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Ocean color remote sensing tracks water quality globally, butmultispectral ocean
color sensors often struggle with complex coastal and inland waters. Traditional
models have difficulty capturing detailed relationships between remote sensing
reflectance (Rrs), biogeochemical properties (BPs), and inherent optical properties
(IOPs) in these complex water bodies. We developed a robust Mixture Density
Network (MDN) model to retrieve 10 relevant biogeochemical and optical
variables from heritage multispectral ocean color missions. These variables
include chlorophyll-a (Chla) and total suspended solids (TSS), as well as the
absorbing components of IOPs at their reference wavelengths. The heritage
missions include the Moderate Resolution Imaging Spectroradiometer (MODIS)
aboard Aqua and Terra, the Environmental Satellite (Envisat) Medium Resolution
Imaging Spectrometer (MERIS), and the Visible Infrared Imaging Radiometer Suite
(VIIRS) onboard the Suomi National Polar-orbiting Partnership (Suomi NPP). Our
model is trained and tested on all available in situ spectra from an augmented
version of the GLObal Reflectance community dataset for Imaging and optical
sensing of Aquatic environments (GLORIA) (N = 9,956) after having added globally
distributed in situ IOP measurements. Our model is validated on satellite match-
ups corresponding to the SeaWiFS Bio-optical Archive and Storage System
(SeaBASS) database. For both training and validation, the hyperspectral in situ
radiometric and absorption datasets were resampled via the relative spectral
response functions of MODIS, MERIS, and VIIRS to simulate the response of each
multispectral ocean color mission. Using hold-out (80–20 split) and leave-one-
out testing methods, the retrieved parameters exhibited variable uncertainty
represented by the Median Symmetric Residual (MdSR) for each parameter
and sensor combination. The median MdSR over all 10 variables for the hold-
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out testing method was 25.9%, 24.5%, and 28.9% for MODIS, MERIS, and VIIRS,
respectively. TSS was the parameter with the highest MdSR for all three sensors
(MODIS, VIIRS, andMERIS). The developedMDNwas applied to satellite-derived Rrs

products to practically validate their quality via the SeaBASS dataset. The median
MdSR from all estimated variables for each sensor from the matchup analysis is
63.21% for MODIS/A, 63.15% for MODIS/T, 60.45% for MERIS, and 75.19% for VIIRS.
We found that theMDNmodel is sensitive to the instrument noise and uncertainties
from atmospheric correction present in multispectral satellite-derived Rrs. The
overall performance of the MDN model presented here was also analyzed
qualitatively for near-simultaneous images of MODIS/A and VIIRS as well as
MODIS/T and MERIS to understand and demonstrate the product resemblance
and discrepancies in retrieved variables. The developed MDN is shown to be
capable of robustly retrieving 10 water quality variables for monitoring coastal
and inland waters from multiple multispectral satellite sensors (MODIS, MERIS, and
VIIRS).

KEYWORDS

aquatic remote sensing, neural networks, multispectral, biogeochemical parameters,
inland and coastal waters, MODIS, MERIS, VIIRS

1 Introduction

Coastal and inland waters are the most affected by changes in
environmental conditions, industrial development, or human
intervention, leading to an increase in dissolved and suspended
particles like phytoplankton, sediments, and colored dissolved
organic matter in the water column (Stumpf et al., 2012; Brown
et al., 2015; Pick, 2016; Binding et al., 2021; Jane et al., 2021).
Gradually, the interaction of these dissolved and suspended particles
with the aquatic environment leads tomajor changes in biogeochemical
parameters (BPs) such as chlorophyll-a (Chla), total suspended solids
(TSS), and colored dissolved organic matter (cdom), which
subsequently affects the water quality as well as visibility within the
water column (Babin et al., 2003). Managing the water quality of inland
and coastal waters poses a challenge due to anthropogenic activities,
eutrophication, and climate change. Monitoring the water quality for
these aquatic ecosystems is essential for sustainable water resource
management, providing the foundation on which it is based (Bartram
and Ballance, 1996). However, tracking long-term changes in BPs
through ship-based measurements poses significant challenges
and expenses.

Over the past 25 years, freely available multispectral radiometric
images from a series of multispectral ocean color satellite sensors
have compiled a vast global observational database of remote
sensing reflectance (McClain, 2009). These sensors, deployed on
various platforms, include the Environmental satellite (Envisat)
Medium Resolution Imaging Spectrometer (MERIS) spanning
from 2003 to 2011, the Moderate Resolution Imaging
Spectroradiometer (MODIS) aboard Terra (since 1999) and Aqua
(since 2002), as well as the Visible Infrared Imaging Radiometer
Suite (VIIRS) on the Suomi National Polar-orbiting Partnership
(Suomi NPP, since 2011). These heritage sensors, some of which are
still operational at the time of writing, have unequivocally broadened
our awareness and comprehension of ocean and coastal ecosystems
(Cao et al., 2022).

Central to aquatic remote sensing is the concept of apparent and
inherent optical properties (AOPs and IOPs, respectively). IOPs

include the spectral absorption and scattering properties of water
and its constituents (Gordon et al., 1975). The spectral shape of the
total absorption coefficient depends on both water and the BPs. The
absorbing IOPs can be further divided as a function of these
constituents (Werdell et al., 2018). The absorption and scattering
coefficients depend solely on the medium or water column
properties and are not influenced by the geometry of the light
field (Werdell et al., 2018). Moreover, the absorption by BPs is
typically close to zero at near-infrared (NIR) wavelengths, making
NIR wavelengths indirectly useful for removing atmospheric
interference in satellite-captured images (Bailey et al., 2010),
unless in very turbid waters. The optically relevant BPs and IOPs
can be estimated from the measured multispectral remote sensing
reflectance (Rrs(λ)), an AOP obtained after the radiometric,
geometric, and atmospheric correction of top-of-atmosphere
(TOA) satellite measured radiance (Gordon and Wang, 1994).
This quantity, Rrs (=Lw/ Ed), is defined as the ratio of water-
leaving radiance (Lw) and downwelling irradiance (Ed) evaluated
just above the water (Mobley, 1999). The spectral shape and
magnitude of the Rrs are highly sensitive to the processes of
absorption and scattering (IOPs) by optically relevant BPs in the
water while being relatively insensitive to changes in the ambient
light field (IOCCG, 2008; IOCCG, 2009; IOCCG, 2014), making Rrs

suitable for retrieving the IOPs.
Numerous remote sensing algorithms exist for quantifying BPs

and IOPs from Rrs captured using ocean color satellite sensors over
oceanic and coastal waters. Empirical algorithms primarily rely on
single-band linear relationships or multi-band Rrs ratios for
estimating BPs, such as Chla (O’Reilly et al., 1998; O’Reilly and
Werdell, 2019) and TSS (Nechad et al., 2010; Ondrusek et al., 2012;
Novoa et al., 2017). The spectra of absorbing IOPs are estimated
using exponential functions with the required input parameters,
such as absorption coefficients and corresponding slopes of
phytoplankton - aph (Sosik and Mitchell, 1995; Babin et al., 2003;
Bricaud et al., 2004; Devred et al., 2022; Wei et al., 2023), non-algal
particles - anap (Bowers and Binding, 2006), and colored dissolved
organic matter - acdom (Binding et al., 2008; Shanmugam, 2011;
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Mannino et al., 2014) at their reference wavelengths. The slopes are
obtained from multi-band Rrs ratios or functions of BPs. However,
these algorithms require substantial datasets to calibrate the
underlying models and are primarily applicable to the specific
water type for which the model is calibrated. Outside of
empirical algorithms, IOPs are estimated using inversion
algorithms grounded in statistical modeling, such as Garver
Siegel Maritorena – GSM model (Maritorena et al., 2002),
Generalised IOP - GIOP model (Werdell et al., 2013) and Linear
Matrix Inversion - LMI algorithm (Hoge and Lyon, 1996), utilizing
semi-analytical methodologies and prior knowledge of BPs (Wang
et al., 2017). Semi-analytical algorithms primarily utilize Rrs to
deduce IOPs and subsequently estimate BPs by integrating
empirical parameters and bio-optical models. Furthermore, the
quasi-analytical algorithm - QAA, widely employed over the past
decade, represents another prevalent model for IOP inversion (Lee
et al., 2002; McKinna et al., 2015; Montes-Hugo and Xie, 2015).

Advanced machine learning models show promise for non-
unique inverse problems, such as retrieving BPs and IOPs from Rrs.
One such approach is using Bayesian neural networks (BNNs)
(Werther et al., 2022). BNNs can retrieve water quality
parameters from satellite imagery and have been validated using
satellite data. Another proven machine learning method entails
using mixture density networks (MDNs) and has been leveraged
for the estimation of both BPs and IOPs (O’Shea et al., 2023). MDNs
address non-unique inverse problems, like inferring BPs from Rrs,
by modeling the output as a probability distribution over possible
output values. Therefore, the distribution is modeled using a mixture
of Gaussians (Bishop, 1994; 1995). Instead of providing the average
value of the expected output distribution, like typical multilayer
perceptrons (MLPs), MDN provides the full output distribution,
enabling the user to study the distribution and choose an
appropriate output value, enhancing the overall estimation when
the predicted output distribution is multimodal or asymmetric.
Further, since the MDNs and BNNs predict output distributions,
these distributions can also be used to model the confidence in a
specific prediction (Saranathan et al., 2023; Werther et al., 2022)
enabling users to disregard predictions on data outside of the
training dataset’s range. Specialized MDNs have been developed
to estimate specific water quality indicators, BPs and IOPs, such as
Secchi disk depth (Maciel et al., 2023), Chla (Pahlevan et al., 2020;
2021b; Smith et al., 2021), TSS (Balasubramanian et al., 2020),
phycocyanin (O’Shea et al., 2021; Fickas et al., 2023), and aph
(Pahlevan et al., 2021b) from both multispectral and
hyperspectral satellite data, applicable to inland and coastal
waters. Furthermore, this architecture has been effectively utilized
to concurrently estimate two BPs and an IOP at a single wavelength
[Chla, TSS, and acdom (440)] (Pahlevan et al., 2022) and tested with
multispectral satellite sensor datasets, such as from theMultispectral
Instrument (MSI) and Ocean and Land Colour Instrument (OLCI)
onboard Sentinel-2, and Sentinel-3, respectively. Recently, the
model has been effectively applied for hyperspectral remote
sensing by estimating BPs (Chla, TSS, PC) and hyperspectral
IOPs (aph, anap, and acdom) and tested with satellite data from
the Hyperspectral Imager for the Coastal Ocean (HICO) and
PRecursore IperSpettrale della Missione Applicativa (PRISMA)
missions (O’Shea et al., 2023; Lima et al., 2023), indicating its
potential application to the recently launched Ocean Color

Instrument (OCI) of the Plankton, Aerosol, Cloud, ocean
Ecosystem (PACE) mission. In general, due to their
demonstrated effectiveness in the non-unique inverse estimation
of BPs and IOPs, along with their inherent capacity to gauge
uncertainties, MDNs are highly suitable for concurrently
retrieving various BPs and IOPs for scientific and water quality
management applications.

Daily satellite visits offer a wealth of information crucial for
retrospective analysis, particularly in the realm of multispectral
ocean color data, which can be effectively used for studying
climate change and biogeochemical modeling (Behrenfeld et al.,
2006; Platt and Sathyendranath, 2008; Stramski, 2008; Hu et al.,
2010; Wang et al., 2011). MODIS has been providing long-term
ocean color data since its mission began (1999-), shortly followed by
MERIS sensor (2002-). After MERIS’s operational lifeended (2012),
the ongoing VIIRS sensor (2011-) continued to provide ocean
colordata together with MODIS (Lai et al., 2023). Accurately
assessing and quantifying uncertainties in satellite ocean color
products is crucial, making thorough validation a challenging
task for ocean color missions (Hooker and McClain, 2000). Since
these are long-term satellites, there is a possibility of sensor
performance degradation (Hu and Le, 2014; Cao et al., 2018).
Therefore, regular calibration using the Marine Optical Buoy
[MOBY (Clark et al., 1997; Wang et al., 2015)] dataset and
validation using the Aerosol Robotic Network - Ocean Color
component [AERONET-OC (Zibordi et al., 2006; Mélin et al.,
2007)] dataset are essential for these ocean color sensors and
have been conducted in several studies (Cannizzaro et al., 2019;
Garcia et al., 2020; Pahlevan et al., 2021a). Validations of BPs
(Werdell et al., 2009; Cui et al., 2010; Odermatt et al., 2010;
Tilstone et al., 2012) and IOPs (Delgado et al., 2019; Fan et al.,
2021; Huan et al., 2021) through ocean color imagery have been
conducted over regional waters, including ocean, coastal, and inland
waters. The consistency of data products from algorithms
simultaneously predicting AOPs from multiple satellite missions
has been evaluated over different ocean and coastal regions (Cui
et al., 2014; Cao et al., 2018; Barnes et al., 2019). Over inland waters,
various factors such as the need for atmospheric correction in a
more challenging atmosphere due to complex aerosol compositions
(compared to oceanic aerosols) and compensation for adjacency
effects from nearby lands, produce significantly higher uncertainty
for remote sensing (Liu et al., 2024), and data products from
multimission datasets have not yet been formally assessed for
consistency (Cao et al., 2018; Cao et al., 2023; Pahlevan et al.,
2024). A comprehensive assessment that encompasses a wider
range of factors, ensuring the reliability and applicability of
satellite-derived ocean color data on a global scale, especially for
coastal and inland water ecosystems is urgently needed.

The multimission ocean color satellite dataset, along with the
extensive hyperspectral field observations from the augmented
GLORIA and SeaBASS databases, provides crucial support for
analyzing performance of multimission sensor products in both
nearshore and inland waters. This study aims at developing a
technique based on MDNs for retrieving 10 water quality
variables including two BPs and three IOPs at reference bands
over coastal and inland waters. The outline of this manuscript is as
follows. In Section 2, we discuss the general techniques for obtaining
IOPs from ocean color Rrs. Section 3 explains the details of the
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augmented GLORIA and SeaBASS in situ datasets and the four
ocean color satellite sensor datasets used for estimating the 10 BP
and IOP variables. Section 4 explains the deep learning method used
for the estimation of these water quality parameters from Rrs of the
four heritage ocean color sensors. Section 5 explains the validation of
the developed model with the in situ dataset and multimission ocean
color sensor dataset encompassing MODIS/A, MODIS/T, MERIS
and VIIRS. In addition to the validation results, the spatial data
analysis covers water quality parameters using the near
simultaneous measurements of the aforementioned ocean color
sensors. Section 6 describes the spatial data analysis. The results
are discussed in Section 7, and the study is summarized in Section 8.

2 Background

In general, Rrs derived from satellite data, can be estimated from the
normalized water-leaving radiance (nLw) by dividing it by the constant
mean extraterrestrial solar irradiance (F0). This Rrs is associated with
other AOPs, which depend on the ambient light field and water
constituents, as well as IOPs. Enhancing the relationship between
Rrs and IOPs in natural waters is fundamental for the accurate
estimation of waters constituents from radiometric observations. For
this, Rrs can be converted to subsurface remote sensing reflectance rrs
using a relationship (Equation 1) provided as (Lee et al., 2002):

rrs λ( ) � Rrs λ( )
0.52 + 1.7Rrs λ( )( ) (1)

Here, rrs does not have the effect of the sun being off-zenith
associated with it (Werdell et al., 2018). The simplified
correspondence between rrs and IOPs revolves around absorption
(a) and backscattering (bb) coefficients, with g representing a
complex function dependent on several factors including
wavelength, solar angle, wind speed, and water optical properties,
given as Equation 2 (Gordon et al., 1988):

rrs λ( ) � g λ( ) × bb λ( )
a λ( ) + bb λ( )( ) (2)

Quantifying the fraction of incident light absorbed within the
water column per unit distance, absorption coefficients encompass
contributions from pure water (aw), phytoplankton (aph), non-algal
particles (anap), and colored dissolved organic matter (acdom). The
combined absorption by non-algal particles (anap, also denoted as
ad) and colored dissolved organic matter (acdom, also known as ag)
can be referred to as adg. The total absorption coefficient (unit: m⁻1)
can be expressed as Equation 3:

a λ( ) � aw λ( ) + aph λ( ) + acdom λ( ) + anap λ( ) (3)

In clear oceanic conditions (Case 1), a parametrization function
can effectively relate Chla to total particulate absorption due to
minimal contributions from non-algal particles. However, in coastal
and inland waters (Case 2), variations in components like
phytoplankton, suspended solids, and colored dissolved organic
matter may occur independently from Chla, leading to diverse
spectral signatures of Rrs.

The aph has been related to Chla and phytoplankton biomass
(Binding et al., 2008) and can be determined by multiplying their

specific absorption coefficients with the concentration of Chla
(Roesler and Perry, 1995), as follows:

aph λ( ) � aph
* × Chla (4)

Here, aph* in Equation 4 is the phytoplankton-specific absorption
coefficient, defined per unit concentration of Chla, that varies widely
depending on phytoplankton species composition (Bricaud
et al., 1995).

The absorption coefficient for colored dissolved organic matter
(see Equation 5) typically follows an exponential decrease as
wavelength increases in the near-UV and visible spectral regions,
and is observed as (Bricaud et al., 1981):

acdom λ( ) � acdom λ0( ) × exp−S× λ−λ0( ) (5)

Here, acdom(λ0) denotes the absorption coefficient at the
reference wavelength λ0 (Brezonik et al., 2015). The value of
acdom(λ0) is often utilized to characterize the colored dissolved
organic matter concentration in a specific water body.
Additionally, the spectral slope S (nm⁻1), which remains
independent of λ0, signifies the rate at which absorption
decreases with increasing wavelength.

The last absorption component, non-algal particles (anap),
generally consists of non-algal organic detritus, living non-algal
particles and suspended sediments (Binding et al., 2008). Further,
the anap(λ) decreases exponentially with increasing wavelength and
the general (Equation 6) is as follows (Roesler et al., 1989; Bricaud
et al., 1998; Binding et al., 2008):

anap λ( ) � anap λ0( ) × exp−S× λ−λ0( ) (6)

Here, anap at reference wavelength λ0 and slope S can be
estimated as a function of TSS concentration using an empirical
relationship (Babin et al., 2003).

Another IOP is the backscattering coefficient (bb), which is
typically expressed using two backscattering components
(Equation 7): pure water backscattering (bbw) and particulate
backscattering (bbp). The wavelength dependence of bb is
expressed as follows:

bb λ( ) � bbw λ( ) + bbp 555( ) 555
λ

( )Y

(7)

Here, the values of bbw are derived from laboratory
measurements (Morel, 1974). The bbp component is influenced
by particles in seawater, such as minerals, phytoplankton, and
organic matter (Vaillancourt et al., 2004; Woźniak et al., 2019). Y
represents the spectral slope of bbp. Y and bbp at a reference
wavelength of 555 nm can be estimated from Rrs(λ). Most studies
use these general (Equations 1–7) to retrieve IOPs from Rrs

(Maritorena et al., 2002; Lee et al., 2002; Werdell et al., 2013).

3 Dataset

3.1 Training dataset: GLORIA

Ourmodel training dataset utilizes the co-located measurements
of hyperspectral Rrs and constituent concentration data from the
GLObal Reflectance community dataset for Imaging and optical
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sensing of Aquatic environments (GLORIA) (Lehmann et al., 2023).
This dataset is complemented with co-located hyperspectral
inherent optical properties (IOPs), including absorption
coefficients for phytoplankton (aph), non-algal particles (anap),
and colored dissolved organic matter (acdom) (O’Shea et al., 2023).

The GLORIA dataset is further enhanced with additional co-
located measurements of hyperspectral Rrs, IOPs, and BPs sourced
from individual contributors and compiled datasets included in our
augmented GLORIA dataset. Other than GLORIA (N = 7572),
2384 samples of Rrs with at least one corresponding BP or IOP
were incorporated to create the augmented GLORIA dataset (N =
9956). These 2384 samples are obtained from the SeaBASS
repository (Marra et al., 1988; Carder, 1997; 1998; Carder and
Kirkpatrick, 1998; Carder and Mitchell, 1999; Cota and
Zimmerman, 2000; Stumpf, 2001; Carder and Hu, 2005; Hill and
Zimmerman, 2010; Hu and Muller-Karger, 2012; Muller-Karger,
2015), PANGAEA repository (Garaba et al., 2011; Knaeps et al.,
2018; Gonçalves-Araujo et al., 2018; Casey et al., 2020; Lavigne et al.,
2022), and other publications (Brewin et al., 2023; Burket et al., 2023;
Simis et al., 2023). Datasets from other coastal and inland regions
such as Indonesian waters, the North Sea, Estonian waters, Lake
Taihu, Lake Erie, California Bay, Curonian Lagoon, and Lake
Xingyun comprise additional parts of the augmented GLORIA.
The locations of the hyperspectral IOP measurements
corresponding to those in the augmented GLORIA dataset, are
shown in Figure 1 and representing coastal and inland waters of
various countries around the globe. Most of these BPs and IOPs have
been previously documented in various publications, each providing
maps of individual parameters by region (Balasubramanian et al.,
2020; Jiang et al., 2021; O’Shea et al., 2021; Smith et al., 2021;
Pahlevan et al., 2021b; 2022).

Figure 2 shows the frequency distributions of the BP/IOP/Rrs

values in the training dataset. There are 6153 samples for Chla
(with mean of 36 mg m−3 and median of 6.8 mg m−3), 5358 for TSS
(with mean of 28.9 g m−3 and median of 9.5 g m−3), 3757 for acdom
at 443 nm (with mean of 1.1 m−1 and median of 0.58 m−1),

2988 for anap at 443 nm (with mean of 0.51 m−1 and median of
0.16 m−1), and 2903 for aph at 443 nm (with mean of 0.71 m−1 and
median of 0.16 m−1), paired with 9956 total Rrs. Additional details
about the dataset are provided in Table 1. The compiled dataset
provides a comprehensive perspective on global aquatic
environments, serving as the training and testing dataset for
this study.

3.2 Validation dataset: SeaBASS

The validation dataset for this study is obtained from the NASA
SeaBASS repository (Werdell and Bailey, 2005). Although the
SeaBASS repository (https://seabass.gsfc.nasa.gov/) contains
various ocean color parameters, we specifically acquired data for
parameters such as BPs (Chla and TSS) and hyperspectral IOPs
(acdom, anap and aph), which are limited to this study. Some SeaBASS
data has been integrated into GLORIA to support model training
(Section 3.1). To prevent duplication, only SeaBASS data lacking Rrs

has been acquired for the validation dataset, ensuring its
independence from the GLORIA dataset. The geographical
locations of these BPs and hyperspectral IOPs are shown in
Figure 3. This dataset includes information from 55 principal
investigators (PIs) (refer to Supplementary Appendix Table
SB1 for the list of PIs) representing different institutions and
countries, covering global coastal, inland, and open ocean waters.
The acquired data span almost 25 years, from 1994 to 2019.

Figure 4 shows the frequency distributions of the validation
dataset acquired from the SeaBASS database. There are
13,106 samples for Chla (with mean of 2.24 mg m−3 and median
of 0.54 mgm−3), 525 for TSS (with mean of 5.36 g m−3 and median of
0.54 g m−3), 5941 for acdom at 443 nm (with mean of 1.16 m−1 and
median of 0.15 m−1), 4949 for anap at 443 nm (with mean of
0.195 m−1 and median of 0.07 m−1), and 2705 for aph at 443 nm
(with mean of 0.13 m−1 and median of 0.05 m−1). More information
about the validation dataset is presented in Table 1.

FIGURE 1
The geographical distribution of the hyperspectral IOPs (acdom, anap and aph) in the augmented GLORIA dataset, used for model development.
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3.3 Multispectral ocean color imagery

The satellite datasets used in this study include MODIS/Terra
(1999–present) and MODIS/Aqua (2002–present), each with
11 spectral bands; MERIS (2002–2012) with 11 bands; and VIIRS
(2011–present) with 6 bands. A detailed summary of these sensors is
provided in Table 2. Satellite images covering the date and location
of each validation data point are Level-1A observations sourced
from the NASA Goddard Space Flight Center (GSFC) repository
(https://oceancolor.nasa.gsfc.gov). These L1A images were
processed using NASA’s SeaWiFS Data Analysis System (SeaDAS
v7.5.3). In this process, atmospheric correction was performed using
NIR-SWIR band combinations: 869/2130 nm for MODIS/Terra and
MODIS/Aqua, and 862/2257 nm for VIIRS. For MERIS, which lacks
SWIR bands, atmospheric correction utilized a two-band NIR
combination (779/865 nm). The SeaDAS output includes the
Level-2 products encompassing Rrs at different bands.

4 Methodology

This section elaborates on the detailed methodology utilized in
this study for extracting BPs and IOPs from three ocean color
missions, as depicted in Figure 5. The approach integrates a MDN to
construct a robust deep learning model. To build the model, we
employed the augmented GLORIA dataset integrated with IOPs for
training and testing purposes. For model evaluation, we utilized a
matchup dataset sourced from three different sensors: MODIS,
MERIS, and VIIRS, aligned with corresponding SeaBASS
datasets. This section presents a detailed overview of the MDN
model development and the procedures for processing
satellite images.

4.1 Mixture density network features

In this study, MDNs are utilized to predict the target variables.
Traditional machine learning models like MLPs or other empirical
models typically yield a single estimate for the output variable
without providing insights into the distribution of estimates, or
possible multimodality in the output distributions. Conventional
neural networks directly predict target variables by approximating
the conditional average of target data. However, when
approximating continuous target variables (e.g., Chla or aph), the
conditional average often falls short of representing the full
statistical properties of the target space, leading to impractical
solutions (Bishop, 1994).

In general, multi-parameter inversion algorithms for BPs and
IOPs (Kallio et al., 2001) are expected to constrain the solution
possibilities given the covariances among parameters of interest in a
natural environment. This study leverages this characteristic to
estimate optically relevant BPs and IOPs through MDNs. MDNs
differ from traditional neural networks (Bishop, 1995; Bricaud et al.,
2007; Jamet et al., 2012) by approximating the likelihoods of
generated estimates as mixture of Gaussians (Bishop, 1994),
thereby accommodating multimodal target distributions, a
fundamental characteristic of inverse problems where a non-
unique relationship exists between input and output features.
MDNs offer a distinct approach by modeling conditional
probabilities of the target variables based on input data, and thus,
acquiring a comprehensive understanding of the probability
distribution within the target space. By inherently capturing
covariances among the output features, MDNs intuitively
enhance accuracy compared to models focused solely on
retrieving individual parameters. As output, MDNs generate the
parameters of a mixture of Gaussian (MoG) distributions, i.e., a

FIGURE 2
Frequency distributions of in situ hyperspectral remote sensing reflectance Rrs , with BPs (Chla and TSS) and hyperspectral IOPs (acdom, anap and aph),
used as the training and testing dataset (N = 9,956) for model development.
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mean vector (μ), a covariance matrix (σ), and a mixing coefficient
(α) corresponding to each component in the MoG.

The MDN implemented in this study follows the standard
architecture for the retrieval of individual BPs (Pahlevan et al.,
2020; Smith et al., 2021) and simultaneous retrieval of multiple BPs
and IOPs (Pahlevan et al., 2022; O’Shea et al., 2023). Using the
relative spectral response functions of the corresponding sensors, we
converted hyperspectral Rrs and IOP data obtained from the
augmented GLORIA into multispectral format. We specifically
selected Rrs data within the wavelength range of 400–750 nm,
covering the visible spectrum, to capture features essential for
estimating BPs and IOPs, as suggested in prior studies (O’Shea
et al., 2021; Pahlevan et al., 2022). We deliberately avoided higher
wavelengths to mitigate interference from oxygen-A bands and
atmospheric effects during correction processes. This ensemble of
multispectral Rrs and IOPs along with BPs from the augmented
GLORIA is subsequently split into 80% for training the MDNmodel
and 20% for testing it, via a hold-out approach. The hold-out
approach inherently gives the model regional knowledge of

estimating BPs and IOPs from Rrs as well as knowledge of the
data providers collection methodologies and their associated
uncertainties, essentially providing an error estimate for
measurements from within the training dataset’s distribution.
Also, to ensure that the model is exposed to a wide variety of Rrs

we use a dynamic imputation method similar to the prior MDN
approaches (Smith et al., 2021). Each sensor - MODIS, MERIS, and
VIIRS - comprises distinct bands (11 for MODIS, 11 for MERIS, and
6 for VIIRS), and therefore, we trained each sensor’s model
separately.

The basic MDN architecture takes the spectral remote sensing
reflectance of the specific sensor as input. Band ratios (BRs) and line
heights (LHs) are added to this input (O’Shea et al., 2023). The Rrs,
BRs and LHs are then normalized (scaled between −1 and 1) and run
through the standard weights of a neural network. The neural
network uses the rectified linear unit (ReLU) activation function
and negative loss likelihood loss function to update the weights
(Pahlevan et al., 2020; Smith et al., 2021; O’Shea et al., 2023;
Saranathan et al., 2023). The models also use a l2-weight
regularization with a penalty of 0.001 on each hidden layer as
mentioned in the Figure 5.

The MDN’s final layer estimates a mixture of five Gaussians,
each characterized by its own statistical parameters μn, σn, and ⍺n.
These Gaussians are fed into a combination function, which
generates a point estimate as the mean of the gaussian
component with the largest weight in the predicted distribution.
The model generates simultaneous outputs for each BP (Chla and
TSS) and IOPs including aph at four different wavelengths (440 nm,
488 nm, 555 nm, and 670 nm), and acdom and anap at two different
wavelengths (440 nm and 555 nm). Utilizing the probabilities
assigned to each prediction, users have the flexibility to opt for
either the maximum likelihood estimate (i.e., the prediction with the
highest probability), the weighted average of all predictions, or the
approximation mentioned above. This methodology mirrors
established practices in prior literature. The model’s input and
output features revolve around in situ Rrs and 10 water quality
variables, specifically BPs and IOPs, aligning with similar
approaches documented in previous studies.

4.2 Hyperparameters

Brief experiments were conducted in previous studies (Pahlevan
et al., 2020; Smith et al., 2021) to assess the potential improvement of
MDN retrievals from hyperparameters. We adopted the default
hyperparameters, such as regularization and learning rate, network
size, and depth, from the previous work (O’Shea et al., 2023;
Pahlevan et al., 2022). The details of the hyperparameters are
shown in Figure 5.

4.3 Imputation

To simultaneously generate 10 different variables of BPs and
IOPs, the MDNmodel underwent modifications to address the issue
of missing samples. Not all BPs and IOPs were measured
simultaneously in situ at each site. For example, of 9956 total Rrs

samples, the in situ dataset includes 6153 for Chla and 5358 for TSS.

TABLE 1Overview of the training Data from the augmentedGLORIA dataset
and the validation data from the SeaBASS database.

Variables N Min Max Mean Median Unit

Training/Testing dataset

Rrs (555) 9956 3.6E-05 0.12 0.012 0.0087 sr−1

Chl 6153 0.025 13,296 36.1 6.8 mg
m−3

TSS 5358 0.06 2626.8 28.9 9.5 g m−3

acdom (443) 3757 0.0008 25.92 1.1 0.58 m−1

acdom (555) 3757 0.0001 8.27 0.26 0.12 m−1

anap (443) 2988 0.000321 12.78 0.51 0.16 m−1

anap (555) 2988 0.0000053 3.04 0.16 0.04 m−1

aph (443) 2903 0.0013 37.60 0.71 0.16 m−1

aph (488) 2903 0.0016 21.28 0.43 0.10 m−1

aph (555) 2903 0.00014 9.51 0.15 0.03 m−1

aph (667) 2903 0.00027 16.57 0.29 0.62 m−1

Validation dataset

Chl 13,106 0.0044 551.6 2.24 0.54 mg
m−3

TSS 525 0.00004 64.9 5.36 0.54 g m−3

acdom (443) 5941 0.0002 53.23 1.16 0.15 m−1

acdom (555) 5941 0.0001 13.38 0.31 0.037 m−1

anap (443) 4949 0.0004 5.34 0.19 0.07 m−1

anap (555) 4949 0.0001 2.18 0.065 0.019 m−1

aph (443) 2705 0.0014 3.57 0.13 0.05 m−1

aph (488) 2705 0.0008 1.73 0.083 0.035 m−1

aph (555) 2705 0.0001 0.62 0.029 0.009 m−1

aph (667) 2705 0.0001 1.57 0.059 0.018 m−1
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Availability drops further for IOPs such as acdom with 3757 samples,
anap with 2988, and aph with 2903 (shown in Figure 2). To make use
of the remaining 80% of the data with missing values, multiple
imputation (Rubin, 2004) is utilized, drawing values from the
dataset’s distribution. This method has been successfully applied
for the simultaneous estimation of three BPs from multispectral
satellite datasets (Pahlevan et al., 2022), assuming either Missing
Completely At Random (MCAR) or, slightly weaker, Missing At
Random (MAR) scenarios. In multiple imputation, m values are

randomly selected from the distribution of the input dataset for the
missing parameter. Rather than naively drawing from the input
dataset’s distribution, MDNs enable learning the joint probability
distribution of all target parameters and drawing from the learned
posterior probability. This inherent capability of MDNs allows for
handling Missing Not At Random (MNAR) variables, thereby
improving the accuracy of imputed samples during training
(Ghahramani and Jordan, 1995; Buuren and Groothuis-
Oudshoorn, 2010; Galimard et al., 2018). With additional

FIGURE 3
The geographical distribution of the BPs (Chla and TSS) and hyperspectral IOPs (acdom, anap and aph) in the datasets extracted from the SeaBASS
database (from 1994 to 2019) used for model validation.

FIGURE 4
Frequency distributions of in situ BPs (Chla and TSS) and hyperspectral IOPs (acdom, anap and aph) from the SeaBASS database used as the satellite-
ground matchup samples for model validation.
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training, the accuracy of the multiple imputation method improves
as the MDN better learns to represent the joint probability
distribution of the target parameters. From this, multiple
imputation with MDNs offers more accurate filling of missing
data, resulting in a larger dataset that is available for training and
potentially improved generalization.

4.4 Regional leave-one-out cross-validation

As an alternative to the hold-out assessment (Section 4.1) which
estimated performance on within distribution data, the regional
leave-one-out cross-validation assesses the models’ expected
retrieval accuracies on out-of-distribution data. By excluding data

from one region at a time during training, the regional leave-one-out
cross-validation provides the model with no information on
retrieving specific IOPs or BPs from Rrs at each specific region or
on the uncertainties in the in situ data associated with the collection
methodologies of each data provider. The GLORIA dataset, which is
used primarily for model training, consists of measurements from
different water types acquired by varying groups with differing
measurement procedures. In spite of the collaborative community
efforts, it is not clear if the training dataset captures the universal
distribution for these parameters. For a clearer sense of the model
performance across different water types, we perform leave-one-out
type cross validation tests to provide users with a more
comprehensive perspective on how the model performance
extends to previously unknown dataset. For this evaluation,

TABLE 2 Details of the four different ocean color sensors and the atmospheric correction bands used for Rrs retrievals in this study. Details of the
atmospheric correction process are provided in Section 4.5.

Sensors Data available
from-

Spatial
resolution (m)

Bands
for OC

Revisiting
period

Atmospheric Correction
Bands (nm)

MODIS/T 1999- 1000 11 1 day 869/2130

MODIS/A 2002- 1000 11 1 day 869/2130

MERIS 2002–2012 300 11 3 days 779/865

VIIRS 2012- 750 6 1 day 862/2257

FIGURE 5
Schematic block diagram showing the dataset used in the development of the MDNmodel for the inversion of BPs and IOPs for multimission ocean
color sensors.
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subset regions were identified as individual contributors/regional
datasets with more than 100 samples. Following this we iteratively
trained models such that for each model one regional subset was
removed from the augmented GLORIA. The left-out-dataset is then
used as the validation dataset for the specific model as used to
evaluate the ability of these models to generalize performance for the
left-out datasets. This approach is similar to experiments performed
in recent studies by O’shea et al. (2023) and Saranathan et al. (2024);
see Supplementary Appendix Table SB2 for details on the regional
subsets. This enables a more robust comparison of the MDN
accuracy across different ocean color sensors, while also
estimating uncertainty across various optically distinct water
bodies. By omitting entire datasets, this region-based evaluation
method also addresses uncertainties stemming from differences in
sampling methods and instrumentation across labs, which can
impact product estimation accuracy. However, this approach
encounters challenges, such as specific datasets spanning multiple
regions or containing a disproportionately high number of samples
for specific parameters, which impact the interpretation of the error
metrics. While most datasets were assessed by region (not all
samples include latitude and longitude), some datasets cover
multiple regions, such as some of the SeaBASS datasets
embedded in the GLORIA dataset, which cover global waters (in
Supplementary Appendix Table B2). Nevertheless, this provides the
added advantage of testing our algorithm with data from diverse
sources (Pahlevan et al., 2022; O’Shea et al., 2023). Overall, the
regional leave-one-out cross-validation assessment offers a more
accurate evaluation of the model’s generalized performance on
previously unseen in situ data from global coastal and inland
waters analyzed at various laboratories.

4.5 Satellite image processing procedures:
(AC method and matchups)

Satellite images sourced from MODIS/A, MODIS/T, MERIS, and
VIIRS, covering the date and location of each validation data point, are
Level-1A observations from the NASA Goddard Space Flight Center
(GSFC) repository (https://oceancolor.nasa.gsfc.gov). These images
underwent processing using NASA’s SeaWiFS Data Analysis System
(SeaDAS v7.5.3) software, employing a standard iterative atmospheric
correction procedure (Gordon and Wang, 1994), with different NIR/
SWIR band combinations specific to each sensor (details in Section 3.2).
This correction aimed to remove atmospheric interference from the
TOA signal. Following atmospheric correction, the Rrs products
underwent further processing using 3 × 3 pixel windows, with the
sampling point location designated as the center pixel. Only windows
with a valid count of more than 5 pixels were considered for
computation. The median Rrs value from the 9 (3 × 3) pixels, co-
located on the same day within +/− 3 h of the sampling time, was
utilized for validation purposes. Other scenarios in the matchup
analysis, such as the coefficient of variation (cv < 0.2) and turbidity
flag, are not considered in this study due to the limited number of
matchups from the available datasets.

Although the pixel sizes ofMERIS andVIIRS differ significantly from
that of MODIS, this study focuses solely on assessing the performance of
each ocean color sensor over inland and coastal waters. Since no
intercomparison between the sensors is conducted, there is no

attempt to match the MERIS and VIIRS pixels with those of MODIS
in this study. The retrievedRrs data consisted of 11 bands (at wavelengths
of 412, 443, 469, 488, 531, 551, 555, 645, 667, 678, and 748 nm) from
MODIS, 11 bands (at wavelengths of 412, 443, 490, 510, 560, 620, 665,
681, 708, 754, and 761 nm) fromMERIS, and 6 bands (at wavelengths of
410, 443, 486, 551, 671, and 745 nm) from VIIRS. These data served as
inputs for the MDN model for the estimation of BPs and IOPs.

4.6 Performance metrics

To evaluate the performance of MDN-derived ocean color
products (BPs and IOPs) obtained from three distinct sensors,
we conduct an evaluation employing standard statistical methods.
This includes the utilization of logarithmically transformed metrics.

The log-transformed metrics includes the Median Symmetric
Residual (MdSR, ε) and Signed Symmetric Percentage Bias (SSPB,
β), which are suitable for data that spans orders of magnitude,
symmetric, easy to interpret, and resistant to outliers and bad data
(Morley et al., 2018), rendering them ideal for assessing uncertainty
when working with large water quality datasets. These two primary
metrics are expressed as follows:

ε � 100 × e median log Ei/Mi( )| |( )( ) − 1( ) (8)
β � 100 × sign MR( ) × e MR| | − 1( ) (9)

Here,MR - Median Ratio represents the median of the logarithmic
ratio between estimated and measured variables. The MdSR can be
interpreted as the unsigned percentage error with perfect accuracy
achieved at 0% whereas the SSPB can be interpreted as a mean
percentage error with perfect bias achieved at 0%, positive values
indicating overestimation and negative indicating underestimation.
Additionally, other log-transformed metrics such as root mean
square log-error (RMSLE) are employed for the evaluation analysis.
The metrics are computed in log-space for a better assessment of the
algorithms owing to the log-normal distribution of the BP data. These
metrics represent the ones utilized in Morley et al. (2018) with slight
modifications for enhanced interpretability and robustness.

5 Results

TheMDNarchitecture achieves lowmedian retrieval errors (<45%)
for all 10 variables of BPs and IOPs from in situ Rrs. The test results on
20% of the in situ augmented GLORIA samples are shown in the
Appendix (refer to Supplementary Appendix Figures SA1-A3, and
performancemetrics in Supplementary Appendix Tables SB3-B6) at the
spectral resolutions of the MODIS, MERIS, and VIIRS sensors. This
prior analysis facilitates the evaluation of the model’s performance with
satellite datasets through matchup analysis and the results of the leave-
one-out cross-validation are discussed in the following sub-sections.

5.1 Satellite data validation

Previous studies have thoroughly analyzed MDN performance
and compared it with leading models, utilizing resampled GLORIA
Rrs for various sensors such as OLI, MSI, OLCI, HICO, and PRISMA
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(Pahlevan et al., 2022; O’Shea et al., 2023) and validated atmospheric
correction results for MODIS/T, MODIS/A, MERIS, and VIIRS
(Pahlevan et al., 2024). That said it is also essential to measure the
practical performance of the models and we, therefore, test the
models using MODIS/T, MODIS/A, MERIS, and VIIRS data
through matchup analysis using the SeaBASS dataset, as depicted
in Figures 6–9. The geographical distribution of the SeaBASS
matchups (+/−3 h) with their year-wise distribution for these
ocean color missions are shown in the appendix (Supplementary
Appendix Figures SA4, A5). Thematchups for Chla, TSS, acdom, anap,
and aph encompass wide ranges, indicating comprehensive dataset
utilization across coastal and inland waters. Given the varying
quantities of data across different variables and sensors, direct
comparisons among multiple sensors are not pursued. Instead,
the focus lies on elucidating each sensor’s performance regarding
the retrieval of variables from Rrs. Given the extensive prior
comparisons with standard models in the published literature,
this results section primarily concentrates on MDN retrieval
accuracy from different ocean color sensors using the SeaBASS
validation dataset.

Figure 6 depicts the in situ BPs and IOPs plotted against their
MDN-estimated counterparts from MODIS/T data. The dataset
comprises at least 470 matchups for variables like Chla, acdom, and
anap, 184 matchups for aph, and a considerably smaller number (7)
for TSS. Notably, the ε reveals varying performance across the
variables. Specifically, for aph, ε stands notably lower than 60% in
the blue bands and higher than 62% in the green and red bands.
acdom stands out with an ε value of greater than 72%. Conversely,

anap demonstrates higher accuracy, with an ε ranging from 59% to
76%. The ε values of BPs such as Chla and TSS are 62% and 59%,
respectively. Examining β, we observe that aph maintains a low
range (<30%), indicating relatively balanced estimates. The β
values for acdom are higher than those of aph, while anap exhibits
significantly lower negative values. Additionally, β values for Chla
and TSS indicate notable overestimation at 37% and 59%,
respectively. These findings underscore the variability in
accuracy and bias across the assessed variables, highlighting
areas for further investigation and potential refinement in
modeling approaches.

Figure 7 compares MDN-estimated variables derived from
MODIS/A data against in situ BPs and IOPs. Comparable
numbers of samples were obtained from MODIS/T (Figure 6)
and MODIS/A matchup analyses. Notably, ε is considerably
higher for anap, ranging from 84% to 87% for MODIS/A.
Conversely, errors for variables such as Chla, TSS and aph fall
within the low range of 43%–62% and errors for acdom within the
slightly higher range of 71%–88%. A notable observation is the
proficient retrieval of Chla and aph across four different bands. The β
for acdom remains very low, ranging from 1% to 5%. Conversely, the
β for anap displays predominantly negative values (−23% to −25%),
indicating underestimation in the retrievals. Although Chla exhibits
a positive bias, registering an overestimation of 44%, aph displays
bias (β) values of 28%–36%, except at 667 nm with 14%. These
results suggest that the overall retrieval performance is satisfactory.

Figure 8 compares in situ BPs and IOPs against the MDN-
estimated variables derived from MERIS data. The dataset

FIGURE 6
Scatter plots for comparison between MDN-estimated BPs/IOPs from MODIS/T satellite imagery and in situmeasured BPs/IOPs from the SeaBASS
dataset using co-located satellite-groundmatchup samples. Satellite sampling times are matchedwith in situ sample collection times with a time interval
within +/−3 h.
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encompasses 766 matchups for Chla, 149 for aph, and smaller
numbers for TSS (14), acdom (87), and anap (109). Notably, the ε
for acdom and anap is substantially higher compared to other BPs/
IOPs. Conversely, errors for variables such as Chla, TSS, and aph fall
within the range of 45%–69%. A noteworthy observation is the
proficient retrieval of aph across four different bands. The bias of
Chla and TSS is slightly elevated (33% and 24%) relative to other
variables. Similarly to ε, the bias for acdom and anap variables remains
considerably higher and worse. The bias for aph at lower wavelengths
is somewhat high (15%–42%), but lower at 667 nm (8%), indicating
underestimation in the retrievals. Overall, the performance of Chla,
TSS, and aph retrieval is deemed satisfactory.

Figure 9 illustrates in situ BPs and IOPs plotted against their
MDN counterparts from VIIRS data. The dataset includes
42 matchups for Chla, 23 matchups for aph, and very few
matchups for TSS, acdom and anap (N < 10). Conversely, ε for
variables such as Chla and TSS are moderate (71% and 79%). aph
falls within the range of 19%–63%. Similar to the MERIS sensor, the
retrieval of acdom and anap remains considerably poor. The slight
error in aph (488) can be attributed to its high negative bias.
Similarly, the bias for acdom and anap remains considerably high
and adverse. The overall bias is high for TSS (79%), whereas a
moderate bias is exhibited for Chla (28%). Other metrics discussed
in Section 5 are shown in Supplementary Appendix Tables SB10-
B13 for the SeaBASS dataset, corresponding to Figures 7–9. Due to
the limited number of datasets used for this matchup analysis, it is
challenging to thoroughly assess the performance of MDNs for the
VIIRS sensor.

5.2 Regional leave-one-out cross-validation

The validation results presented in the appendix
(Supplementary Appendix Figures SA1-A3) demonstrate a
reasonable estimation of BPs and IOPs when trained with 80% of
the augmented GLORIA dataset. However, upon validation with
SeaBASS and satellite matchups, it becomes apparent that the error
nearly doubled compared to the performance achieved during
training. This discrepancy raises concerns not only about the
atmospheric correction procedure but also about the ability of a
model to generalize to unseen test data. Given that the GLORIA
dataset encompasses contributions from various researchers,
laboratories, field campaigns, and water bodies, it is imperative to
evaluate its individual sources to pinpoint potential issues.

To understand the impact of the data from each source within
the development dataset, we conducted a series of LOO cross-
validation experiments, akin to methodologies employed by
previous studies (Pahlevan et al., 2022; O’Shea et al., 2023). Our
approach involved iteratively training a MDN, excluding samples
from specific sources or field campaigns in each iteration. The details
of the individual datasets (Saranathan et al., 2024) are shown in
Supplementary Appendix Table SB2. In these LOO experiments, the
samples excluded from training in a particular trial are referred to as
the left-out samples for that trial. Subsequently, we evaluated the
models’ performance on samples from the excluded regions, which
we term the “left-out test set.” For this evaluation, we computed and
reported both predictive performances, utilizing ε mentioned in
Section 4.1 as the primary indicator, and estimated uncertainty.

FIGURE 7
Scatter plots for comparison between MDN-estimated BPs/IOPs from MODIS/A satellite imagery and in situmeasured BPs/IOPs from the SeaBASS
dataset using co-located satellite-groundmatchup samples. Satellite sampling times are matchedwith in situ sample collection times with a time interval
within +/−3 h.
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The LOO assessment of the MDN across three distinct sensors -
MODIS, MERIS, and VIIRS - is visually presented in bar charts,
illustrating results for all available data sources and each BP and IOP
in Figure 10. Once again, the MDN demonstrates reasonable
accuracy in estimating values across most datasets, indicating
that, in general, the MDNs are able to generalize to previously
unseen samples. That said the experiment also identifies specific
dataset and parameter combinations where the model performance
does not generalize as well as expected. Comparisons of MDN
models with other standard models for BP and IOP retrievals are
conducted in previous studies (Pahlevan et al., 2022; O’Shea et al.,
2023), so we concentrate more on the consistency of ocean color
sensors. It is important to note that individual regions with high ε do
not suggest that the overall dataset is of low quality; rather, that the
range of optical conditions and constituent concentrations from a
specific dataset is not adequately represented within the broader
dataset. The variance in performance among sensors can be
attributed to the combination of bands available with each
respective sensor.

The MDN consistently provides accurate estimates, with minor
deviations observed for certain datasets. Notably, for Chla retrievals,
dataset #4 exhibits slightly elevated error rates, whereas other
datasets closely align with or slightly surpass the median ε value
(horizontal line in Figure 10), demonstrating excellent accuracy.
Similarly, in TSS retrieval, datasets #5, #8, #22, and #23 show notably
higher error rates, while the remaining datasets exhibit performance
close to or better than the median ε. For acdom retrieval, elevated
errors are observed for datasets #8 and #12 at 443 nm, and datasets

#4, #12, and #13 at 555 nm. Likewise, anap retrieval displays
increased error rates for dataset #13 at 443 and 555 nm.
However, the MDN demonstrates satisfactory performance for
most datasets in these retrievals, except for dataset #13, which
additionally exhibits elevated errors in aph retrieval.

It is crucial to note that these variations in error rates do not
suggest inferior data quality. Rather, they can indicate that certain
datasets have optical conditions or constituent concentrations that
are not fully represented within the broader dataset. Comparing the
three sensors, TSS retrievals exhibit the highest uncertainties,
ranging from 64% for MERIS to 75% for VIIRS. The median ε
values for each variable are calculated across the corresponding
sensors (Supplementary Appendix Table S14). Notably, the reported
uncertainties for all variables approximate to 54% across the three
sensors. Considering all ten variables, VIIRS exhibits the highest ε
values in comparison to the other two sensors, followed by MODIS
and MERIS. Notably, BPs such as Chla and TSS consistently display
an error rate of approximately 60% across all sensors in their
retrievals. Moreover, the percentage error for all IOP retrievals
remains relatively low, ranging from 33% to 71%. Similarly, IOP
retrievals at all wavelengths exhibit comparatively lower errors
(~52%) when compared with BPs (~60%).

These findings emphasize the subtle performance variations
across sensors and highlight the importance of understanding the
inherent characteristics of each of their bands in interpreting
retrieval accuracies. Additionally, the consistency in error rates
for specific variables and wavelengths offers valuable insights for
refining retrieval algorithms and enhancing the overall accuracy of

FIGURE 8
Scatter plots for comparison between MDN-estimated BPs/IOPs from MERIS satellite imagery and in situ measured BPs/IOPs from the SeaBASS
dataset using co-located satellite-groundmatchup samples. Satellite sampling times are matchedwith in situ sample collection times with a time interval
within +/−3 h.
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remote sensing data analysis. Understanding this slight difference in
retrieval performance is vital for refining algorithms and enhancing
the accuracy of remote sensing data interpretation. Further
investigation into the underlying causes of discrepancies at
specific stations can facilitate improvements in data processing
techniques, ultimately advancing our ability to derive meaningful
insights from remote sensing observations.

6 Spatial data analysis

In the previous section, we found a reasonable alignment
between MODIS, MERIS, and VIIRS products and the MDN-
based BPs and IOPs, particularly when compared to in situ
datasets across coastal and inland waters. This section elucidates
the efficacy of utilizing spatial data to comprehend the dynamic
fluctuations in geophysical products within coastal and inland water
bodies. Specifically, we focus on the Chesapeake Bay to analyze the
MDN-based spatial products derived from MODIS, MERIS, and
VIIRS. Situated along the East Coast of the United States,
Chesapeake Bay encompasses highly productive waters, exhibiting
a spectrum of phenomena including in-water blooms, suspended
sediments, and dissolved materials across the bay and
coastal regions.

Figure 11 presents MODIS/T (a) and MERIS (b) ocean color
products showcasing the spatial distribution of BPs and IOPs on
27 December 2005, post-application of the MDN method.
Leveraging the MDN retrievals, these images facilitate a clearer

understanding of the spatial distribution of water quality
parameters. Regions depicted in red indicate a high dominance
of the corresponding water quality parameter, while those in blue
signify a lower one. Figures 11a1, 11b1 illustrate the spatial variation
of MDN-derived Chla as captured by MODIS/T and MERIS,
respectively. The MODIS/T image vividly highlights the
dominance of Chla near the shoreline in the northern and
western parts of the bay. Conversely, the MERIS image exhibits
less variation compared to MODIS, with less discernible features.
The spatial variation of MDN-derived TSS, is depicted in Figures
11a2, 11b2 for MODIS/T and MERIS, respectively. In contrast to
Chla, the dynamic changes in TSS distribution are readily discernible
across the entire bay area and coastal waters in both MODIS/T and
MERIS images.

Similar to the BPs, the spatial distribution of the IOPs also
distinctly reveals their variation in these optically complex waters.
Figures 11a3, 11b3 highlight the presence of aph at 443 nm near the
shoreline of the bay. The dominant features of the aph distribution
are clearly depicted in the MODIS/T images, whereas they are less
evident in the MERIS images. In Figures 11a4, 11b4, the distribution
of acdom at 443 nm is distinctly visible, demonstrating that both
MODIS/T and MERIS effectively capture the spatial distribution of
dissolved organic matter over the bay area. This organic matter
dissolves into the water due to tidal movements between the bay and
the sea. TheMODIS/T-acquired acdom image over the bay area aligns
consistently with the MERIS-acquired acdom image. However,
notable discrepancies arise offshore, where the two satellite
images display significant variation. The spatial distribution of

FIGURE 9
Scatter plots for comparison between MDN-estimated BPs/IOPs from VIIRS satellite imagery and in situ measured BPs/IOPs from the SeaBASS
dataset using co-located satellite-groundmatchup samples. Satellite sampling times are matchedwith in situ sample collection times with a time interval
within +/−3 h.
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FIGURE 10
Performance assessments based on the LOO experiments utilizing the augmented GLORIA dataset for three different ocean color sensors (MODIS,
MERIS and VIIRS) and 10 variables [Chla, TSS, acdom (440), acdom (555), anap (440), anap (555), aph (440), aph (488), aph (555), aph (667)]. See Supplementary
Appendix Table SB2 for the details of the data sources and indices. The dotted lines represent the median of theMdSR from all 10 variables of BPs/IOPs.
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another crucial IOP variable, anap at 443 nm, is depicted in Figures
11a5, 11b5. Remarkably, the anap products obtained from both
MODIS/T and MERIS sensors exhibit close consistency. Elevated
levels of anap are observed predominantly along the shoreline of the
bay and in coastal waters. This analysis distinctly elucidates that the
BPs and IOPs derived from the MODIS/T and MERIS sensors
exhibit consistency for TSS and anap, while slight variations are
observed for other BPs and IOPs.

Figure 12 depicts MODIS/A (a) and VIIRS (b) ocean color
products highlighting the spatial distribution of BPs and IOPs over
Chesapeake Bay on 26 December 2018. Surprisingly, all ocean color
products examined exhibit matching spatial distributions for both
sensors. Evaluating the MDN-derived BPs Chla and TSS, as well as
the IOPs, for consistency and spatial variability, clear patterns can be
discerned. Figures 12a1, 12b1 illustrate theMDN-derived Chla levels
detected by MODIS/A and VIIRS, respectively, denoting a notable

FIGURE 11
MODIS/T and MERIS based MDN-derived ocean color product images over the Chesapeake Bay, USA, acquired on December 27th, 2005. Panels
(a1–a5) showMODIS/T products of BPs: (a1)Chla, (a2) TSS, and IOPs: (a3) aph, (a4) acdom, and (a5) anap at 443 nm. Panels (b1–b5) showMERIS products of
BPs: (b1) Chla, (b2) TSS, and IOPs (b3) aph, (b4) acdom, and (b5) anap at 443 nm. All products were derived from SeaDAS corrected Rrs.
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concentration in the bay area and particularly along its shoreline.
Conversely, Chla concentrations appear considerably lower in
coastal and offshore waters. Noteworthy peaks in Chla are
observed exclusively along the bay’s shoreline. The spatial
distribution of MDN-derived TSS, is depicted in Figures 12a2,
12b2. Both MODIS/A and VIIRS ocean color products exhibit
heightened TSS levels along the bay’s shoreline, with a consistent
pattern, albeit slightly lower magnitudes in VIIRS compared to
MODIS/A.

MDN-derived IOPs, such as aph, are coherent across both MODIS/
A and VIIRS ocean color products, as demonstrated in Figures 12a3,
12b3. These images highlight an abundance of phytoplankton pigments
within baywaters, especially in proximity to the shoreline, withminimal
presence in offshore regions. This trend is replicated across both
MODIS/A and VIIRS datasets. Similarly, Figures 12a4, 12b4
showcase the dominance of acdom in bay waters, with negligible
quantities observed offshore. The spatial distribution of acdom, as
estimated by the MDN, remains largely consistent across both

FIGURE 12
MODIS/A and VIIRS based MDN-derived ocean color product images over the Chesapeake Bay, USA, acquired on December 26th, 2018. Panels
(a1–a5) showMODIS/A products of BPs: (a1)Chla, (a2) TSS, and IOPs: (a3) aph, (a4) acdom, and (a5) anap at 443 nm. Panels (b1–b5) show VIIRS products of
BPs: (b1) Chla, (b2) TSS, and IOPs (b3) aph, (b4) acdom, and (b5) anap at 443 nm. All products were derived from SeaDAS corrected Rrs.
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platforms. Contrary to other IOPs, anap exhibits an uneven distribution
within the bay zone, as depicted in Figures 12a5, 12b5. Non-algal
particles are predominantly concentrated near the bay’s shoreline,
coinciding with areas of heightened TSS levels (as shown in Figures
12a2, 12b2). Notably, the spatial patterns of MDN-derived anap remain
highly similar for both MODIS/A and VIIRS imagery.

The consistency in spatial patterns between MODIS/A and
VIIRS images suggests reliable performance in capturing ocean
color variability over Chesapeake Bay. While minor differences
exist in magnitude, overall trends remain consistent between the
two sensors. Notably, both MODIS/A and VIIRS images show
similar spatial distributions for MDN-derived BPs and IOPs. The
comparative analysis indicates that MODIS/A and VIIRS sensors
provide consistent and reliable ocean color products for monitoring
the Chesapeake Bay, even though slight discrepancies exist,
particularly with MERIS images.

7 Discussion

Recent studies have revealed the immense potential of satellite-
based hyperspectral observations in enhancing our understanding of

aquatic ecosystems on a global scale (O’Shea et al., 2023). However,
the reliability of product retrievals tends to diminish with a
multispectral sensor or equivalent reduction in the number of
bands utilized. In our investigation, we scrutinized three different
multispectral sensors - MODIS, MERIS, and VIIRS - each
characterized by a distinct number of multispectral bands.
Surprisingly, despite this variance, the accuracy of the MDN-
estimated BPs and IOPs exhibited minimal discrepancy across
the sensors, as depicted in the training results (first column,
Figure 13), leveraging a substantial subset of 20% of the
augmented GLORIA in situ dataset. Notably, we demonstrated
that achieving a 20%–25% error margin in all BPs and IOPs
utilizing MDNs is possible on in situ measured data. Slight
disparities observed in the accuracy of BPs and IOP variables
among the sensors can be attributed to differences in the
available multispectral bands within each sensor.

The heritage AC model represents a significant advancement in
the field, delivering improved Rrs products compared to prior
studies (Pahlevan et al., 2024). However, challenges persist,
particularly in highly productive aquatic environments where
negative retrievals are frequently encountered. These
discrepancies introduce uncertainties, especially in extrapolating

FIGURE 13
Bar chart representation of MdSR derived from three distinct MDN estimates: GLORIA Test dataset, GLORIA matchups and SeaBASS matchups
across three different sensors. The dotted lines represent the median of the MdSR from all 10 variables of BPs/IOPs.
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aerosol contributions to the blue region of the Rrs spectrum (Frouin
et al., 2019). Such uncertainties reverberate throughout downstream
products like BPs and IOPs, as evidenced in this study. For example,
our analysis reveals that residual errors in Rrs lead to approximately
50% overestimation across key parameters such as Chla, TSS, acdom,
anap, and aph (second column, Figure 13) for the same GLORIA
dataset. Here, satellite Rrs is used as the input for the MDN model.
The geographical distribution of GLORIA matchups (+/−3 h) with
their year wise distribution for these ocean color missions are shown
in the appendix (Supplementary Appendix Figures SA6, A7). The
scatterplots and performance metrics for GLORIA matchups with
MODIS, MERIS, and VIIRS are presented in the appendix as well
(Supplementary Appendix Figures SA8, A11 and Supplementary
Appendix Tables SB6-B9) and illustrate how issues in atmospheric
correction directly impact Rrs and consequently influence the water
quality variables.

The results highlight that MODIS use of both NIR and SWIR
bands enables effective atmospheric correction, minimizing
atmospheric effects. While VIIRS employs a similar approach, its
limited visible bands restrict its ability to resolve complex optical
properties in aquatic environments, affecting the retrieval of
inherent optical properties (IOPs) like acdom and anap. MERIS,
with a broader visible spectrum, offers better spectral resolution,
but relies solely on NIR bands for atmospheric correction,
potentially introducing biases under certain conditions. These
limitations in VIIRS and MERIS atmospheric correction and
band configurations may lead to lower acdom and anap estimates.
The validation dataset for VIIRS, particularly for acdom and anap, is
limited, potentially affecting the robustness of these specific
validations. To address this, the Appendix includes MDN
performance evaluations for the GLORIA dataset and VIIRS
sensor, offering initial insights into model capabilities. While
matchups for acdom and anap are sparse, the datasets cover diverse
global waters, supporting the MDN’s applicability across multiple
variables. Additionally, we highlight the model’s performance on
other water quality indicators, such as Chla, TSS, and aph, where data
coverage is more comprehensive, providing a broader and more
reliable evaluation of its capabilities.

The third column (Figure 13) shows the performance metrics for
the SeaBASS matchups with the three satellite sensors. As we
discussed in Section 5.1, the error still increased approximately
75%. It is plausible that these inaccuracies stem not only from the
model and atmospheric correction, but also from factors such as
inadequate vicarious calibrations, residual biases in TOA
measurements (Ibrahim et al., 2018), and adjacency effects
(Sterckx et al., 2011). Our findings strongly suggest that the
MDN is particularly susceptible to errors in atmospheric
correction (Zolfaghari et al., 2023) and adjacency effects.
Addressing these challenges requires a concerted effort of both
refining the models and emphasizing the critical need for
accurate atmospheric correction in aquatic remote sensing studies.

8 Conclusion

This study introduces anMDN-based inversion method tailored
for the concurrent estimation of Chla, TSS, acdom, anap, and aph from
Rrs across a range of multispectral ocean color sensors, applicable to

coastal and inland water bodies. By training the MDN model using
additional IOP data aligned with 80% of the augmented GLORIA
dataset, better accuracy is achieved. Notably, the model
demonstrates enhanced or comparable accuracy (ranging from
15% to 40% across all products) when validated against a larger
and more diverse in situ dataset compared to prior dedicated MDN
approaches. Validation of the SeaBASS dataset against MODIS,
MERIS, and VIIRS satellite datasets through matchup analysis
further underscores the robustness of the model, with accuracy
ranging from 40% to 70% across all BPs and IOPs.

Leveraging a regional leave-one-out cross-validation approach,
the MDN exhibits superior generalization performance across
various sensor platforms and water types. Furthermore, this
study elucidates the suitability of MDN models for specific
regional water bodies and identifies sensors that offer better
accuracy for individual BPs and IOPs. The results of the leave-
one-out analysis reveal minimal discrepancies among the retrievals
from the three ocean color sensors. When applied to satellite images,
slight differences between MODIS, MERIS, and VIIRS are observed,
primarily attributed to atmospheric correction algorithm nuances
and sensor band disparities.

Addressing the substantial uncertainty stemming from
atmospheric correction underscores the potential for significant
accuracy enhancements in IOP retrieval through improved
remote sensing reflectance retrieval techniques. Future
refinements to the MDN approach could incorporate additional
environmental and physical variables as input features, facilitating
phytoplankton type/species discrimination within specific
geographic regions. In this study, the MDN approach was
applied exclusively to heritage ocean color sensors, driven by the
absence of a matchup validation dataset for recent ocean sensors.
The availability of in situ data presents an opportunity to expand this
methodology to recent multispectral sensors such as VIIRS onboard
NOAA-20 and NOAA-21 and OLCI onboard Sentinel-3A and
Sentinel-3B. These advancements hold promise for enhancing
monitoring capabilities of water bodies.
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