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Producing reliable log volume data is an essential feature in an effective wood
supply chain, and LiDAR sensing, supported by portable platforms, is a promising
technology for volume measurements. Computer-based algorithms like Poisson
interpolation and Random Sampling and Consensus (RANSAC) are commonly
used to extract volume data from LIiDAR point clouds, and comparative studies
have tested these algorithms for accuracy. To extract volume data, point clouds
require several post-processing steps, while their outcome may depend largely
on human input and operator decision. Despite the increasingly number of
studies on accuracy limits, no paper has addressed the reliability of these
procedures. This raises at least two questions: (i) Would the same person,
working with the same data and using the same procedures get the same
results? And (i) How much would the results deviate when different people
process the same data using the same procedures? A set of 432 poplar logs
placed on the ground and spaced about 1 m apart, was scanned by a professional
mobile LiDAR scanner in groups; the first 418 logs were then individually scanned
using an iPhone-compatible app, with the remainder being excluded from this
part of the study due to field time constraints and all the logs were manually
measured to get the reference biometric data. Three researchers with different
experiences processed the datasets produced by scanning twice, following a
protocol that included shape reconstruction and volume calculation using
Poisson interpolation and RANSAC algorithm for cylinders and cones. The
intra- and inter-rater reliability were evaluated using a comprehensive array of
statistical metrics. The results show that the most reliable estimates correlate with
a greater experience. The Cronbach’s alpha metric at the subject level was high,
with values of 0.902-0.965 for the most experienced subject, and generally
indicated moderate to excellent intra-rater reliabilities. Moreover, working with
Poisson interpolation and RANSAC cylinder shape reconstruction, respectively,
indicated a moderate to excellent reliability. For the Poisson interpolation
algorithm, the Intraclass Correlation Coefficient (ICC) ranged from 0.770 to
0.980 for multi-log datasets, and from 0.924 to 0.972 for single log datasets.
For the same type of input datasets, the ICC varied between 0.761 and 0.855 and
from 0.839 to 0.908 for the RANSAC cylinder, and from 0.784 to 0.869 and
0.843 to 0.893 for the RANSAC cone shape reconstruction algorithms,
respectively. These values indicate a moderate to excellent inter-rater
reliability. Similar to Cronbach’s alpha, the Root Mean Square Error (RMSE)
was related in magnitude to the ICC. The results of this study indicate that, for
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improved reliability and efficiency, it is essential to automate point cloud

segmentation

using

advanced machine learning and computer vision

algorithms. This approach would eliminate the subjectivity in segmentation
decisions and significantly reduce the time required for the process.

KEYWORDS

lidar sensing, big data, measurement, post-processing, comparison, experience, point
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1 Introduction

In the wood supply chain, measurement of forest-related
features such as standing trees, tree lengths and logs, is essential
for practice and science. For practice, accurate estimates of the
volume are important for wood transaction on the market (Davis
etal., 2001; Gregory et al., 2003; Malinen et al., 2006; Moskalik et al.,
2022), while for science, accurate estimates are required to support
modelling and comparison, run wider system analyses (Janak, 2012),
and generally to provide the data supporting informed decisions for
management (Davis et al., 2001; Rauscher, 2005; Lauri et al., 2008).

Log measurement by manual means has long been used in
forestry, but it requires important resources (Jandk, 2007; 2012; Li
etal, 2015; de Miguel-Diez et al., 2022; Nitd and Borz, 2023; Purfiirst
et al,, 2023), and may generate bottlenecks within the supply chain
(Berendt et al., 2021; de Miguel-Diez et al., 2021). Along with the
introduction of Forestry 4.0 concepts in the wood supply chain
(Feng and Audy, 2020; He and Turner, 2021), digitalization of
operations and transactions has gained a lot of momentum (Feng
and Audy, 2020; Miller et al., 2019), pushing the science and
industry in exploring alternative ways of collecting wood
biometric data. Various proximal sensing technologies supported
by mobile platforms equipped with apps integrating the latest
technologies, such as augmented reality and computer vision,
were tested to determine how well they perform in obtaining
reliable estimates on the main biometrics of the logs (Knyaz and
Maksimov, 2014; Jodlowski et al, 2016; Kruglov, 2016;
Chatzopoulos et al., 2017; Mehrentsev et al., 2019; Pasztory et al.,
2019; Berendt et al., 2021; Panagiotidis and Abdollahnejad, 2021;
Borz et al., 2022a; Purfiirst et al., 2023). In this regard, several tests
were carried out by dedicated studies to compare the log volume
estimates produced by digital technologies to those obtained by
water immersion (Ljubojevi¢ et al., 2011; Hohmann et al., 2017; de
Miguel-Diez et al.,, 2022), or by manual measurement (Nita and
Borz, 2023).

Based on the most recent findings, the use of LiDAR-based
platforms in collecting tree- and log-based biometric data seems to
be a viable and feasible alternative due to the accuracy provided
(Hyyppd et al., 2008; Chen, 2015; White et al., 2016; Beland et al,,
2019; Alvites et al., 2022; de Miguel-Diez et al., 2022). In addition,
the resources spent to procure the data, such as measurement time
(Borz and Proto, 2022), were comparable to those of conventional
LiDAR-based log
measurement may remove important inconveniences of the

log measurement methods. Moreover,
manual log measurement methods, which typically relate to the
safety and ergonomics of the work, environmental efficiency, labor
shortage, skills and knowledge required, density of data sampling,
and integration into technologies holding data flow capabilities

along the supply chain.
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In terms of safety and ergonomics, digital methods were shown
to expose less their operators to postural risks (Borz et al., 2022b),
which may also contribute to a less physical effort required when
measuring; in addition, digital measurement does not require a
direct contact with the work object, and therefore, it can prevent
work-related accidents. Although the platforms used to collect data,
such as smartphones, may require a wide range of resources and
more complex manufacturing processes, by their material weight
could be less resource-intensive compared to those required for
manual measurement, which is typically done by a tape and a forest
caliper. Frequently, such platforms are also multi-purpose devices
storing the apps for different tasks in one place, hence the multi-
function allocation from an environmental impact point of view. An
important challenge that forest sector faces today is labor shortage
(Proteau, 2008; Tsioras, 2010; 2012; gporéic’ et al., 2024), with many
choosing to work in other industrial sectors; this creates important
problems and threatens the security of wood supply, at least at the
operational level which, for log measurement, typically employs
people that hold the knowledge and skills required to grade the logs
and to record the data needed for volume estimates (Cown, 2005;
Thomas and Bennett, 2017; TraitLab, 2024). Then, the estimates
produced by manual methods are as good as the density used in
sampling the data used to produce them, which is typically low;
LiDAR measurement, on the other hand, can represent more
accurately the objects in the three-dimensional space (White
et al.,, 2016; Beland et al.,, 2019; Alvites et al.,, 2022), accounting
for those variations that may make the difference in volume
estimates. Last but not least, the advancements in computer
vision and deep learning is likely to provide the tools needed for
an automatic documentation and transfer of the data along the
supply chain, removing the need for manual input of the data into a
dedicated system (Gingras and Charette, 2017; Feng and Audy,
2020; Morin et al., 2020; He and Turner, 2021).

To extract meaningful data, currently the LIDAR point clouds
require a workflow composed of several post-processing tasks. Most
of these still require the human intervention over the point clouds to
prepare them for the extraction of useful information. Software
packages such as CloudCompare or Open 3D are equipped with
such functionalities and are the main choices when one relies on
open-source  alternatives. In  the CloudCompare app
(CloudCompare, 2024), for instance, which is commonly used
now in the related science, these functionalities include a manual
segmentation, noise removal using a filtering tool, normalization
using a given model, and shape reconstruction by various algorithms
(Schnabel et al., 2007; Girardeau-Montaut, 2015; Girardeau-
Montaut, 2016; Kazhdan et al, 2020; Panagiotidis and
Abdollahnejad, 2021). As such, there can be a high subjectivity in
the estimates, which may primarily come from the way in which the
points assigned to logs are segmented out from a cloud containing all
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the data (i.e., log and the background). Typically, a human processor
of such data, accounts for what the eyes can see in the cloud such as
shapes and, when available, the color of the points. Assuming that a
human processor would have to repeat the processing steps on the
same cloud twice or more times, there is a degree of uncertainty in
estimates as coming from the same source of processing error, since
it is difficult for a human to make exactly the same cloud
segmentation decision each time. Then, assuming that the same
cloud would be processed by different persons, there is a degree of
subjectivity that comes from how different people see and make
decisions on what points should be included in processing following
the segmentation.

Among the main concepts of digitization is that of a technology
being sufficiently reliable for a given task (Wang et al, 2019a;
Panagiotidis and Abdollahnejad, 2021) which comes from our
understanding of systems design and analysis (Wasson, 2006).
Since sourcing and processing data are integrant workflow steps,
one would expect to get the same, readily usable estimates at the end
of the process. If this would not be possible, then it is important to
see how much such estimates may deviate due to the intra- or inter-
person subjectivity, which are commonly known as intra- and inter-
rater reliability, respectively (Gwet, 2001; 2008; Bonnet, 2023).

This study tried to quantify the reliability of log volume
estimates sourced from LiDAR data, by employing the concepts
of intra- and inter-rater variability and reliability. LIDAR point
clouds are commonly sourced from mobile platforms such as
This
employed both types of platforms because those from the first

smartphones or mobile professional scanners. study
category are typically used for individual logs, while those from
the second category are more effective for handling groups of logs.
Therefore, the latter platforms produce increasingly crowded point
clouds as the number of logs increases. Besides, different people can
have different experience with the point cloud processing tasks and,
as such, it is important to assess if significant deviations arise from
this factor. The study aimed to answer the following questions: i) is
the inter-person experience with point cloud processing—defined
herein as an individual’s prior practical engagement, training, and
familiarity with point cloud processing software (specifically
CloudCompare) and related data manipulation tasks—a factor
that may cause significant deviations in log volume estimates?, ii)
are there significant deviations in log volume estimates related to the
subjectivity of the same person when segmenting the point clouds?,
and iii) which type of point clouds are likely to produce the most
stable estimates: single or multiple log point clouds?

2 Materials and methods

2.1 Study site

The point clouds required by this study were collected in the
Southern part of Romania, in the forests managed by the Regional
State Directorate of Dolj, which is under the authority of National
Forest Administration - RNP Romsilva. The Romanian forests are
highly diverse (Ioras et al., 2009; Nicolescu, 2022) and distributed on
altitudinal layers, starting from mountainous pure Norway spruce
stands and ending with plain and meadow poplar forests (Toader
and Dumitru, 2005; Stancioiu et al., 2018). The Southern part of
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Romania is mostly bordered by the Danube River and poplar forests
have an important share in the area. Data was collected by scanning
with a ZEB-REVO Portable Scanning System and an iPhone 13 Pro
Max (Figure 1), which was done at two yards (located 43°51'00” N
23°06'53" E and 43°51'20" N 23°11'43" E, respectively) that
concentrated logs from several harvesting areas located nearby.

The characteristics of the poplar logs used in this study revealed
a diverse range of biometric attributes. The logs exhibited a length
varying from 1.96 to 9.07 m, with an average value of 5.49 + 1.23 m.
At the small end, the diameter ranged from 11.50 to 68.00 cm,
yielding an average value of 33.36 + 8.93 cm. The large end diameter
varied from 16.00 to 78.00 cm, averaging 41.43 + 11.47 cm.
Meanwhile, the diameter measured at the midpoint of the log
varied from 15.50 to 67.00 cm, averaging 35.59 + 8.62 cm.

2.2 Data collection and processing

A total of 432 logs were scanned using a ZEB-REVO Portable
Scanning System (GeoSLAM Ltd and Ruddington, 2017). This
handheld mobile LiDAR scanner, which uses Simultaneous
and Mapping (SLAM) technology for
referencing, was employed to capture 3D point cloud data of logs

Localization geo-
arranged in groups. The logs within each group were placed on the
ground with an approximate spacing of 1 m between them. A total of
22 groups were considered, containing 14 to 26 logs (about 20 per
group, on average). From this set, 418 logs were individually scanned
using an iPhone 13 Pro Max equipped with its integrated LIDAR
sensor and running the “3D Scanner App” (Laan, 2021a). This setup
allowed for the direct generation of 3D point clouds from the LIDAR
data. The iPhone 13 Pro Max performed adequately for capturing
the geometry of individual logs at close range, providing sufficient
point density for subsequent analysis. The remaining 14 logs, while
scanned as part of a group with the ZEB-REVO system, were not
scanned individually with the iPhone due to time limitations and
were therefore excluded from the analyses pertaining to single-
log datasets.

The scanning procedures and protocols used for the two mobile
LiDAR platforms were comparable to those used in previous studies
(Borz and Proto, 2022; Nita and Borz, 2023). The two mobile LIDAR
platforms differ in their sensing distances, and the typical workflows
and algorithms used to reconstruct objects from the collected data
depend on the reconstruction technology employed. The 3D
Scanner App (Laan, 2021a) was pre-installed on the iPhone prior
to field data collection. The app’s free version is currently available
for download (Laan, 2021a). The 3D Scanner App facilitates real-
time LiDAR scans and point cloud computation (Laan, 2021b;
Gharge and Ali, 2024). The iPhone scanning process operated in
a closed loop, commencing at one end of each log and involving data
collection from approximately 1 m by moving forward and
backward around the log at low speed (Figure 1, right). This was
done while orienting the sensing devices toward the log from various
positions and angles, as guided by the app’s interface. For this device
and the associated app, the scans were conducted at medium density
(MD), allowing the point clouds to effectively represent the logs.
After scanning each log, an ID was assigned in the app, and the
results were saved to the device’s memory before the operator
proceeded to the next log. In contrast, the ZEB-REVO Portable
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FIGURE 1

Examples from the field data collection activity showing (a) scanning of log groups by a ZEB-REVO Portable Scanning System (left), (b) individual log

scanning by an iPhone 13 Pro Max (right), and (c) a schematic diagram i

llustrating the typical closed-loop scanning path for the iPhone around an

individual log, maintaining an approximate 1m distance and varying sensor orientation.

Scanning System was used for scanning groups of logs (14-26 logs
per group). The process involved walking around the logs and
scanning them from approximately 2 m, starting and finishing at
the same point, on a horizontally leveled platform. This device
enables scanning at higher distances (up to 30 m), collects
substantial amounts of data as spatially referenced point clouds,
and is suitable for large-area scans (GeoSLAM Ltd and Ruddington,
2017). After each scanning session and based on external control, the
device automatically processed and saved the point cloud data onto a
USB stick (Forkuo and Borz, 2023). Both scanning platforms can
output data in 3D file formats that are quite similar; specifically,
these include files containing point clouds and images or media
captured during scanning (Laan, 2021b). However, in this study, the
point clouds captured by both platforms were exported in the office
in a binary format specifically designed for storing LiDAR data
(.LAS) (Laan, 2021b). Specifically, the point clouds from the iPhone
equipped with the 3D Scanner App were exported at medium
density, with the Z-axis oriented upwards, and in LAS format in
meters with color settings.

Frontiers in Remote Sensing

Data collection, pre-processing and processing workflows are
described in Figure 2 for the LiDAR-based data. The method for
processing data and estimating log volumes in CloudCompare
consists of several key steps, each designed to enhance the
quality of the point cloud data and facilitate accurate shape
reconstruction. The parameters used in the process were those
described in Nitd and Borz (2023). Accordingly, noise was
eliminated from the point cloud data to improve overall clarity
and accuracy, using a k-Nearest Neighbors (kNN) algorithm
specifically configured with a value of 60. This parameter aids in
identifying and removing points that do not conform to the overall
structure of the data, thereby enhancing the integrity of the
subsequent analyses (Dong et al., 2023). Following noise removal,
normalization of the point cloud was conducted to ensure consistent
orientation and scaling, using a Least-Squares Method (LSM) with a
quadric shape (Rusu et al., 2009), in combination with an
automatically generated Octree structure and the same kNN
value set at 60. Normalization is deemed very important in
aligning the data for accurate comparative analysis and model
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|| Cloud Compare, rounded to 5 digits

FIGURE 2

Description of the workflow used to collect, pre-process, process the data, and to get the log volume estimates.

fitting (Lin et al., 2022). Once normalization was completed, shape
reconstruction was performed to accurately estimate the geometries
of the logs, consisting of several sub-processes, starting with Poisson
Surface Reconstruction. In this phase, the Poisson interpolation
method was employed, with parameters set as follows: octree depth
was set to 12, boundary to 3, samples per node to 6, point weight to 0,
and 8 threads were used for parallel processing. This method is
robust when reconstructing complex geometries from the point
cloud, effectively capturing fine details (Kazhdan et al., 2006;
Kazhdan et al, 2020). After the Poisson reconstruction, the
RANSAC (Random Sample and Consensus) algorithm was used
to fit cylindrical shapes to the point cloud data representing the logs,
requiring a minimum of 500 support points for the algorithm to
establish a reliable cylinder model, while the remaining RANSAC
parameters were automatically adjusted to optimize the fitting
process (Fischler and Bolles, 1981). Finally, a similar RANSAC
approach was applied to fit conical shapes to the data,
the support of
500 points while using automatically configured parameters to

maintaining same minimum requirement
enhance fitting accuracy. Collectively, these steps enabled the
effective processing of LiDAR data in CloudCompare software,
resulting in log volume estimates to five digits. The relevant
inputs and outputs for data processing are shown in Figure 3.
The initial point clouds sourced by both platforms were stored in
a Google Drive data repository, along with a Microsoft Excel
datasheet to support the collection of metadata for the
processing effort.

Reference data was collected as well, by manual measurements
using a forestry tape and a caliper. Log diameters and lengths were
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measured to the nearest centimeter. Typically, this involved
systematic measurements of diameters at a 0.5 m interval along
the log, coupled with measurements of the log end and mid
diameters and the length of the last segment of the log if it was
shorter than 0.5 m. The manual measurements were then recorded
on paper sheets. The concept used for manual measurement and
volume estimation is fully described in Nita and Borz (2023), as a
part of the Hypercube 4.0 project (Hypercube 4.0, 2021). The
reference volume for all logs was calculated based on the detailed
manual field measurements (diameters at 0.5 m intervals along the
log, end diameters, and total length), using established forestry
formulas, primarily the section-wise truncated cone method for
the highest accuracy, as detailed in Nitd and Borz (2023).

The Excel database included, among others, the metadata of
each log such as the ID, group to which the log belonged when the
case, platform used to collect the data, name of the person that
processed the data, as well as the log volume estimates produced by
the manual measurement. In addition, data fields such as the date of
processing, time spent in processing, and volume estimates were
included according to the workflows shown in Figures 2, 3.
Repository of point clouds included a folder structure to contain
all the intermediary processing products starting from the initial
point clouds and ending with those used for volume estimation.

Data processing was performed by three persons with different
experience (hereafter called subjects) who volunteered for the study.
Subject 1 possessed substantial experience with CloudCompare and
point cloud processing tasks, defined as over 2 years of consistent use
in various research projects and formal training. In contrast,
Subjects 2 and 3 were beginners, whose primary exposure
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FIGURE 3

[10:06:59] [Mesh Volume] Mesh ‘Mesh[P5-18251_10.23 ;

[10:07:48] [Mesh Volume] Mesh ‘Cylinder (r=0.17%
(104
[10:10:57] [Mesh Volume] Mesh ‘Mesh[PS-18251_10_23 37 Jassegmented.clean] (level 12)': V=1.06362 (cube units)

4] [qRansacSD] Input been automt

s.segmented.clean] (level 12)":V=1.06962 (cube units)

esh Volume] The abo sh has non-manifold edg

dges
=6.025907)’ V=0.599782 (cube units)
Mesh Volume] Mesh ‘Cone (alpha=0405380 deg / h=6.021404)' V=0.756853 (cube units) I

Steps used in data processing by CloudCompare. Legend: (a) — raw point cloud of a ZEB-REVO scan, (b) — raw point cloud of a iPhone scan, (c) — an
example of a product after segmentation and noise removal, (d) — an example of a product after normalization, (e) — product after Poisson interpolation,
(f) — product after RANSAC cylinder reconstruction, (g) — product after RANSAC cone reconstruction, (h) — an example of volume estimation (cone

volume by RANSAC), (i) — volume display and visualization.

consisted of an introductory tutorial and practice exercises provided
specifically for this study before commencing data processing. To
support the learning of the basic steps, a video tutorial developed in
the framework of the Hypercube 4.0 (Hypercube 4.0, 2021) was used
as a guiding reference. The subjects were provided with any other
information and guidance as they asked for it in advance of the
study, and they were allowed to experiment with some data as a
training exercise.

2.3 Experimental design and data analysis

Volume data was used for comparison of differences and for
checking the intra- and inter-rater reliability. To do so, the reference
data coming from manual measurements was codded according to
the method used to estimate the volume, and named hereafter
RVHuber, RVSmalian, RVCil, and RVCone. These were used
only to show the differences that can arise from the choice of
measurement and estimation method applied to manual data.
For the assessments done to check the intra- and inter-rater
variability, the datasets were codded by abbreviations showing
the shape reconstruction algorithm used, platform used to source

Frontiers in Remote Sensing

the point clouds, processing attempt (repetition), and a number
from 1 to 3 to designate the subject that carried out the processing
tasks. Figure 4 shows the system used to code the two datasets: the
dataset collected with Zeb Revo scanner and the dataset collected
with iPhone.

Subject 1 (coded as S1) was the individual with more experience
with the use of Cloud Compare and LiDAR data, while subjects
2 and 3 were at their first experience with such tasks. Each subject
worked twice with each dataset. In other words, the data was
processed from end-to-end by each subject two times. This
allowed to measure the intra-rater reliability (commonly known
as internal consistency), which was measured using Cronbach’s
alpha (Johnson, 2021; Revicki, 2023). This metric describes to
what extent the measurements remain consistent over repeated
trials ran under identical conditions, and the data is said to be
reliable if the experiment yields consistent results on the same
measure (Ferketich, 1990; Revicki, 2023). In this study, “identical
conditions” refers primarily to the cloud segmentation step, as the
input point cloud data was identical in each trail by the same subject.
The parameters for subsequent steps, such as denoising and shape
reconstruction, were also kept consistent as per the defined protocol.
However, by different decisions on point selection, the outcomes of
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Processing algorithm  Sourcing platform Processing attempt Subject Code Processing algorithm Sourcing platform Processing attempt Subject Code
Poisson interpolation | 1 VPZR1S1 Poisson interpolation 1 1 VPI3D1S1
2 1 VP7R2S1 2 1 VPI3D251
i 2 VPZR1S2 1 2 VPI3D1S2
2 2 VPZR2S2 2 2 VPIZD2S2
1 3 VPZR1S3 1 3 VPI3D1S3
2 3 VP/R2S3 2 3 VPI302S3
RANSAC cylinder 1 1 VRCiZR1S1 RANSAC cylinder 1 1 VRCil30181
2 1 VRCiZR2S51 2 1 VRCil20281
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FIGURE 4

Description of the system used to code the datasets for intra- and inter-rater reliability analysis. The "“Code” column shows the abbreviation for each
dataset, where "VP" is Volume by Poisson, "VRCi" is Volume by RANSAC Cylinder, "VRCo" is Volume by RANSAC Cone; “ZR" denotes ZEB-Revo sourced
data, "I3D" denotes iPhone 3D Scanner App sourced data; the number “1" or "2" immediately following the platform code indicates the first or second
processing attempt (repetition) by the subject; “S1,” “S2," or “S3" in the "Subject” part of the code refers to Subject 1 (experienced), Subject 2
(beginner), or Subject 3 (beginner), respectively. The left panel shows codes for datasets sourced by the ZEB Revo scanner, and the right panel for those

sourced by the iPhone.

segmentation may affect the outcomes of the subsequent processing
steps, therefore the volume estimates. Accordingly, if the decisions
made on the points to include by segmentation led to identical point
clouds for the following processing steps, then it is likely that the
volume estimates would be identical and, as such, the results
considered as being consistent between the trials. This part of the
experiment led to the comparison of 18 datasets, coming from the
platform used to collect the data (2), shape reconstruction algorithm
used to process it (3) and the number of subjects (3).

The inter-rater reliability was measured using the inter-class
correlation coefficient (ICC), which was adapted to the type of
experiment conducted, as there are several classes and types of
experiments (Bobak et al., 2018; Ten Hove et al., 2022). ICC assesses
the reliability of ratings by comparing the variability of different
ratings of the same observation against the variation of all ratings
and observations. A class 2 experiment was setup in which a number
of raters (subjects herein) are selected at random from a population
of raters, and the selected raters rate all the observations (Koo and Li,
20165 Shieh, 2016). This part of the experiment used the data coming
from same shape reconstruction procedure and platform used to
collect it, but compared between each two possible subjects. This
resulted in a number of 72 comparisons.

Analysis of the data was carried out in Microsoft Excel equipped
with the Real Statistics (Zaiontz, 2023) add-in. Real Statistics is a tool
that extends the capabilities of Microsoft Excel in statistical analysis
and which provides dedicated functionalities for reliability
assessments such as Cronbach’s alpha and ICC. The standard
functionalities as included in Real Statistics were used in this
study for analysis. Before running the analyses, the data on
volume estimates was paired so as to remove those pairs which i)
were commented by a given subject as unreliable in estimates, ii) had
at least one data point missing in the pair due to various reasons and
iii) had data that was showing contrasting differences which were
less likely to occur solely due to a bad decision in segmenting the
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point clouds. A numerical description of the size of initial and
compared datasets is provided in Supplementary Material
(Supplementary Table S1).

The resulting datasets were also subjected to an advanced
quantitative assessment of the differences. Error metrics such as
the bias (BIAS), mean absolute error (MAE) and root mean
squared error (RMSE) were computed for each dataset to
characterize the deviation in volume estimates. These were
used in conjunction with Cronbach’s alpha and ICC to
characterize the reliability of estimates.

Bias (BIAS) is calculated as the average error, representing the
difference between predicted (measured) and actual (reference)
values (Willmott and Matsuura, 2005). It indicates whether the
predictions are systematically higher or lower than the observed
values. By definition, a positive bias value suggests underestimation,
while a negative bias indicates overestimation. Bias is frequently
used to assess also the accuracy of predictive models, particularly in
fields such as forecasting and regression analysis (Hyndman and
Koehler, 2006). Mean Absolute Error (MAE) is computed as the
average of the absolute differences between actual and predicted
values, providing a straightforward assessment of prediction
accuracy by averaging the absolute errors (Willmott and
Matsuura, 2005; Hyndman and Koehler, 2006). MAE is preferred
in many analyses due to its reduced sensitivity to outliers, especially
when compared to RMSE (Hyndman and Koehler, 2006). It is also
commonly used in regression analysis and model evaluation to
measure the average magnitude of prediction errors (Hyndman
and Koehler, 2006). Root Mean Squared Error (RMSE) is calculated
as the square root of the average of the squared differences between
actual and predicted values (Chai and Draxler, 2014; Hodson, 2022).
By squaring the differences, RMSE gives greater weight to larger
errors (differences), thereby making it more sensitive to outliers
compared to MAE (Armstrong, 2001; Chai and Draxler, 2014).
RMSE offers a measure of the standard deviation of prediction errors
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and is also widely used in regression analysis, forecasting, and model
validation to assess prediction accuracy (Li, 2017).

Cronbach’s alpha is derived by correlating the score for each
scale item with the total score for each observation and comparing it
with the variance of all individual item scores (Cronbach, 1951).
This statistic measures the internal consistency or reliability of a set
of items, where higher values indicate greater reliability (Tavakol
and Dennick, 2011). Cronbach’s alpha is widely used in survey
research and psychometrics to assess the reliability of scales and
questionnaires (Tavakol and Dennick, 2011). It is particularly
valuable in the process of designing and testing new survey or
assessment instruments (Frost, 2022), and it is also well fitted to
quantitative continuous data. The intraclass correlation coefficient
(ICC) is calculated using variance components obtained from an
analysis of variance (ANOVA) (Koo and Li, 2016). It measures the
ratio of variance between groups to the total variance, thereby
assessing the reliability of measurements or ratings for groups or
clusters (Shrout and Fleiss, 1979). Higher ICC values indicate greater
reliability and are commonly used in reliability studies, particularly
in the context of repeated measurements or ratings by different
observers (McGraw and Wong, 1996).

The complete statistical workflow included a test to check the
normality of data, estimation of intra- and inter-rater reliability, and
the estimation of BIAS, MAE and RMSE. Signed differences,
between the
observations of a given dataset used for comparison were

absolute differences and squared differences
included in the test for normality in data, and the results were
presented in an aggregated form by considering i) the differences
that occurred over all logs measured in the field by the manual
method by taking one of the volume estimation method as a
reference, ii) the intra-rater reliability, characterized qualitatively
by bivariate plots showing the magnitude of differences, iii) the
intra-rater reliability characterized, quantitatively by the Cronbach’s
alpha, BIAS, MAE and RMSE, and iv) the inter-rater reliability,
characterized quantitatively by the ICC, BIAS, MAE and RMSE.

3 Results and discussion

3.1 Agreement of log volume estimates
based on manual measurement

The results of normality check indicated that none of the
variables could be assumed to come from a normal distribution
(data not shown herein). The data reported in Figure 5 indicate
several degrees of agreement between the log volume estimates
based on manually measured data. The methods that used finer
sampling of the diameters produced more concordant results as
shown by the trend equations included in the figure, a result that is
consistent with previous findings (e.g., Nitd and Borz, 2023).

The analysis of different volume estimation methods highlights
their tendencies to either overestimate or underestimate the log
volumes. In this study, Smalian’s formula tends to overestimate
volume when compared to the truncated cone (RVCone) method, as
it is evident from the scatter plot showing that the trend line for
RVSmalian is positioned above the diagonal. The overestimation
arises because Smalian’s formula calculates volume based on the
average of the cross-sectional areas at the ends of the log, which can
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be particularly inaccurate for tapering logs (de Leén and Uranga-
Valencia, 2013; Li et al., 2015; Ahmad et al., 2020). In contrast,
Huber’s formula tends to underestimate volume compared to the
reference cone method used in this study, as the scatter plot indicates
that the trend line for RVHuber appears slightly below the diagonal,
expressed by the trend equation. This underestimation is a result of
Huber’s calculation of volume based on the cross-sectional area at
the midpoint of the log, which can lead to inaccuracies in cases of
significant tapering or irregularities along the log (de Leén and
Uranga-Valencia, 2013; Li et al., 2015; Ahmad et al., 2020). However,
the reference cylinder method (RVCil), which calculated volume
based on manually measured diameters at 0.5 m intervals, yielded
estimates that showed extremely high agreement (R* = 1.000) with
the reference volumes derived from the section-wise truncated cone
formula using the same detailed 0.5 m interval measurements. This
high concordance, effectively a near 1:1 relationship, is due to the
dense and comparable diameter sampling used in both the RVCil
calculation and the most detailed reference method (Nita and Borz,
2023). This method’s success is due to the diameter sampling
procedure used, which was denser compared to that applied for
Smalian’s and Huber’s formulae, an approach that better fitted the
taper of the logs and had less residuals compared to the estimation of
the logs’ segments volumes by truncated cones since the reference
diameters used were the same.

Overall, these findings align with existing literature (e.g., Nita
and Borz, 2023), emphasizing the need to acknowledge inherent
biases in various volume estimation methods based on their
underlying assumptions and calculations, which is essential for
selecting the appropriate method for accurate volume estimation
in forestry and timber management.

3.2 Intra-rater reliability of log
volume estimates

Figure 6 shows the bivariate plots of comparisons ran between
the trials (repetitions) of the same subject processing the same
dataset. The logic of this qualitative assessment is that, if there
would be no differences between the estimates of a given dataset
coming from separate trials, then all data points would distribute
over the 1:1 identity line, which was not the case for any of the
analyzed datasets. As a fact, there were important differences which
seemed to depend on the level of experience with point cloud
processing, type of input data (single log or group of logs) and,
most importantly, the method used for shape reconstruction.

Shape reconstruction using Poisson interpolation provided the
highest intra-rater reliability, irrespective of the subject (Figure 6);
however, it showed different degrees of reliability when the type of
dataset was considered for the same subject. For instance, working
with point clouds of single logs was more reliable compared to that
of working with groups of logs, even if the Zeb Revo point clouds are
often described as being accurate (Bauwens et al., 2016; Dewez et al.,
2017; Sammartano and Spano, 2018; Warchot et al., 2023), hence
there is a difference between accuracy and reliability. Then, intra-
rater reliability depends on experience, as it can be seen when
looking at the inter-subject plots of the same compared datasets.
These results may have several explanations. For instance, Poisson
surface reconstruction is a method used for shape reconstruction
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FIGURE 5

Agreement of log volume estimates based on the manual measurement methods. Legend: RVHuber - volume computed by Huber's formula,
RVSmalian - volume computed by Smalian’s formula, RVCil - volume computed by 0.5 m cylinders, RVCone - volume computed by 0.5 m

truncated cones.

that is effective at reconstructing smooth surfaces from point clouds
(Kazhdan et al., 2006; 2020); it can fill in gaps in the data to create a
complete 3D model. One of the main advantages of Poisson
interpolation is its resilience to data noise, as it considers all
points at once without resorting to heuristic spatial partitioning
or blending (Kazhdan et al., 2006; Kazhdan et al., 2020). However,
Poisson interpolation may introduce artifacts if the point cloud is
noisy or has outliers (Kazhdan et al., 2006; 2020). Additionally, it
requires tuning parameters for the best results, which can be time-
consuming and may require expertise (Kazhdan et al, 2006;
Kazhdan et al., 2020).

RANSAC (Random Sample Consensus) cylinder reconstruction
is another method used for shape reconstruction (Fischler and
Bolles, 1981; Raguram et al., 2008; Cavalli et al, 2023); it is
robust against outliers in the data, making it effective for
modeling objects that are cylindrical in shape (Raguram et al,
2008;  Niebles 2017). RANSAC cylinder
reconstruction is relatively easy to implement and can handle a

and Krishna,

moderate percentage of outliers without significant computational
cost (Bolles and Fischler, 1981; Niebles and Krishna, 2017).
However, this method may not perform well with non-cylindrical
shapes or if the cylinder axis is not well-defined by the data points
(Niebles and Krishna, 2017). Additionally, while efficient, the
method can become computationally expensive if the share of
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outliers is high (Niebles and Krishna, 2017). RANSAC cone
reconstruction is suitable for objects with a conical shape and
can handle noisy data points (Schnabel et al, 2007). It can be
adapted to different shapes and sizes of cones, making it versatile for
various applications (Schnabel et al., 2007; Niebles and Krishna,
2017). However, similar to RANSAC cylinder reconstruction, it may
struggle with shapes that do not conform to an ideal cone (Niebles
and Krishna, 2017). The accuracy of the reconstruction can also be
sensitive to the parameters chosen for the RANSAC algorithm
(Niebles and Krishna, 2017). Looking at the data outputted by
these two shape reconstruction methods (Figure 6), it is evident
that they had different degrees of disagreement. In addition,
magnitude of disagreement seemed to increase as a function of
log size, particularly for those logs that had an estimated volume
which was higher than 0.5 m’.

The relevant quantitative measures of the intra-rater reliability
are provided in Figure 7. As measured by Cronbach’s alpha at the
subject level, the highest intra-rater reliability was that when
working with data inputs on single logs and reconstructing the
log shapes by Poisson interpolation. This was consistent among the
subjects, although Cronbach’s alpha had different magnitudes
among the subjects and assessments. At the dataset level, single
log data and reconstruction by Poisson interpolation returned the
best result for the first subject, with a maximum Cronbach’s alpha of
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0.998. Next in line was the multi-log dataset of which the volume
estimates were produced by Poisson reconstruction by the first
subject, which returned a Cronbach’s alpha of 0.987, and the
third and fourth best inter-rater reliabilities were found for the
second and third subject based on single log data and Poisson
reconstruction.

In general, the internal consistencies measured as the average
values of Cronbach’s alpha at the subject level were high, with values
of 0.902-0.965. However, the best intra-rater reliability was found
for the first (experienced) subject, being followed by the third and
the second subjects. The significance of these values can be
understood by referring to the classifications of Cronbach’s alpha
values. Cronbach’s alpha is a measure of internal consistency, which
indicates how closely related a set of items are as a group (Cortina,
1993; Johnson, 2021). It is considered a measure of scale reliability
(Tavakol and Dennick, 2011; Johnson, 2021). According to general
guidelines, a Cronbach’s alpha value above 0.7 is considered
acceptable, values above 0.8 are considered good, and values
above 0.9 are considered excellent (Tavakol and Dennick, 2011;
Johnson, 2021). In this study, the values between 0.902 and
0.965 indicate an excellent internal consistency, suggesting that
the items used in the measurement are highly correlated and
reliably measure the same construct. High values of Cronbach’s
alpha imply that the measurements are consistent across different
items, and the responses are reliable (Streiner, 2003; Tavakol and
Dennick, 2011; Johnson, 2021). This level of internal consistency is
important in ensuring the validity and reliability of the
measurements, especially in research settings where accurate and
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consistent data are essential (Cortina, 1993; Taber, 2018; Johnson,
2021; Frost, 2022). In the context of this study, the high values of
Cronbach’s alpha indicate that the log measurements taken by the
subjects were generally consistent and reliable. The fact that the first
(experienced) subject had the highest intra-rater reliability suggests
that experience may play an important role in achieving more
consistent and reliable estimates. This finding aligns with
previous research that highlights the importance of experience
and training in improving measurement accuracy and reliability
(Hobbs-Murphy et al., 2024).

Also, the differences measured with BIAS, MAE and RMSE
metrics were generally consistent with the assessments done by
Cronbach’s alpha. For instance, the RMSE kept the same order of
magnitude depending on the value of Cronbach’s alpha, with
lower magnitudes in RMSE corresponding to higher values of
Cronbach’s alpha, which was only partly true for MAE, and
inconsistent for the BIAS, since this metric is signed and shows
the direction of under- or over-estimation. The consistency
among the outputs of BIAS, MAE, RMSE, and Cronbach’s
alpha can be understood by examining how each metric
interacts with the data. When the internal consistency is high,
as indicated by Cronbach’s alpha, the errors in the measurements
are likely to be smaller and the estimates more consistent
(Goforth, 2024). This is reflected in lower values of RMSE and
MAE. RMSE, in particular, is sensitive to larger differences, and
its lower values correspond to higher values of Cronbach’s alpha,
indicating that the measurements are more accurate, reliable and
consistent (Singh, 2022; Goforth, 2024).
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FIGURE 7

Intra-rater reliability measured by difference metrics and Cronbach’s alpha. Legend: reference and compared datasets are described in Figure 4,

BIAS — bias, MAE — mean absolute error, RMSE — root mean squared error. Note: in green, yellow, orange and red, are provided the first, second, third and
fourth-best results of all comparisons for the Cronbach’s alpha. The order of reliability is given from green to red for the compared datasets in terms of
Cronbach'’s alpha; for example green, yellow and red highlighting indicate the first-, second- and third-ranked intra-rater reliabilities for each
subject, respectively. The rightmost column classifies the intra-rater reliability at subject level by the mean values of Cronbach'’s alpha.

3.3 Inter-rater reliability of log
volume estimates

Inter-rater reliability was measured by the intra-class correlation
(ICC) and was complemented with the confidence intervals and the
difference metrics, as shown in Figures 8-10. Figure 8 shows the results
grouped by the Poisson interpolation algorithm, while Figures 9, 10
show the results based on RANSAC interpolation as cylinders and
cones. Irrespective of the dataset, on average, the lowest ICC was
consistently found for the multi-log datasets (Figures 8-10).

However, there was an order of magnitude in differences
between the shape reconstruction algorithms used, with Poisson
interpolation being ranked the first. For the Poisson interpolation
algorithm, the ICC varied between 0.770 and 0.980 when working
with multi-log datasets, and from 0.924 to 0.972 when working with
single log datasets. For the same types of input datasets, it varied
between 0.761 and 0.855 and from 0.839 to 0.908 for RANSAC
cylinder, and from 0.784 to 0.869 and 0.843 to 0.893 for RANSAC
cone shape reconstruction algorithms, respectively, indicating
moderate to excellent inter-rater reliabilities. Similar to
Cronbach’s alpha, RMSE was related in magnitude with ICC,
with low values of RMSE being associated to high values in ICC.

The ICC plays an important role in delineating the reliability of
measurements, with values indicating substantial reliability across
various analyses (Chinn, 1991; Gisev et al., 2013; Koo and Li, 2016;
Bruton et al., 2000). However, as with other reliability coefficients,
there is no universally accepted level of reliability for the ICC
(Bruton et al., 2000). The ICC ranges from 0 to 1, with values
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closer to one indicating a higher reliability. Chinn (1991) suggests
that any measure should have an ICC of at least 0.6 to be considered
useful, thus reinforcing the relevance of our findings. The ICC is
particularly valuable when comparing the repeatability of
measurements across different units, as it is a dimensionless
statistic (Bruton et al., 2000). It is most effective when three or
more sets of observations are collected, either from a single sample
or from independent samples, according to Bruton et al. (2000). For
instance, an average ICC of 0.900 was obtained from all the
comparisons using the 3D Scanner App, whereas the average
value of comparisons over the Zeb Revo data was much lower
(0.833), indicating different degrees of reliability, and placing the
comparisons on 3D Scanner App data in the category of excellent
reliability (Bruton et al., 2000; Gisev et al., 2013). However, it is
important to acknowledge certain limitations outlined by Rankin
and Stokes (1998) that can render the ICC unsuitable for use in
isolation. Specifically, when the ICC is applied to data from a diverse
group of individuals exhibiting a wide range of the measured
characteristic, the reliability may appear higher than when it is
applied to a group with a narrow range of the same characteristic
(Bruton et al., 2000). This underscores the need for caution when
interpreting ICC values, particularly in contexts involving
heterogeneous populations.

To answer the first question of the study, the inter-person
experience is an important factor affecting the reliability of volume
estimates. This is supported by both, the internal consistency of the
assessments as well as by the intra-class correlation assessments, by
which the second and third subjects, which were less experienced,
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FIGURE 8

Inter-rater reliability for the Poisson shape reconstruction algorithm, measured by difference metrics and intra-class correlation (ICC). Legend:
reference and compared datasets are described in Figure 4, BIAS - bias, MAE — mean absolute error, RMSE — root mean squared error. ConfLower and
ConfUpper stand for the lower and upper confidence thresholds of the ICC. Note: in green, yellow, orange and red, are provided the first, second, third
and fourth best results of all comparisons for the ICC. The order of reliability is given from green to red for the compared datasets in terms of ICC; for
examplegreen, yellow and red highlighting indicate the first-, second- and third-ranked inter-rater reliabilities for each dataset. The rightmost column
classifies the inter-rater reliability at dataset level by the mean values of ICC.

performed poorer. Indeed, the differences in reliability were co-factored
by the type of datasets used for segmentation, but still, there are
important trends in data supporting the effect of experience on
reliability. The question on whether the differences between the
assessments are important and the assessments are still ranked as
highly reliable is worth pursuing further. For instance, the
experienced subject working on single log datasets achieved an
internal consistency close to 1, meaning excellent reliability.
However, the bias was positive, accounting for 0.010 m’, mean
absolute error for 0.016 m’ and the root mean squared error for
0.027 m’, figures which some may interpret as big differences
between the assessments.

Based on both the internal consistency and deviation metrics,
the degree of deviation due to a person’s subjectivity may vary
significantly, which answers to the second question of the study.
Experienced persons are likely to come to more accurate, consistent
and reliable estimates, which is less likely for unexperienced persons,
therefore experience may be a co-factor in subjectivity when
segmenting point clouds. In addition, the degree of reliability is
also affected by the type of input dataset in question, with single log
datasets generally improving the reliability of estimates.

The answer to the third question seems to be the most evident
based on both types of reliability assessments. For the same person
working on the same type of input dataset and with the same shape
reconstruction method, the results indicate that working with single log
input datasets produce the most reliable estimates. This is further
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supported by the results of inter-person assessment, consistently
showing better outcomes when working with single log datasets.
This may come from the fact that a given person can work more
focused when the point clouds are not crowded and, as such, the
geometry of the points is easier to understand by the human brain.
Form our experience, working with point clouds of single logs can also
prevent error in segmentation, and rendering the point clouds in natural
colors may help deciding more accurately the boundaries of
segmentation, which is a feature that can assist less experienced subjects.

Looking again at the data, it seems now that a new question may
come up in relation to intra-rater reliability. By the Poisson
interpolation, it seems that reliability of the estimates was
consistently higher, irrespective of the type of dataset used and
experience level of the subject. This should be explored in the future
to check the degree at which the agreement and reliability of
estimates may be related to the shape reconstruction method
used since this study considered only the segmentation step of
the process as being a subjective one.

Ideally, reliability figures should be built based on very large
datasets containing both a high variability in log biometrics as well
as in species and in the environment used for measurements, which
could not be accommodated by this study. In addition, having much
more subjects to make the assessments would contribute to a better
understanding of the reliability of estimates, as well as to more
representative figures under the statistical point of view. It is
difficult, however, to run larger experiments, mainly due to the

frontiersin.org


mailto:Image of FRSEN_frsen-2025-1506838_wc_f8|tif
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1506838

Forkuo and Borz

10.3389/frsen.2025.1506838

Reference dataset Compared datasel BIAS MAE RMSE ICC ConfLower  ConfUpper
VCizR1S1 VCiZR1S2 0.016 0132 0206 0815 0.780 0.845
VCiZR151 VCiZR252 0.020 0140 0206 0.814 0.779 0.844
VCiZR1S1 VCiZR153 0.030 0127 0200 0.819 0.784 0.849
| vcizrisi VCiZR2S3 0.013 0.128 0.185 |[0846 ]| 0817 0.871 Lowest Inter-
VCiZR251 VCiZR1S2 0.002 0.142 0219 0792 0.753 0.825 rater
VCiZR251 VCiZR252 0.006 0.140 0211 0.807 0.771 0.838 o
[vazrast VCiZR1S3 0.016 0123 0197 |[0825] 0.792 0.853 reliability,
VCiZR251 VCiZR253 -0.001 0130 0197 |0.827 0.795 0.855 Average ICC
[ vCzr1s2 VCIZR153 0.015 0125 0.178 | [0.855 0.827 0.879
VCiZR1S2 VCiZR253 -0.002 0153 0219 0.783 0.742 0.817 =0.810
VCiZR252 VCiZR1S3 0.006 0141 0227 0761 0.718 0.798
VCiZR2S2 VCiZR2S3 -0.008 0145 0223 0775 0.734 0.810
VCi3D151 VCi3D1S2 0.013 009 0152 0878 0.853 0.898
VCi3D151 VCi3D252 0.023 0101  0.166  0.856 0.827 0.880
[ vcipis1 VCi3D153 0.003 0093 0139 |[0898] 0877 0.915 :
VCi3D151 VCi3D253 0.030 0103 0154 0867 0838 0.891 Highest
VCi3D251 VCi3D152 0.028 0100 0.158 0.868 0.839 0.891 Inter-rater
VCi3D251 VCi3D252 0.038 0104 0175 0.840 0.804 0.869 liabilit
VCi3D251 VCi3D153 0.019 0093  0.149 [g_g] 0.859 0.902 refiabiiity,
VCi3D251 VCi3D2s3 0.045 0109 0170 O 0.795 0.872 Average ICC
[ VCi3D152 VCi3D153 0010 0087 0.131 0.890 0.924 - 0.873
VCi3D152 VCi3D253 0.019 0.094 0.140 | [0.889 0.865 0.908 =0t
VCi3D252 VCi3D153 -0.019 0100 0.153 0876 0.851 0.897
VCi3D252 VCi3D253 0.007 0097 0149  0.874 0.849 0.895

FIGURE 9

Inter-rater reliability for the RANSAC cylinder shape reconstruction algorithm, measured by difference metrics and intra-class correlation (ICC).
Legend: reference and compared datasets are described in Figure 4, BIAS — bias, MAE — mean absolute error, RMSE — root mean squared error.
ConfLower and ConfUpper stand for the lower and upper confidence thresholds of the ICC. Note: in green, yellow, orange and red, are provided the first,
second, third and fourth best results of all comparisons for the ICC. The order of reliability is given from green to red for the compared datasets in
terms of ICC, such as the green, yellow and red were the first, second and third ranked inter-rater reliabilities for each dataset. The rightmost column
classifies the inter-rater reliability at dataset level by the mean values of ICC.

resources needed to accommodate them. As an example, the speed of
processing depends largely on the architecture and power of the
computers used to run the data processing steps. For instance, the
experienced subject processed the data for both data processing
attempts from 12 November 2023 to 9 February 2024, where the
segmentation step took in between 2 and 3 min for one observation,
meaning that for the data samples used in the study, this processing step
alone took close to 60 h for one person. In addition, segmentation alone
was the most time-consuming processing step (data not shown herein).
Furthermore, while the data collection time was found to be comparable
to conventional methods (Borz and Proto, 2022), future studies could
explore alternative observation strategies to further enhance efficiency.
For example, optimizing the scanning path or employing automated
mobile platforms could significantly reduce the time required for data
acquisition in the field, complementing the gains made by automating
post-processing tasks.

Based on the findings of this study regarding reliability and the
resources required to perform specific steps, there is a potential to
improve both the efficiency and reliability. One suggested approach is to
transfer the decision-making process for cloud segmentation to the
computer. This would be the primary strategy to minimize the accuracy
gap between novice and experienced operators, as it would effectively
remove the human subjectivity identified as a key factor in our results
(Hobbs-Murphy et al, 2024). By automating segmentation, the
reliability of volume estimates would no longer depend on an
operator’s  experience As step, the
development of semi-automated tools and standardized, guided

level. an intermediate
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workflows within processing software could also help reduce
inconsistencies. However, the most robust solution lies in leveraging
advanced machine learning and computer vision algorithms (Guo et al,,
20205 Sarker et al., 2024). Most likely, automated decisions will rely on
the architecture of the point clouds and probably will use the color
information contained in them. To do so, effective machine learning
and computer vision algorithms will be required (e.g., Guo et al., 2020;
GitHub, Inc, 2024; Sarker et al., 2024) since, for similar applications,
several machine learning and computer vision algorithms have been
proposed to perform point cloud data segmentation and shape
reconstruction (Guo et al, 2020; Wang et al, 2020; Fang et al,
2023; Sarker et al, 2024). For example, PointNet (Qi et al, 2017)
and DGCNN (Wang et al,, 2019b) are state-of-the-art deep learning
models for point cloud segmentation (GitHub, Inc, 2024). PointNet, for
instance, takes a point cloud as the input and processes it directly with
MLPs (multi-layer perceptron) layers, followed by a max-pooling layer
for implicit global feature extraction (Qi et al., 2017), while DGCNN
uses dynamic graph convolution to capture local geometric structures
(Wang et al,, 2019a). Another example is the 3D Convolutional Neural
Network (3D CNN), that extracts features from the point cloud and
then classifies each point on the basis of those features (Lee et al., 2022;
Wang et al., 2018). More recently, advanced models that improve the
results for point cloud segmentation by using mask-based learning
approaches include MaskNet (Sarode et al., 2020) and MaskNet++
(Zhou et al., 2022). Besides, PCN (Point Completion Network) (Yuan
et al,, 2018) is a novel learning-based method for shape completion.
Unlike previous shape reconstruction algorithms that usually require
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FIGURE 10

Inter-rater reliability for the RANSAC cone shape reconstruction algorithm, measured by difference metrics and intra-class correlation (ICC).
Legend: reference and compared datasets are described in Figure 4, BIAS — bias, MAE — mean absolute error, RMSE — root mean squared error.
ConfLower and ConfUpper stand for the lower and upper confidence thresholds of the ICC. Note: in green, yellow, orange and red, are provided the first,
second, third and fourth best results of all comparisons for the ICC. The order of reliability is given from green to red for the compared datasets in
terms of ICC, such as the green, yellow and red were the first, second and third ranked inter-rater reliabilities for each dataset. The rightmost column
classifies the inter-rater reliability at dataset level by the mean values of ICC.

structural assumptions (such as symmetry) or annotations (such as
semantic classes) regarding the underlying shape, PCN directly
processes raw point clouds with no prior knowledge of the
underlying shapes (Yuan et al, 2018). This reinforces that the
outlook for Al techniques in the field of point cloud data processing
is promising, with advancements in these deep learning models paving
the way for more accurate and efficient point cloud segmentation and
shape reconstruction. This class of computational approaches would
likely solve the problem of accurate, consistent and reliable log
segmentation from background data of point clouds.

4 Conclusion

Intra- and inter-rater reliability of log volume estimates based on
LiDAR point clouds depends on experience of the person running the
processing steps, in particular point cloud segmentation. Although the
intra- and inter-rater figures indicate a moderate to excellent reliability,
one must consider also other metrics such as those characterizing the
deviation of the results. In other words, the magnitude of reliability, as
indicated by figures such as the bias, mean absolute error and mean
squared error, needs to be defined and categorized to serve the end users
of the data. The potential to arrive at the same estimates lies in the way
in which some of the point cloud processing steps are taken, particularly
in the decision on how to segment the data characterizing the logs from
the surrounding environment. Automation of these data processing
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steps may lead to a higher effectiveness in both reliability and
resources spent.
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