to PAR and pressure data in the top
100 m of the water column if PAR was present in float data. If
PAR was not present, K; was estimated from Cg,, s using the
method suggested by Morel et al. (2007) by estimating the
euphotic depth and dividing 4.6 by it; (3) euphotic depth (Z;)
was estimated by dividing 4.6 by K4; (4) mixed-layer depth (Z,,)
was computed from temperature profiles, using the methods
suggested by Boyer Montégut et al. (2004); (5) optical mixed-
layer depth, K,,,, was estimated by multiplying K4 by Z,; (6)
column-integrated Chl-a (C;,) in the euphotic zone [defined as
1.5 x Z,, following Uitz et al. (2006)] was estimated using
trapezoid integration; (7) surface particulate backscattering
(byp,sur /) was computed as the median of by, in the top 10 m
of the water column; and (8) column-integrated particulate
backscattering (bpp,int) in the euphotic (1.5 x Z,) zone was
estimated using trapezoid integration.

These data were then cleaned first by using the Argo’s QC-
assigned numbers for Chl-a and by, profiles (profiles with median
values above 2 were removed) and removing data that fell outside
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certain bounds. Latitude (degrees) and longitude (degrees) had to
fall between —90 and 90 and -180 and 180, respectively, the
geographical bounds of the planet. K; (m™) had to fall between
0.02 (close to the theoretical limit of pure water) and 3 (at the
extreme high end in the ocean), and Z,, (m) had to vary between
10 [near-surface value of temperature defined using the method
suggested by Boyer Montégut et al. (2004)] and 4,000 (an extremely
high end in the ocean). Similarly, Cq,, (0.01 < mg m™ > 20), Cin
(0.01 < mgm™ > 1,000), bypqury (107¢ < m™ > 0.01), and byp,int
(107¢ < bypint > 10) all had to fall between low and high values, set
at the very extreme ends of reality, to remove any grossly unrealistic
values. This left 76,043 profiles, as shown in Figure 1.

2.2.2 Satellite data

Global satellite climatology data, at a spatial resolution of 9 km
(mapped, level-3 products) and at a temporal resolution of season,
were downloaded from NASA’s Ocean Colour data assembly centre
(NASA, 2022). The data were collected by the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor on the Aqua satellite.
Two products were downloaded, Chl-a concentration (surface) and
diffuse attenuation coefficient at 490 nm [converted to the diffuse
attenuation coefficient of PAR, following Morel et al. (2007)], for the
four seasons.

2.2.3 Mixed-layer depth climatology

Global monthly maps of mixed-layer depth (Z,,) at a lateral
resolution of 0.5° were downloaded from NOAA Monthly Isopycnal
Mixed-layer Ocean Climatology (MIMOC) (Schmidtko et al., 2013).
These maps are constructed using CTD data from Argo floats
supplemented with ice-tethered and shipboard profiles. These
data were re-gridded to 9 km and binned into seasonal
composites to match the temporal and spatial resolution of the
satellite data.

2.3 Model development

2.3.1 Existing model

Building on the work by Morel and Berthon (1989), Uitz et al.
(2006) developed a model through the statistical analysis of
2,419 profiles across the global oceans that estimates C;,, (down
to 1.5 x Z,) from Cg,, . The model developed by Uitz et al. (2006)
uses a power function such that

Cint = aCsurfﬁx (1)

where a and f3 are empirical parameters relating Cg,, 5 to Cj,. In the
approach used by Uitz et al. (2006), three sets of parameters are
provided, depending on whether the waters were deemed mixed or
stratified, with the latter category partitioned into low and high Chl-
a concentrations. To determine whether the waters were mixed or
stratified, they used the ratio of Z,, to Z,,. When Z,/Z,, was greater
than or equal to 1, waters were deemed stratified, and when less than
1, mixed. For stratified conditions, low and high Chl-a
concentrations were separated on either side of 1 mg m™ Courf-
Specifically, where Z,/Z,,<1, a=585 and B =0.546; where
ZplZm=1 and Cgyp<1, a=42.0 and B =0.248; and where
ZplZm21 and Coury>1, a =435, and f3 = 0.847.
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FIGURE 1

Distribution of the data used in this study, obtained from the global BGC-Argo dataset. A total of 76,043 data points were used, split by time into
training (blue) and testing (yellow) datasets for model evaluation. The training dataset begins on 30/05/2010 and ends on 21/04/2022, with the testing

dataset continuing on and ending on 27/11/2023.

2.3.2 New model

The empirical model developed by Uitz et al. (2006) has proven
a useful tool for approximating the stock of Chl-a in the euphotic
zone from satellite data (e.g., Hatton et al., 2021). However, the
model classifies the ocean into binary physical environments,
mixed and stratified waters, and further classifies stratified
environments into binary trophic levels. In reality, the ocean
may not adhere to such a binary classification. Additionally,
although based on a two-parameter model (Equation 1), it
really requires six parameters to operate over the full range of
conditions. Here, building on the approach used by Uitz et al.
(2006), we adapt their model to operate continuously over the full
range of physical conditions and trophic levels in the ocean while
reducing the number of parameters required, thus potentially
providing a more parsimonious solution.

We begin by selecting a different but compatible variable to
ZylZ,y, used by Uitz et al. (2006) by computing the optical mixed-
layer depth (K,,), estimated as the product of K; and Z,,,. We select
this variable instead of Z,/Z,, due to its relevance with satellite
remote sensing since K4 (as a key apparent optical property) can be
related more directly to the remote sensing reflectance measured
from a satellite. However, it is worth noting that as Z ! Zm tends to 1,
K can be related to Z,/Z,, according to

_ 4.6 @)
zm — [
Zy[Zom
Next, we model Cj,; (down to 1.5 x Z,) as a function of C,, ¢
and K, according to

ye[1/Kzn]

y+e[1/Ken] ©

Cint = (XCsurfl; +
This model has four parameters, «, 5, y, and €, rather than the six
needed in the method used by Uitz et al. (2006). The parameters «
and f are equivalent to those used by Uitz et al. (2006) when 1/K,,
(and the term on the far right side of the equation) tends to 0 (fully
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mixed water column). As 1/K,, increases, the term on the far right
side of the equation increases, controlled by the parameter € (slope of
increase), until it reaches saturation, which is required to prevent the
term from getting too large (reaching a maximum as defined by y) at
very high stratification. Note that the right-hand term was modelled
using a Michaelis-Menten style equation, but other similar
functions (e.g., saturated exponential) could have been used with
a similar effect. Unlike the approach used by Uitz et al. (2006),
Equation 3 is applicable in a continuous form to the full range of
physical conditions and trophic levels in the ocean. Note that as
ZplZm tends to 1, Equation 2 can be substituted into Equation 3, and

G,
reelt/(52)

2.4 Fitting and evaluating models using the
global dataset

the model can be expressed as

Cint = “Csurfﬁ +

To tune and test the method used by Uitz et al. (2006) and the
new model (Equation 3), the global dataset was split by time (pre-
and post-21 April 2022) into a training and testing dataset
(~80-20 split; 60,834-15,209 profiles), both of which were
globally representative (Figure 1). We split the data according to
time to ensure that the two datasets were independent (Stock and
Subramaniam, 2020). Both the method used by Uitz et al. (2006) and
the new model (Equation 3) were fitted to the data using the
Levenberg-Marquardt least-squares method of minimisation that
aims to minimise the chi-squared (y?) statistical test, reducing the
difference between the model and data (Marquardt, 1963). This was
implemented through the use of the Imfit-py package (https://pypi.
org/project/Imfit/). Both models were fitted to log,,-transformed
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TABLE 1 Model parameters used and derived in the study. Brackets represent uncertainty in the parameters.

Model Condition® « B y €
Original used by Uitz et al. (2006) M 58.5 0.546 — —
S, LC 42.0 0.248 — —
S, HC 43.5 0.847 — —
Tuned Uitz et al. (2006) M 52.62 (+0.15) 0.630 (£0.002) — —
S, LC 40.06 (+£0.22) 0.245 (+0.002) - —
S, HC 50.81 (+0.59) 0.854 (+0.018) — —
New model (Equations 3, 4) NA 46.82 (+0.16) 0.707 (£0.004) 25.2 (+£0.3) 40.6 (+0.8)

*M, mixed; S = stratified; LC, low-surface Chl-a (<1 mg m~3); HC, high-surface Chl-a (>1 mg m~); NA, not applicable.

Ci data, owing to the typical log-normal distribution of Chl-a
(Campbell, 1995). Model parameters and their uncertainties are
given in Table 1.

A number of statistical tests were used to evaluate model
performance (e.g., Equations 5, 6). This statistical evaluation was
completed on both the training and testing datasets. All statistical
evaluations were conducted on C;,, data following logarithmic
(base 10) transformation. The statistical tests included (1)
Spearman’s rank correlation coefficient (r), chosen to indicate
how well the model can explain variance in the data (Python
package scipy. stats); (2) root mean squared difference (RMSD),
which provides an aggregate measure of the magnitude of
single summary that
represents the overall difference between the model and data).
This was computed as

predicted differences (a statistic

LN 12
RMSD = [N Zl (X1 - Xi2) ] , (5)

where X is the variable and N is the number of samples. The
subscripts 1 and 2 represent different estimates of the same variable,
with 1 representing the estimated variable and 2, the measured
variable; and (3) Akaike information criterion (AIC), which
considers the fit of the data and the model’s simplicity, was used
to generate a relative statistic that can be compared between models,
with the lower score representing a better model. This was
computed as

AIC=2xk+N- In{ [i (X1 - X,«,Z)Z]/N } (6)

where « is the number of parameters in the model.

2.5 Application of the new model

To illustrate applications of the new model, we simulated
the influence of changes in the mixed-layer depth on
model simulations of C;,; and forced our model with seasonal
mean climatologies of satellite data on surface Chl-a and the
diffuse attenuation coefficient (K;), and MIMOC MLDs, to
produce seasonal maps of C;,,. We also explored the spatial
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distribution of the term on the far right side of Equation 3,
which is directly related to 1/K,,, and interpreted this term in the
context of regions of the ocean with strong vertical gradients in
Chl-a.

3 Results and discussion
3.1 Existing model results

The original model used by Uitz et al. (2006) (see parameters in
Table 1) was found to agree well with the BGC-Argo dataset
(Figure 2A). There is a clear division between mixed and
stratified waters, and the original regressions capture these broad
differences (Figure 2A). This division between mixed and stratified
waters essentially reflects the fact that within the euphotic zone when
waters are mixed, chlorophyll-a is relatively uniform with depth,
whereas when conditions stratify, the vertical stricture of
chlorophyll-a is non-uniform, with the presence of a DCM.
Considering that this model was developed using a much
smaller, independent dataset (2,419 profiles) with less extensive
global coverage (Uitz et al, 2006), it is quite remarkable how
well the original concept developed by Morel and Berthon (1989)
performs. The model estimates of C;,; are well-correlated with both
training and testing datasets ( > 0.7; Table 2), with reasonably low
RMSD (<0.2; Table 2).

Re-tuning the model used by Uitz et al. (2006) to the training
dataset (Table 1) yielded in a significant increase in performance
over the original model (lower RMSD and AIC) compared with the
testing dataset (Table 2). However, the new set of parameters was
only marginally different from the original ones (Figure 2A;
Table 1). Regressions for the three different ranges (mixed,
stratified low Cg,, s, and stratified high Cg,,r) were all performed
independently (as done by Uitz et al. (2006)). This did create a slight
discontinuity at the boundary (1 mg m~; see Figure 2A) between
stratified regressions, with the « parameter differing significantly
between low and high Cg,, s, with a wider difference than in the
original approach (Table 1). Future work could look to avoid such a
discontinuity by having a fixed « parameter for stratified waters and
only varying f3 between low and high Cg,, although this may
reduce model performance.
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(A) Original model used by Uitz et al. (2006) and the refit of the model used by Uitz et al. (2006) to the global BGC-Argo dataset overlain onto the
scatter plot of surface vs column-integrated Chl-a for the entire dataset (training and testing) with points colour-coded according to the ratio Z,/Z,. (B)
New model overlain onto the scatter plot of surface vs column-integrated Chl-a for the entire dataset (training and testing) with points colour-coded

according to the ratio 1/K,p,.

TABLE 2 Statistical comparison of models with training and testing datasets.

Model Dataset 7 RMSD* AIC* N*

Original used by Uitz et al. (2006) Training 0.731 0.180 —-208632 60,834
Tuned Uitz et al. (2006) Training 0.748 0.168 -216821 60,834
New model (Equations 3 and 4) Training 0.762 0.165 -219462 60,834
Original used by Uitz et al. (2006) Testing 0.705 0.194 —49831 15,209
Tuned Uitz et al. (2006) Testing 0.715 0.177 —52595 15,209
New model (Equations 3, 4) Testing 0.730 0.176 -52769 15,209

“All statistical tests performed after log-transformation (base 10) of the data.
® N refers to the number of samples.

3.2 New model results

Simulations overlain onto the entire BGC-Argo dataset (training
and testing; Figure 2B) illustrate how the new model performs in a
continuous manner over the full range of Cy,, s and 1/K,,, without
any discontinuities or any binary switch between mixed and
stratified conditions. It appears to capture the change in Cjy, for
a similar low Cg,f, as the environment moves from well-mixed
(1/K,,, <0.2) to more stratified conditions (1/K,,, >0.2).

The o and f parameters derived from the training dataset for the
new model (Equations 3, 4) were found to lie around the mid-range
of those of the tuned model used by Uitz et al. (2006) for the different
environments (Table 1). Parameters for the right-hand term of
Equation 3 are given in Table 2, and the term is plotted as a
function of 1/K,, in Figure 3A, where it is seen to initially
increase as a linear function of 1/K,,, according to €, until it
reaches a half-saturation (y/e) point beyond which the term
begins to saturate, with a theoretical limit represented by y.

Compared with the re-tuned and original models used by Uitz
et al. (2006), the new model has a similar performance in both the
training and testing datasets (Table 2), albeit with a slightly higher
correlation coefficient and lower RMSD and AIC. Although these
improvements are small, when considering how large the datasets
are, improvements are significant, for example, the increase in the

Frontiers in Remote Sensing

correlation coefficient in both training and testing datasets (Table 2,
Z-test, p<0.05). Considering that the new model has a lower
number of parameters [four compared with the six used by Uitz
et al. (2006)], it can also be considered a more parsimonious model,
as partly reflected by a lower AIC.

3.3 Changes in vertical structure with
increasing stratification

The term on the far right-hand side of Equation 3 (%
shown in Figure 3A, essentially reflects non-uniform changes in the
vertical structure of Chl-a with increasing stratification (1/K,,). As
the waters become more stratified, a deep Chl-a maximum forms,
increasing Chl-a at depth relative to its surface values. DCMs can
occur from an increase in biomass at depth (typical of high-latitude,
seasonally stratified regions), or due to the physiological changes in
the phytoplankton, where the cells in different parts of the water
column increase (or decrease) their Chl-a concentration in response
to decreasing (increasing) light levels, without changing their
biomass (e.g., carbon concentration) (Cullen, 2015).

To investigate drivers of the right-hand term of Equation 3, we
plotted surface particle backscattering (bypsury) against column-
integrated  particle (byp,int) 3B).

backscattering (Figure
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Phytoplankton carbon and light-scattering properties of particles
(including by,) are correlated with each other over a range of scales
(Behrenfeld et al., 2005; Martinez-Vicente et al., 2013; Graff et al.,
2015). Unlike for Chl-a (Figure 2), there are no clear differences in
the relationships for by, between stratified and mixed waters
(Figure 3B). Considering that these relationships are less evident
in by, (by proxy phytoplankton carbon), it is likely that changes in
the carbon-to-Chl-a ratio is an important driver of the term on the
far right-hand side of Equation 3. This change may be occurring at
the DCM (increase in Chl-a at low light, often referred to as a deep
acclimation maximum; Cornec et al., 2021) and/or at the surface
(decrease in Chl-a at high light; Brewin et al., 2022) and could be
driven by photoacclimation and/or shifts in the phytoplankton
community structure (Viljoen et al., 2024).

3.4 Model applications

The new model could provide a useful, empirical constraint on
future predictions on shifts in the vertical structure of Chl-a in the
open ocean in a changing climate. To illustrate this, we simulated
(Figure 3C) Ciy for varying Cg,ry and mixed-layer depths (Z,,),
tying K to C, 5, following Morel et al. (2007) (case I assumption is
that phytoplankton control optical properties in the open ocean).
The model simulations indicate that in lower Cg,, s waters, as the
mixed-layer shoals, there is a substantial increase in C;,,, for the same
Cgurf (Figure 3C). Such simulations may not only provide an insight
into how the vertical structure in Chl-a could be impacted by a
shoaling (or deepening) of Z,, but also show that we should be
cautious when using satellite measurements of C,, s for interpreting
C; without information about Z,,.

Figure 4 shows the seasonal estimates of global C;,; derived from
satellite climatologies on Cg,,r and K4 and MIMOC Z,,, climatologies.
Cin shows large blooms visible north of 50 °N in the boreal spring and
summer (March-May and June-August) and similar blooms in the
Southern Hemisphere (SH) during austral spring and summer
(September-November and December-February). High C;, is also
observed in coastal waters and upwelling zones. Oligotrophic regions
(low Cjy) are also identifiable as the large tropical ocean gyres in the
Atlantic, Pacific, and Indian oceans.

Frontiers in Remote Sensing

Spatial maps of the far right-hand term of Equation 3 (Figure 4)
also provide an insight into regions that exhibit strong vertical
gradients in Chl-a. The term contributes more significantly in sub-
tropical regions but displays temporal variability in seasonal
stratified  high-latitude these images
demonstrate how the new model can be used with satellite data
and Z,, information to study spatial and temporal variability in C;,
and help identify regions of the ocean with strong vertical gradients
in Chl-a.

regions.  Collectively,

3.5 Potential limitations to our study and
future perspectives

Morel and Berthon (1989) and Uitz et al. (2006) used discrete
measurements of extracted Chl-a (either using fluorescence or high-
performance liquid chromatography), as opposed to this study that
used less accurate in vivo estimates of Chl-g, only available on BGC-
Argo floats. For the same Chl-a concentration, variations in the in
vivo fluorescence signal can occur with species composition and
physiological status, impacting conversion factors (see the study by
Petit et al., 2022), especially in the Southern Ocean (Schallenberg
et al., 2022). There are also uncertainties in the non-photochemical
quenching correction used
(Schmechtig et al., 2023).

Uncertainties also exist for other variables used in the model. For
example, for many profiles, PAR data were not available, so K; was
estimated empirically (Morel et al., 2007). To harness the power of

in BGC-Argo data processing

BGC-Argo floats, continued efforts are needed to develop rigorous,
community-agreed protocols, quantify measurement uncertainties,
and ensure that a standard set of key ocean variables are collected
(Claustre et al., 2020). The equations used in this study are empirical
in nature. Thus, they do not solve for detailed changes in the vertical
structure in Chl-a and, so, are somewhat limited in applications. To
do that, other empirical approaches are required (e.g., Brewin et al.,
2022) or more mechanistic ecosystem modelling (IOCCG, 2020).
With the climate changing rapidly, it is important to have tools
to provide accurate estimations of the phytoplankton stock and
physiology in the global oceans and ensure relevant monitoring of
spatial and temporal changes. By developing simple models that can
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using global satellite estimates of Csr, Kg, and maps of Zp,,. The right column shows the contribution from the far right-hand term of Equation 3 (),ﬂ K]

to Cjn¢ for the four seasons.

combine the benefits of high-spatial and temporal observation of the
surface ocean by satellites, with the vertical profiling of autonomous
platforms, we can improve the way we quantify changes in
phytoplankton stock and physiology. Moving forward, it will be
important to continue tuning the model as more data become
available. It may also be fruitful to apply the model to specific
regions with unique characteristics where the parameters may differ,
for example, in Arctic waters (Ardyna et al, 2013) and the
Mediterranean Sea (Li et al., 2022).

Frontiers in Remote Sensing

3.6 Summary

Using a global array of BGC-Argo floats (76,043 profiles, spanning
from 2010 to 2023), we re-evaluated empirical relationships between the
surface and column-integrated concentrations of Chl-a developed by
Morel and Berthon (1989) and extended by Uitz et al. (2006). We found
that these relationships agree well with BGC-Argo float data. The
relationships were then extended so that the column-integrated Chl-a
concentration could be estimated as a continuous function of its surface
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value and a proxy for stratification (optical mixed-layer depth) without
the need for a binary switch in parameters between mixed and stratified
waters. The extended model has fewer parameters and performed better
in statistical tests than earlier models. Applications of the new model
include studying the impact of increasing stratification on the relationship
between surface and column-integrated concentrations of Chl-a, using
satellite data for monitoring spatial and temporal variations in column-
integrated concentrations of Chl-a, and identifying and monitoring
regions of the ocean with strong vertical gradients in Chl-a.
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