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Soil moisture is a fundamental variable in the Earth’s hydrological cycle and vital
for development of agricultural water management practices. The present study
provided a comprehensive evaluation of a wide range of advanced machine
learning algorithms for Soil Moisture (SM) estimation from microwave Synthetic
Aperture Radar (SAR) backscatter observations over the wheat fields. From the
wheat fields, samplings were performed to collect the in situ datasets on three
different dates concurrent to the Sentinel-1 overpasses. The backscattering
coefficients were taken as the input variables and SM as the output variable
for the training and testing of different models. The performance analysis of
RMSE, R-squared, and correlation coefficients revealed that the Random Forest
(RF) and Convolutional Neural Network (CNN) models demonstrated superior
performance for SM estimation over the wheat field. Specifically, the RF model
exhibited outstanding accuracy and robustness in both the training [RMSE (%):
3.44, R-squared: 0.88, correlation: 0.95] and validation phases [RMSE (%): 7.06,
R-squared: 0.61, correlation: 0.8], marking it as the most effective model
followed by the CNN model with [RMSE (%): 3.9, R-squared: 0.84, correlation:
0.92] during training and [RMSE (%): 8.44, R-squared: 0.43, correlation: 0.67] for
validation, highlighting challenges in the model generalisation.
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1 Introduction

Soil moisture is a fundamental variable in the Earth’s water cycle, influencing various
environmental and agricultural processes (Srivastava, 2017; Suman et al., 2019). Soil
moisture regulates plant growth, affecting crop yields and managing water resources
(Soothar et al., 2021). Understanding and accurately predicting soil moisture levels is
crucial for effective agricultural management (Ray and Majumder, 2024). The timely and
precise soil moisture estimation can help optimise irrigation practices, enhance crop
productivity, and mitigate the impacts of droughts and floods (Jackson and Schmugge,
1991; Srivastava et al., 2013; Robock et al., 2000). Traditionally, soil moisture has been
measured using ground-based methods, which, although accurate, are often limited in
spatial coverage and can be labor-intensive (Robock et al., 2000). In contrast, sensing
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technologies, particularly Synthetic Aperture Radar from satellites,
offer a more efficient and comprehensive approach to soil moisture
monitoring (Duarte andHernandez, 2024; Inoubli et al., 2024).With
its ability to capture microwave signals reflected from the Earth’s
surface, SAR provides valuable insights into soil properties,
including moisture content (Brocca et al., 2016). Unlike optical
sensors, SAR can penetrate cloud cover and provide data under all
weather conditions, making it particularly useful in regions with
frequent cloud cover or during the monsoon season (Barrett and
Petropoulos, 2013; Singh et al., 2023; Ulaby et al., 2014).

In regression modelling, linear models provide a straightforward
approach (Srivastava et al., 2013), however, many researchers
showed that the SM is non-linearly related to vegetation
parameters and surface temperature (Singh et al., 2022), so linear
models may not be a good choice. On the other hand, non-linear
models such as SVMs are known for their robustness in handling
non-linear data (Vapnik, 2013). Artificial Neural Network (ANN)
and CNN, on the other hand, excel in recognising patterns and
extracting features from large datasets (Anand et al.,, 2021), making
them ideal for processing high-dimensional SAR data (Mladenova
et al., 2014). In recent studies, CNN models have been applied for
soil moisture prediction (Roberts et al., 2022; Wang et al., 2023),
along with convolutional long short-term memory (ConvLSTM)
neural network (Kannan et al., 2022). Our study also explores CNN’s
soil prediction capabilities in agricultural areas near the Varanasi
region. By integrating these advanced modeling techniques with
SAR observations, this study seeks to improve the accuracy of soil
moisture predictions and develop a valuable tool for farmers and
agricultural planners. The results will contribute to more efficient
irrigation scheduling, better water resource management, and
ultimately enhanced agricultural productivity. Furthermore, this
research emphasises the potential of remote sensing in
conjunction with ML/DL to address critical challenges in
precision agriculture, offering a scalable and cost-effective
solution for soil moisture monitoring on a regional scale
(Chaudhary et al., 2022). This approach advances our
understanding of soil moisture dynamics and leverages cutting-
edge technology to foster sustainable agricultural practices (Foley
et al., 2011).

The study employs various ML models to predict soil moisture
from the extracted SAR backscattering data. The models include
Relevance Vector Machine (RVM), SVM, ANN, and CNN. Each
model offers unique advantages in capturing the complex
relationships between SAR backscattering values and SM.
Therefore, the foremost objectives of this work are 1) to assess
suitable indices estimated from Sentinel 1 data suitable to use with
deep learning models 2) to explore the best algorithm among the
Machine Learning/Deep Learning and their performance
assessment 3) to develop proficient model to generate a spatial
distribution of soil moisture over the agricultural region.

2 Study area

The study area Varanasi (Uttar Pradesh) is about 1,535 square
kilometers, next to the Ghazipur and Chanduali districts. Located in
the fertile Gangetic Plains, it stands about 80.71 m above MSL with
slope variation of 0%–3% and is geographically positioned at

25.3176°N latitude and 82.9739°E longitude (Figure 1). The
districts get about 1,110 mm of rainfall yearly, mainly during the
monsoon season, which helps its agriculture thrive. The average
temperature of the study area is about 26°C, and during the summer,
it can reach 45°C. In the winter, it is around 5°C. The area soil is
predominantly alluvial, deposited by the Ganges River. This fertile
soil supports extensive agricultural operations and is vital for the
district’s farming communities. The prominent crops for agriculture
practices are wheat, rice, and sugarcane. The landscape is generally
flat, part of the Indo-Gangetic Plain, with minor variations that
influence agricultural practices and water management. The
irrigation and drainage systems are primarily fed by the Ganges
and its tributaries, along with a network of canals supporting
agriculture practices in those areas.

3 Methodology

This study is centered on applying Sentinel 1 observations for
soil moisture prediction in wheat fields. Wheat is a staple crop in this
region, and its growth is highly dependent on irrigation availability
at critical development stages. To ensure accurate and timely
predictions, soil moisture data were collected on three specific
dates during the wheat-growing season: 19th February, 9th
March, and 14 April 2024 (Figure 2). These dates correspond to
critical phenological stages of wheat growth, including tillering,
flowering, and grain filling, where soil moisture is crucial in
determining the final yield. Ground-based soil moisture
measurements were obtained using the HydroGo device, a
portable tool that measures soil moisture at a depth of 5 cm.
These ground measurements provide a reliable reference for
validating satellite-derived estimates (Entekhabi et al., 2010).
Sentinel-1, a European Space Agency (ESA) satellite equipped
with SAR, was utilised to acquire images on the exact dates.
From these images, backscattering coefficients were extracted for
σ0VV (vertical transmit and receive polarization), σ0VH (vertical
transmit and horizontal receive polarization), σ0VV + σ0VH, and
the Radar Vegetation Index (RVI). The use of RVI (Equation 1) is
the replacement for NDVI which is crucial for vegetation health
monitoring (Kumar et al., 2013). These backscattering values are
sensitive to soil moisture and vegetation characteristics, making
them suitable indicators for modeling soil moisture levels (Wagner
et al., 2007).

RVI � 4*σ0VH
σ0VV + σ0VH

(1)

3.1 Data acquisition

3.1.1 In-Situ data acquisition
In-situ soil moisture (SM) was collected in the agricultural fields

through HydraGO (a moisture measurement device for the upper
soil layer). This device can get SM at depths of 5 cm, and in these
places, sample readings get stored in an app called HydraGO, which
Stevens Water Monitoring Systems, Inc. developed. It can also
provide the latitude and longitude coordinates of the locations
where the ground samples were read by accessing the mobile
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device’s GPS system. The SM samples are collected from 42 spatially
different locations regularly monitored for three different crop
growth stages, and measurements were done three times in three
different months (February, March, and April). The HydraGO-
based in situ soil moisture measurement had shown a fair
correlation with the ground measurements (Wang et al., 2024),
and it has lower uncertainties associated with the device (Murugesan
et al., 2023).

3.1.2 SAR data acquisition and processing
The SAR Sentinel-1 data was taken from the Copernicus Data

(https://dataspace.copernicus.eu/) for the proposed study area of
three different months. The analysis was based on Sentinel-1 with
polarizations (VV and VH). The pre-processing requires subsequent
steps such as radiometric correction, thermal noise removal,
calibration, apply orbit file, speckle filtering, geometric correction,
and terrain correction. Afterwards, the backscattering was extracted
by using Sentinel-1 pre-processed images of the study area and
getting the backscattering coefficient of σ0VV, σ0VH,
σ0VV + σ0VH. All these processes are done using software called
SNAP version 10.0.0 (https://step.esa.int/main/download/snap-

download/) (Moreira et al., 2013; Torres et al., 2012). The Radar
Vegetation Index was then calculated by using the σ0VV, σ0VH,
which showed a good relationship with SM by many researchers
(Chaudhary et al., 2021; Srivastava et al., 2015).

However, other SAR satellite data, such as NovaSAR and
RADARSAT, are limited for the studied region. NovaSAR is
expensive and was not available for the in situ soil moisture
collection data so it would represent nonconcurrent data. Thus,
NovaSAR data is not preferred for studying. In the case of
RADARSAT, it is no different from NovaSAR attributes for the
region. Apart from the mentioned limitation, no freely accessed data
matches the temporal and spatial coverage such as the Sentinel
1 data for the study area. The sentinel data provide short temporal
resolution and are preferred for agriculture studies (Li et al., 2021;
Srivastava et al., 2024).

3.1.3 Machine learning and deep learning
algorithms

The main purpose of ML and DLmodels is to estimate SM using
the backscattering data and RVI. Supervised machine learning
models were used as they utilises training data or labelled data

FIGURE 1
Geographical location of the test site (Source: Bhuvan WMS https://bhuvan-vec2.nrsc.gov.in/bhuvan/wms).
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that are typically used in models to predict future values or events. In
the present study, there are mainly five types of ML/DL were used:
SVM, RVM, RF, ANN, and CNN, to estimate and predict the SM
over the study area.

3.1.3.1 Support vector machine (SVM)
The SVM regression model uses an RBF kernel to predict soil

moisture from satellite-derived radar backscatter measurements and
the Radar Vegetation Index (RVI). Following the formulation found
in (Cortes and Vapnik, 1995), the SVMmodel seeks to minimise the
regularised risk function:

min w,b,ξ,ξ*
1
2
w‖ ‖2c∑n

i�1
ξi + ξ*i( ) (2)

subject to:

yi − w · ϕ xi( ) + b( )≤ ε + ξi, (3)
w · ϕ xi( ) + b( ) − yi ≤ ε + ξ*i , (4)

ξi, ξ*i ≥ 0 for all i, (5)
in Equation 2–5 the parameter w is the weight vector, b is the bias, ϕ
(xi) represents the high-dimensional feature transformations, and ξi,
ξ*i are the slack variables (Cortes and Vapnik, 1995). The RBF kernel,
described by (Schölkopf and Smola, 2002), alters the training data
into a higher-dimensional space using the kernel function:

K xi, xj( ) � exp −γ‖ xi − xj ‖2( ), (6)

in Equation 6, the γ is a parameter that defines the spread of the
kernel and thus influences decision boundary’s smoothness and
complexity (Schölkopf and Smola, 2002). The choice of the RBF
kernel allows the SVM to handle the non-linear relationships often
present in environmental data sets, a technique further discussed in
(Cristianini, 2000). Parameter tuning, particularly the choice of CCC
and γ, was guided by the practical insights provided in (Chang and
Lin, 2011).

The SVM model’s hyperparameters was tuned with the radial
basis function (RBF) kernel: the cost parameter (C) and the kernel
parameter (gamma). The cost parameter was varied to establish an
optimal balance between minimising error and reducing overfitting
by penalising misclassified instances. The gamma parameter, which
governs the influence of individual training samples, was adjusted to
effectively capture the non-linear relationships between the
predictors and soil moisture. To ensure a robust and reliable
evaluation of the model, a five-fold cross-validation technique
was utilised, allowing the model to be trained and tested on
various subsets of the dataset.

3.1.3.2 Relevance Vector Machine (RVM)
This study employed a Relevance Vector Machine (RVM) for

predicting soil moisture using a polynomial kernel. The RVM, an

FIGURE 2
Flowchart depicting the ML/DL-based soil moisture predictive modeling used in this study.
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advanced machine learning technique based on Bayesian inference
principles, offers a probabilistic counterpart to Support Vector
Machines (SVM) with a key advantage in producing sparser
solutions (Tipping, 2001). The model output, y(x), is defined by
the linear combination of weights and high-dimensional features
mappings, represented as

y x( ) � wTϕ x( ) + ϵ, (7)
in Equation 7, the w is the weight vector, ϕ (x) denotes the kernel-
induced feature space and ϵ is Gaussian noise (Bishop, 2006).

The kernel function for the RVM was specified as a
polynomial kernel,

K xi, xj( ) � 1 + xi, xj( )( )2, (8)

in Equation 8, where d is the polynomial degree, enhancing ability of
the model to capture non-linear relationships in environmental data
(Schölkopf and Smola, 2002). Learning in RVM involves
maximising marginal likelihood of the observed data, and
integrates over the weights, formulated as the following equation:

p w t,X, α, σ2)∝p(t∣∣∣∣ ∣∣∣∣X,w, σ2( )p w|α( ), (9)

in Equation 9, where t and X are targets and input vectors,
respectively, α are hyperparameters including sparsity, and σ2 is
the noise variance (Tipping, 2001).

RVM’s preference for sparsity is facilitated through Automatic
Relevance Determination (ARD), which drives many weight
parameters towards zero, effectively reducing the model’s
complexity while retaining predictive accuracy. This aspect is
crucial in determining the relevance vectors, which are
instrumental in the model’s training and prediction phases
(Bishop, 2006).

A Relevance Vector Machine (RVM) was fine-tuned for soil
moisture prediction using Sentinel-1 parameters, leveraging a
polynomial kernel to model nonlinear relationships. Input
features were normalised, and hyperparameters, including kernel
degree and regularisation, were optimised via grid search. Five-fold
cross-validation ensured robust generalisation, while metrics like
RMSE and R-squared confirmed high prediction accuracy. The
model achieved minimal bias and strong alignment between
observed and predicted values, making it a reliable tool for soil
moisture monitoring in agriculture.

3.1.3.3 Random Forest (RF)
The Random Forest was employed to predict soil moisture,

leveraging its capacity to manage large datasets characterized by
complex, non-linear interactions among variables. RF is an
ensemble learning method developed by Leo Breiman. The RF
model constructs a multitude of decision trees at training time,
and the result is the mean prediction of the individual trees that
produce the model prediction. This method is particularly effective
due to its intrinsic ability to reduce variance without increasing bias
significantly, thus mitigating the overfitting problem prevalent in
single decision trees (Breiman, 2001).

The trees in the forest are generated from a unique bootstrap
sample, drawing randomly with replacement from the training
dataset, thus ensuring that each tree learns from a slightly
different subset of the data. This approach is known as bootstrap

aggregating or bagging and it increases the diversity among the trees
in the model, which is crucial for achieving robustness in the
predictions (Equation 10):

Di � x i( ), y i( )( ), . . . .., x i( )
n , y i( )

n( ) (10)

For each node of trees, the algorithm selects a random subset of
the features. It determines the best split based on minimizing the
sum of the squared residuals, thereby ensuring that each split
contributes effectively to reducing the overall prediction error
(Equation 11):

j*, t* � arg minj,t min c1 ∑
xi∈R1 j,t( )

yi − c1( )2 +min c2 ∑
xi∈R2 j,t( )

yi − c2( )2⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦
(11)

The predictions from all trees are then aggregated to determine
the final prediction by averaging, which significantly reduces the
variance while retaining the bias low (Equation 12):

ŷ x( ) � 1
B
∑B
i�1
ti x( ) (12)

where B denotes the number of trees. This aggregation helps in
canceling out errors across the different trees, leading to more
accurate and stable predictions, especially in complex
environmental applications such as soil moisture prediction
where the inputs might have high variability and inter-
correlations (James et al., 2013).

The Random Forest algorithm’s ability to handle high-
dimensional spaces and maintain accuracy even when most
predictive variables have noise significantly enhances its
suitability for ecological and hydrological modeling. It is adept at
capturing essential patterns in the data, which could be missed by
simpler models, thus providing a profound tool for predicting
phenomena that depend on subtle environmental cues.

The Random Forest (RF) model was fine-tuned to optimise its
predictive performance, using 500 decision trees to balance
computational efficiency and accuracy. The mtry parameter,
representing the number of predictors considered at each split,
was set to 2 based on extensive cross-validation, enhancing
model diversity and reducing overfitting. A 5-fold cross-
validation approach was employed for robust evaluation,
ensuring unbiased performance estimates on unseen data. This
tuning process significantly improved the RF model’s ability to
predict soil moisture, effectively capturing the relationship
between Sentinel-1 backscatter parameters and soil moisture with
high accuracy and strong generalizability.

3.1.3.4 Artificial Neural Network (ANN)
The ANN model was employed to predict soil moisture,

leveraging its ability to model complex, and non-linear
relationships inherent in environmental data. ANNs are
computational systems inspired by the neural structures of the
human brain, consisting of interconnected layers of nodes or
neurons. Each neuron processes input through weighted sums
and a non-linear activation function, enabling the network to
capture intricate patterns from the input features (Haykin, 1998).

During the training phase, the ANN adjusts its internal weights
through backpropagation, an optimization technique that iteratively
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updates the weights to reduce the discrepancy between predicted
and actual outputs (Rumelhart et al., 1986). The equation defined
the linear output of the network:

y � f W.x + b( ) (13)
in Equation 13, where x represents the input features, W the weight
matrix, b the bias vector, and f the linear transformation function.

Performance metrics such as RMSE, R-squared, and the
correlation coefficient were calculated to assess the model’s
accuracy. The statistical metrics offer an assessment of the
model’s capacity to accurately approximate the actual soil
moisture values from radar backscatter measurements and RVI,
demonstrating the effectiveness of the ANN in environmental data
analysis (Chollet and Allaire, 2018). Furthermore, feature scaling
was implemented as a preprocessing measure to ensure that all input
variables contributed equitably to the model training. This step is
crucial in neural network models to prevent the dominance of
features with larger-scale values, ensuring a balanced and
effective learning process (Goodfellow, 2016).

The ANN model for soil moisture prediction was optimised by
tuning the number of hidden layer neurons (5–10) and the
regularisation decay parameter (0.1 and 0.01) to balance
complexity and generalisation. Three-fold cross-validation ensured
robust evaluation, and input features were standardised for consistent
learning. This systematic tuning achieved high prediction accuracy
and reliable performance on both training and testing datasets.

3.1.3.5 Convolution neural network (CNN)
The CNN model has been employed to predict soil moisture,

exploiting its ability to process spatial data effectively. CNNs, known
for their hierarchical feature extraction, excel at capturing complex
patterns in satellite imagery, making them ideal for environmental
applications such as soil moisture estimation. The CNN architecture
was implemented using the “Keras” library, consisting of multiple
sequential layers explicitly designed for feature extraction and
regression analysis. The initial convolutional layer was equipped
with 32 filters of size 1 × 3 and utilised the Rectified Linear Unit as an
activation function. This layer is critical for extracting spatial
features from the input data, with the convolution operation
expressed mathematically as (Equation 14):

a l[ ] � g W l[ ]*x l−1[ ] + b l[ ]( ) (14)

where a [l] represents the activation at layer l,W [l]and b [l] are the
weights and biases, x [l−1] is the input from the previous layer, p
denotes the convolution operation, and g is the Rectified Linear Unit
function that introduces non-linearity (LeCun et al., 1998).

Furthermore, a max pooling layer with a pool size of 1 ×
2 reduced the spatial dimensions of the feature maps. This
pooling operation simplifies the output by only passing the
maximum value from each region of the feature map, as
described by (Equation 15):

a l[ ]
ij � maxp,q∈region a

l−1[ ]
pq (15)

This reduces computational load while retaining essential
features crucial for controlling overfitting (Scherer et al., 2010).

Further layers included another convolutional layer with
64 filters of the same size to deepen the network’s capacity to

discern more complex environmental patterns. The network then
employed a flattening step that converts the multidimensional
feature maps into a one-dimensional feature vector, which was
subsequently passed through a fully connected dense layer with
50 Rectified Linear Units. This culminated in a regression output
layer to predict continuous soil moisture values. The model was
trained using the RMSprop optimiser, an adaptive learning rate
technique particularly effective for deep learning tasks involving
large data sets (Tieleman, 2012).

A GPU-accelerated CNN was developed for soil moisture
prediction, featuring optimized convolutional and dense layers
with ReLU activation and max-pooling. Key hyperparameters,
including RMSprop optimizer, batch size, and 40,000 epochs,
were fine-tuned. Input normalisation and a 20% validation split
ensured robust performance, with metrics like RMSE confirming
accurate predictions from Sentinel-1 features.

4 Results and discussion

4.1 Analysis of the in situ datasets and
backscattering

The Soil Moisture, σ0VV, σ0VH, σ0VV + σ0VH, and RVI box
plots clearly displayed the distribution and variability at different
dates. Each plot brings out the median, interquartile range, and
outliers that may indicate peculiar conditions or measurement
anomalies. The SM box plot shows variation in soil moisture
over time; wider boxes show more significant variability, while
outliers indicate some specific locations with entirely different
moisture values. Likewise, σ0VV and σ0VH box plots show how
radar backscatter behaves for different surface variables. The plot for
RVI provides information on vegetation dynamics with changes in
median values, indicating changes in vegetation cover or structure.
In general, the box plots add significantly to understanding the
temporal patterns and space variability of the parameters under
study, such as environmental situations during that period. The in
situ soil moisture variability and relation have been captured by
σ0VH and RVI. These two variables (σ0VH and RVI) become a
feature of importance and have a higher weight in the prediction of
soil moisture in comparison to σ0VV and σ0VV + σ0VH. Therefore,
box plots of in situ soil moisture and machine learning features
improve the decision-making in feature engineering by a modular.
This enables us to improve the prediction capabilities of models used
in the study (Figure 3).

The scatterplot matrix (Figure 4) illustrates the relationships
between soil moisture (SM) and various radar-derived parameters
and derived index, including σ0VV, σ0VH, σ0VV + σ0VH, and RVI.
Each cell presents a scatterplot showing the relation of variables
among each other with their corresponding correlation coefficients.
In (Figure 4), the correlation values are accompanied by significance
level indicators: (*) denotes that the observed relationship is unlikely
to have occurred by chance, with a confidence level of 95%.
Additionally, (**) indicates a 99% confidence that the
relationship is not attributable to random variation. Finally, (***)
suggests solid evidence against the null hypothesis, boasting a
confidence level of 99.9%. These markers effectively convey the
significance levels in a concise manner. SM showed is a weak
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negative correlation (−0.242) with σ0VV, indicating that higher soil
moisture slightly reduces the backscatter in the VV polarisation.
This relationship is statistically significant at the 0.01 level. In
contrast, SM shows a moderate positive correlation (0.600) with
σ0VH, suggesting that increases in soil moisture can be associated
with higher backscatter in the VH polarisation. This correlation is
highly significant, indicating a strong relationship. Meanwhile, there
is almost no correlation (−0.022) between SM and σ0VV + σ0VH,
implying that the combined backscatter from both polarisations
does not directly reflect changes in soil moisture. However, SM has a
strong positive correlation (0.670) with RVI, suggesting a close
relationship between soil moisture levels and vegetation
conditions. The selection of indices σ0 VV + σ0 VH is based on
its ability to incorporate the soil moisture conditions and the
wheat growth stages. A previous study found that the use of σ0

VV+ σ0 VH indices was highly correlated with canopy coverage

(Nasirzadehdizaji et al., 2019). Thu, σ0 VV + σ0 VH indices used in
the current approach ensure the soil moisture conditions through
VV polarisation and plant canopy coverage for agricultural through
σ0 VV + σ0 VH. Additionally, trained model applications on satellite
imagery help to follow the wheat crop extant for soil moisture
conditions. It is crucial to note that the models are trained using 1D
models; hence, keeping the σ0 VV + σ0 VH parameter limits the
predictions on satellite images (2D) over crop extent. Since we have
not used optical indices like NDVI in the model training, the
σ0 VV + σ0 VH becomes important to train the model for
agricultural areas. Overall, the scatterplot matrix reveals several
important relationships. Strong correlations, such as those
between SM and σ0VH, and SM and RVI, suggest that these
parameters could serve as effective predictors for soil moisture.
Conversely, the weak correlations (e.g., SM with σ0VV + σ0VH)
imply limited predictive value. These insights are valuable for

FIGURE 3
Box and whisker Plots of σ0 VV, σ0 VH σ0 VV+ σ0 VH, RVI and in situ SM data for three crop growth stages.
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developing models that leverage radar-derived data to monitor soil
moisture and vegetation health, particularly for agricultural and
environmental applications.

SM and backscattering relationship are valuable for developing
improved prediction models that leverage radar-derived data, which
can be especially beneficial for applications in agriculture, water
management, and environmental monitoring. Understanding these
patterns is crucial for enhancing the accuracy of soil moisture
prediction models. Changes in soil moisture can influence radar
backscatter and vegetation indices, reflecting varying soil and
vegetation conditions. In (Figure 5), SM is compared with σ0VV.
The left y-axis represents soil moisture as a percentage, while the
right y-axis shows the backscatter coefficient in decibels (dB). The
SM trend indicates a decline from 19 February to 09March, followed
by a slight increase on 14 April maybe due to irrigation provided to
the field. The σ0VV, on the other hand, exhibit an opposite pattern:
they rise between February and March and then drop slightly by
April. This inverse relationship suggests that higher soil moisture
may cause lower backscattering, resulting in reduced backscatter
(lower σ0VV), while drier conditions reflect more radar signals,
increasing the backscatter coefficient. The bottom left graph plots
SM against σ0VH. Similar to the previous graph, the SM shows a

decline from February to March, followed by a rise in April.
However, σ0VH shows a downward trend from February to
March, reaching its lowest point, and then increasing in the
April. This indicates a more complex interaction between soil
moisture and the VH polarization, suggesting that changes in soil
moisture have varying effects on radar backscattering, depending on
the polarization mode. A lower σ0VH might imply that, during
wetter conditions, there is less scattering, while drier soil contributes
to higher backscattering values. To understand the variation
between SM and RVI, soil moisture (SM) is plotted alongside the
RVI. The RVI, displayed on the right y-axis, mirrors this trend,
decreasing between February and March and then rising slightly in
April. This parallel pattern suggests a correlation between soil
moisture levels and vegetation conditions, where reduced soil
moisture corresponds to lower RVI values, potentially indicating
a decline in vegetation health during drier periods. The bottom right
graph compares soil moisture (SM) to σ0VV + σ0VH, a backscatter
coefficient measured in decibels (dB). Here, an inverse trend is
observed: as soil moisture decreases from February to March,
σ0VV + σ0VH also drops, but it increases again in April when
soil moisture levels rise. This behavior implies a complex interaction
between radar backscatter and soil moisture. Typically, higher soil

FIGURE 4
Soil moisture (in situ) relationship among the SAR backscattering and derived features.
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moisture may lead to greater absorption of radar signals, resulting in
lower backscattering values, while vice versa for the drier conditions.
The graphs illustrate a dynamic relationship between soil moisture

and radar backscattering coefficients in both VV and VH
polarizations, as well as the connection between soil moisture
and vegetation indices derived from radar data.

FIGURE 5
Temporal variations between in situ soil moisture and spatially averaged backscattering and SAR data derived parameters.

FIGURE 6
Taylor plots representing the Performance of ML/DL Models.
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4.2 Performance evaluation of the ML/DL

Taylor diagrams (Figure 6) illustrated the performance of various
ML/DLmodels in predicting soil moisture, whichwas evaluated across
both training and testing datasets. These diagrams determine three
critical statistics: the correlation coefficient, standard deviation, and
centred rootmean square difference (RMSD) relative to observed data.
The model’s correlation coefficient shows the metric represented by
the angular displacement of each model’s marker from the reference
point, which denotes perfect agreement with the observations. It is
particularly noticeable in models such as SVM and CNN, which
exhibit greater unpredictability and deviations in error measures, even
though they preserve strong correlation coefficients with the observed
data. The standard deviation was illustrated by the radial distance,
which was from the origin; this metric measures the model’s output
variability compared to that of the observations of the models. A
model’s output that matches the observed standard deviation will lie
on the circle marked with the observed standard deviation data. The
centred RMSD, depicted by the distance from each model’s marker to
the reference point. The less distance suggests that a model’s
predictions are closer to the observed values. The diagrams of the
training dataset reveal that a simpler model, RF, aligns closely with the
reference point, demonstrating both high correlation and comparable
variability to the observed data. These models also show lower RMSD,
indicating high accuracy in learning from train data. In the test dataset,
models exhibit a broader dispersion of markers, reflecting varied
performance. Despite maintaining decent correlation coefficients,
some models increased standard deviations, and RMSDs highlight
difficulties in generalising learned patterns to new data. This is
notably evident in models like SVM and CNN, which, while
maintaining good correlations, show more significant variability
and error metrics deviations. The analysis of the Taylor diagrams
provides critical insights into the behavior of various models under
different data conditions. Less complex model RF tends to be more
robust, possibly due to their lower propensity for overfitting than
more complicated models like SVM and CNN. This observation is
crucial for model selection, emphasising the need to balance
capturing complex patterns and maintaining generalizability
across datasets.

4.3 Statistical evaluation of ML/DL models

The first model (ANN) showed a strong fit, with an RMSE of
5.46, a correlation of 0.83, and negligible bias on training data.

Testing results reported an RMSE of 7.66 and a correlation of 0.77,
though a bias of −2.32 indicated a slight underestimation. The ANN
demonstrated effective soil moisture prediction capabilities,
suggesting its value for environmental studies. On training the
second model, the CNN achieved an RMSE of 3.9, an R-squared
of 0.84, and a correlation coefficient of 0.92, with a minimal bias of
0.71, demonstrating strong performance and robust pattern
recognition. Testing results exhibit an RMSE of 8.44, an
R-squared of 0.43, and a correlation of 0.67, with a bias of −1.39,
indicating underestimation. Despite declining testing data accuracy,
the model effectively generalizes and maintains consistent
prediction patterns. The third (RF) model performed
exceptionally well on training data, with an RMSE of 3.44, an
R-squared of 0.88, and a correlation coefficient 0.95. Minimal
bias (−0.04) indicated high precision. However, testing results
showed a decline, with an RMSE of 7.06, R-squared of 0.61, and
a correlation of 0.8, alongside a bias of −1.64, suggesting
underestimation. Despite these limitations, the RF model’s strong
performance in training highlights its capacity to capture nonlinear
relationships, though improvements may be necessary to enhance
generalisation. The second last (RVM) model achieved an RMSE of
6.13, an R-squared of 0.61, and a correlation of 0.78 on training data,
with minimal bias (0.37). In testing, the model-maintained
performance with an RMSE of 8.58, an R-squared of 0.51, and a
slight underestimation bias of 3.36, suggesting effective
generalisation for soil moisture estimation using radar backscatter
data. The last SVM model reported an RMSE of 6.04 and an
R-squared of 0.62 on training data, with a correlation coefficient
of 0.79 and a minor bias of 0.29. For testing data, RMSE rose to 7.92,
R-squared dropped to 0.5, and the correlation reduced to 0.73, with a
bias of −1.99. These results demonstrate the SVM’s capability,
though challenges remain in generalising across varied datasets,
underscoring the importance of model complexity and continuous
adaptation.

As shown in Table 1, the above-based model’s metrics
performance, the RF model provided the best-performing model
for soil moisture prediction, demonstrating superior accuracy on
the training data. In contrast, the testing data showed some
performance degradation, but the model still maintained a
reasonable level of accuracy. Therefore, the RF stands out as the
competent model, providing a strong balance of accuracy, robustness,
and generalisation, making it suitable for practical applications in soil
moisture monitoring. Future enhancements could include additional
data preprocessing, feature selection, or tuning to further minimize
errors and improve prediction accuracy in real-world scenarios.

TABLE 1 Statistical comparison between the ML and DL models used in the study.

Methods Training Validation

r RMSE (%) R-squared bias (%) r RMSE (%) R-squared bias (%)

ANN 0.83 5.46 0.69 0.01 0.77 7.66 0.59 −2.32

CNN 0.92 3.9 0.84 0.71 0.67 8.44 0.43 −1.39

RVM 0.78 6.13 0.61 0.37 0.71 8.58 0.51 3.36

SVM 0.79 6.04 0.62 0.29 0.73 7.92 0.5 −1.99

RF 0.95 3.44 0.88 −0.04 0.8 7.06 0.61 −1.64
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FIGURE 7
Combined machine/deep learning (ML/DL) performance of training and testing data.

FIGURE 8
Soil Moisture (%) mapping using the best model, i.e., RF at different stages: (A) 19th February, (B) 09th March (C) 14 April 2024.
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4.4 Assessment of over/underfitting of
the model

The one-to-one plots depicted here are essential tools in
which they could evaluate the over/underfitting of ML and DL
models specifically, which were applied to predict soil moisture
prediction (Srivastava et al., 2014). These plots are structured to
compare the predicted soil moisture values against the observed
data across two trained and tested datasets. The one-to-one line,
represented by a solid black line, served as a benchmark for
perfect predictions, where an exact alignment of predicted
values with the observed values would fall on this line,
symbolising the model’s ideal performance. In the training
section of the data plot (Figure 7), we observe a closer
clustering of data points plotted in a one-to-one line across
various models, including RF, RVM, SVM, ANN, and CNN.
This clustering shows a high degree of accuracy during the
training phase, which suggests that these models have
effectively learned and replicated the underlying patterns in
the training dataset. The proximity of predictive measures to the
one-to-one line indicates minimal deviation from observed
values, reflecting a solid internal validation of model
predictions during training. Also, the testing data plot reveals
a broader spread of points away from the one-to-one line,
highlighting the models’ challenges in generalising unseen
data. The spread of predictive measures shows variability in
the model’s performance, with some models showing
substantial deviations from the observed data. Such
variability underscores the complex nature of model
behaviour outside controlled environments, revealing
discrepancies in model predictions when applied in practical
scenarios. This divergence is crucial for understanding each
model’s reliability and generalisation capabilities, guiding
further model refinement. The analysis of both plots
emphasises the necessity for ongoing assessment and
optimisation of predictive models to enhance their accuracy
and reliability in real-world applications, particularly in
environmental and agricultural planning where precise soil
moisture estimation is critical.

4.5 Spatial prediction of soil moisture
through the best model

The predictions are visualised through raster images derived
from processed Sentinel-1 data, incorporating features such as
σ0VV, σ0VH, σ0VV + σ0VH, and RVI. Each map employs a
colour scale ranging from blue to yellow, indicating low and
high soil moisture levels. The progression of dates shows changes
in soil moisture distribution influenced by seasonal climatic
conditions. This approach provides soil moisture levels at the
spatial scale. The transformation of in situ measurements at a
specific location turned into a continuous soil moisture raster
image, and the algorithm’s ability to capture the dynamic
changes in the predicted soil moisture illustrates machine
learning and deep learning applications in efficient agriculture
or irrigation planning (Figure 8).

5 Conclusion

The current study successfully demonstrated the potential of
ML and DL models in predicting soil moisture levels from
Synthetic Aperture Radar (SAR) data in the wheat fields. The
study showcased the benefits of integrating satellite remote
sensing with ML and DL algorithms techniques for
agricultural applications by combining rigorous data collection
with innovative computational methods. Evaluating models such
as SVM, RVM, RF, ANN, and CNN revealed unique strengths in
capturing soil moisture dynamics. The Random Forest model
emerged as a top performer in the training and testing phases,
highlighting its ability to handle complex environmental
datasets. Meanwhile, deep learning models like Convolutional
Neural Networks leveraged their architectural features to analyse
spatial patterns in SAR data, although with varying degrees of
success across different testing scenarios. This research improved
the accuracy of soil moisture predictions and can contribute to
the development of precision agriculture in the region by
enhancing irrigation strategies and water resource
management. It emphasised the importance of continuous
monitoring and model updating to adapt to changing
environmental conditions and agricultural practices.
Integrating remote sensing data with machine learning and
deep learning approaches holds promise for scaling these
technologies to other regions and crop types, potentially
transforming agricultural practices globally. Future studies
could build upon this work by incorporating diverse data
sources and refining model architectures to improve the
generalizability and accuracy of soil moisture predictions.
Ultimately, this study provides a scalable, cost-effective
solution for near real-time soil moisture monitoring,
promoting sustainable agricultural practices crucial for food
security and resource management in the face of increasing
climate variability.
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