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The Optical TRApezoid Model (OPTRAM) has been extensively utilized to map
high-resolution surface soil moisture (top 0–5 cm) using surface reflectance
observations. OPTRAM parameters, the intercept and slope of the dry and wet
edges, are typically calibrated by analyzing the data cloud created from the
Normalized Difference Vegetation Index (NDVI) and the Shortwave-infrared
Transformed Reflectance (STR) in a specified area of interest. One set of
parameters is commonly obtained for the entire study area regardless of its
soil and landcover types. In this study, we explored to what extent a landcover-
specific calibration of OPTRAM can improve its accuracy. In this analysis, we used
Sentinel-2 (S2) reflectance and the Cropland Data Layer (CDL) landcover datasets
via the Google Earth Engine to generate 20-m resolution soil moisture maps for
California’s Central Valley (CV).We evaluated the spatial and temporal accuracy of
the CV-wide calibrated OPTRAM (OPTRAM-CV) and landcover-specific
calibrated OPTRAM (OPTRAM-LS) against in situ observations and SMAP-
HydroBlocks (SMAP-HB), a well-validated 30-m satellite-based soil moisture
dataset. Our results indicate that OPTRAM-LS significantly improved the
accuracy of soil moisture estimates compared to OPTRAM-CV. The average
root mean square error was 0.09 and 0.05 (m3 m−3) for OPTRAM-CV and
OPTRAM-LS, respectively. OPTRAM showed less accuracy than SMAP-HB
compared to in situ observations but yielded higher resolution than SMAP-HB.
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1 Introduction

Soil moisture is an important environmental factor influencing the water, carbon, and
energy exchange at the surface-atmosphere interface (Robinson et al., 2008; De Queiroz
et al., 2020). This variable plays a key role in hydrology by shaping rainfall-runoff processes,
impacting ecology by regulating net ecosystem exchange (Ochsner et al., 2013; Hosseini
et al., 2023), and affecting agriculture by influencing the plant water availability, plant
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productivity and crop yields (Wang et al., 2011). Moreover, soil
moisture is effective in monitoring drought conditions (Vergopolan
et al., 2021a; b; Wang et al., 2019) and wildfire occurrence and
severity (Jensen et al., 2018). This led to an increased focus on
monitoring spatially distributed soil moisture data at large scales and
on a timely basis using remotely sensed images (Ahmed et al., 2011;
Huete, 2004).

Microwave remote sensing techniques demonstrate great
potential due to their ability to penetrate through both vegetation
canopy and the underlying soil, particularly at lower frequencies
(Entekhabi et al., 2010). Satellites such as Soil Moisture Active
Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS)
have shown good promise for global mapping of near-surface
(0–5 cm) soil moisture at a spatial resolution of 25–40 km and
temporal resolution of 2–3 days (Mohanty et al., 2017). However,
this spatial resolution is too coarse for many agriculture, hydrology,
and water resources applications. Hence, optical and thermal
satellite observations are frequently employed to bridge the scale
gap due to their higher spatial resolutions (Sadeghi et al., 2017).

Over the past few years, the Optical TRApezoid Model
(OPTRAM) (Sadeghi et al., 2017) has been utilized to map soil
moisture using optical reflectance observations. This model was
established based on research by Sadeghi et al. (2015), which derived
a linear, physically-based relationship between soil moisture and
Shortwave Infrared (SWIR) Transformed Reflectance (STR).
Assuming a linear correlation between soil and vegetation water
contents, OPTRAM assumes that the Normalized Difference
Vegetation Index (NDVI) and STR data form a trapezoidal data
cloud where drier pixels are generally located at a lower position
than wetter pixels. In OPTRAM, two lines are fitted to the bottom
and top edges of the dense part of the data cloud, referred to as the
dry and wet edges. Then, each pixel’s soil moisture value is assigned
based on its distance from the dry and wet edges of the data cloud.

Although OPTRAM has demonstrated promising results for
high-resolution mapping of soil moisture (Ambrosone et al., 2020;
Chen et al., 2020; Pandey et al., 2024; Mananze et al., 2019; Burdun
et al., 2020; Mokhtari et al., 2023), some users have reported
challenges in determining the dry and wet edge parameters
(Sadeghi et al., 2023). This problem is more pronounced in
diverse regions with distinct values of STR and NDVI associated
with various landcover types. Such limitations stem from the
variability in reflectance properties across different features and
landcover types (Huete, 2004; Mohamadzadeh and Ahmadisharaf,
2024; Shu et al., 2024). Therefore, the current practice, wherein a
single set of model parameters is used for the entire region of
interest, does not accurately represent the true characteristics of the
region. This approach introduces bias, reflecting the values of the
predominant landcover type that forms the majority of the cloud.
Consequently, ignoring the landcover type in the data cloud
formation negatively affects the OPTRAM parameters, thereby
imposing a constraint on the OPTRAM methodology.

To address this issue, we explore to what extent a landcover-
specific calibration of OPTRAM improves its accuracy. In the
following sections, we provide an overview of the theoretical
basis of OPTRAM, discuss how the different spectral reflectance
of various landcover types justifies the importance of a landcover-
specific calibration, and present a comparative analysis of the
landcover-specific calibrated OPTRAM.

2 Theoretical background

Sadeghi et al. (2017) derived OPTRAM based on the physical
relationship between surface soil moisture and SWIR reflectance.
OPTRAM calculates soil moisture θ as:

θ � θd + θw − θd( ) STR − STRd

STRw − STRd
(1)

where STR represents the SWIR transformed reflectance, and STRd

and STRw are STR at the dry edge (θ = θd) and wet edge (θ = θw),
respectively. The relationship between STR and SWIR reflectance,
RSWIR, is expressed as follows (Sadeghi et al., 2015):

STR � 1 − RSWIR( )2
2RSWIR

(2)

Assuming a linear correlation between soil and vegetation water
content, it is anticipated that the NDVI and STR will form a
trapezoidal data cloud, where drier pixels are located at a lower
position and wetter pixels are located at a higher position on the data
cloud. Fitting two lines to the lower and upper edges of the densest
part of the data cloud, the dry and wet edges are formulated
as follows:

STRd � id + sdNDVI (3)
STRw � iw + swNDVI (4)

where id and sd are the intercept and the slope of the dry edge,
respectively, and iw and sw are the intercept and slope of the wet
edge, respectively.

Accordingly, OPTRAM assigns a soil moisture value to each
pixel, considering its proximity to the dry and wet edges of the data
cloud. By combining Equations 1–4 and assuming θd = 0 and θw = θs,
where θs is the soil porosity, soil moisture for each pixel can be
estimated as a function of STR and NDVI as follows:

θ � θs
id + sd NDVI − STR

id − iw + sd − sw( )NDVI[ ] (5)

Considering Equations 3, 4, OPTRAM assumes that pixels with
identical NDVI values yield identical STRd and STRw values,
regardless of the vegetation type. However, the new approach
acknowledges that OPTRAM parameters (id, sd, iw, sw) are not
constant over the study area because STRd and STRw can vary
not only with NDVI but also with vegetation type. This leads to
diverse OPTRAM parameters at a constant NDVI for various
landcover types.

It is intuitively understandable that two different vegetation
types might have the same greenness at a certain vegetation density.
However, they can still have substantially different reflectance due to
their distinct canopy structure. This variability implies that sd and sw
may significantly vary with landcover types.

This landcover-specific variability is also the case for NDVI = 0,
where soil reflectance may vary not only with soil moisture but also
with soil texture and roughness (Huete, 2004). Here, we assume that
distinct landcover types most likely contain distinct soil types as
well. That is why different landcover types often show substantially
different soil reflectance when bare. Consequently, we propose
different id and iw values for different landcover types, assuming
they contain different soil types.
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FIGURE 1
Central Valley landcovermap based on the Cropland Data Layer (CDL) dataset. Red rectangles mark the locations of Butte County and the California
delta, which are used to compare the spatial resolution of soil moisture maps retrieved from OPTRAM-LS to SMAP-HB (reference) in Figure 6.
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3 Materials and methods

3.1 Datasets

This study focused on California’s Central Valley (CV), widely
known as an agricultural hub, producing nearly 80 crops such as
almonds, cotton, grapes, alfalfa, lettuce, walnuts, and tomatoes
(Sleeter, 2008). Beyond its agricultural significance, the CV
accommodated nearly 7 million residents by 2010 (Soulard and
Wilson, 2015). With a diverse mosaic of agricultural and urban
landcover types, we considered this region an appropriate test case
for exploring the effects of landcover variability on OPTRAM
performance. The following datasets were used in this analysis.

3.1.1 Sentinel-2
For the input variables NDVI and STR in Equation 5, we used

Multispectral ESA Sentinel-2 (S2) satellite to benefit from its high
spatial resolution (10 m for visible, 20 m for SWIR) and temporal
resolution (5–10 days) (Wang and Atkinson, 2018). We applied
atmospheric correction to ensure accurate surface reflectance and
used cloud-free S2 images acquired between 2015 and 2019. Clouds
were masked using the Quality Assessment (QA) band to generate a
precise bitmask. Observations at the red band (S2 band 4, 665 nm)
and NIR band (S2 band 8, 842 nm) were used to calculate NDVI,
(NIR − red)/(NIR + red), and the SWIR band (S2 band 12,
2190 nm) was used to calculate STR (Equation 2).

3.1.2 SMAP-HB
To evaluate OPTRAM’s performance, we initially considered in

situ soil moisture measurements. However, the scarcity of available
data in the CV substantially limited our ability to calibrate and
validate OPTRAM. Moreover, stations may not be located at the
actual irrigation points within croplands, leading to potential
discrepancies between soil moisture measurements and vegetation
response, introducing uncertainties in the spatial analysis. To
address this challenge, we used the SMAP-HB soil moisture
dataset, which is well-validated using extensive in situ
observation in the US (Vergopolan et al., 2020; Vergopolan et al.,
2021a; Vergopolan et al., 2021b). SMAP-HB maps soil moisture at
30-m spatial resolution by integrating original SMAP data, land
surface model simulations, and in situ soil moisture observations.
SMAP-HB spatial coverage over the CV enabled us to calibrate our
models for any part of the area.

3.1.3 Cropland Data Layer (CDL)
To obtain landcover information, we utilized the Cropland Data

Layer (CDL) dataset, generated annually for the continental
United States. This dataset was created based on satellite
observation and extensive agricultural ground truth data (Boryan
et al., 2011). Figure 1 shows the CDL landcover classification over
the CV used in this study. According to this classification, CV
encompasses over 20 distinct landcover types, with 12 predominant
ones covering approximately 80 percent of the area.

3.1.4 In situ soil moisture data
For further validation of OPTRAM, we used in situ soil moisture

data from the AmeriFlux and National Oceanic and Atmospheric
Administration (NOAA, 2024) networks. Given California’s sparse

soil moisture network, we incorporated stations from across the
state rather than focusing solely on the CV for validation. Soil
moisture data are available for only 16 out of 35 AmeriFlux stations
in California. Although data availability varied across these sites,
spanning from 2001 to 2022, our analysis was focused on the period
covered by the SMAP-HB data period (2015–2019). Consequently,
we excluded specific sites with temporal coverage outside this
timeframe, e.g., the US-Snd site, which had data available only
from 2007 to 2014 (Goulden, 2018). Similarly, stations with a
temporal coverage of less than 24 months, such as US-CZ2 and
US-CZ3, were not considered (Goulden, 2018). As a result, our
acquisition of AmeriFlux soil water content data led to a narrowed
dataset consisting of 4 sites, namely, US-Bi1 (Bouldin Island Alfalfa),
US-Snf (Sherman Barn), US-Ton (Tonzi Ranch), US-Var (Vaira
Ranch- Ione).

The NOAA (2024) network comprises sensors installed at
varying depths, ranging from 5 to 100 cm, across California.
These sensors cover different periods, spanning from 2005 to
2023. NOAA (2024) sites providing soil moisture data in
California are namely as follows; bve (Bridgeville), czc
(Cazadero), hbg (Healdsburg), hbk (Hornbrook), hld (Hopland),
lsn (Lake Sonoma), mdt (Middletown), ptv (Potter Valley), pvc
(Potter Valley Central), pvw (Potter Valley West), rod (Rio Nido),
rve (Redwood Valley East), rvn (Redwood Valley North), rvw
(Redwood Valley West), str (Santa Rosa), and wls (Willits). We
preferably used 5-cm data to evaluate OPTRAM-based soil moisture
estimates. In cases where this depth was unavailable (e.g., bve and
hbg sites), 10-cm data were used in our analysis.

3.2 Data analysis

We coded Equation 5 in the Google Earth Engine (GEE)
platform, where S2 and CDL data were already available. We also

FIGURE 2
SMAP-HB soil moisture estimates compared to in situ soil
moisture data from the NOAA (2024) and AmeriFlux
Networks, 2015–2019.
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uploaded monthly-averaged SMAP-HB data to GEE. OPTRAM
parameters (id, sd, iw, and sw) were obtained by least-square
fitting of Equation 5 to S2 NDVI and STR and SMAP-HB soil
moisture data. We obtained one set of parameters for the entire CV
for evaluating a CV-wide calibrated OPTRAM (OPTRAM-CV) and
one for each landcover type for exploring a landcover-specific
calibrated OPTRAM (OPTRAM-LS).

Using these calibrated parameters, moisture content was
estimated for both OPTRAM-CV and OPTRAM-LS approaches
at the original 10-m resolution for each image in the S-2 collection.
However, to derive the monthly mean values, we needed to account
for multiple images per month, covering billions of 10-m pixels
across the CV. Due to the computational limit of GEE for free
accounts, aggregating high-resolution soil moisture estimates at a
monthly scale was not feasible. To resolve this issue, we computed
the monthly mean soil moisture values by applying a mean reducer
at a 30-m scale over the region. The resulting soil moisture estimates
were validated using in situ and SMAP-HB data.

4 Results and discussion

Figure 2 compares SMAP-HB high-resolution soil moisture data
against available in situ observations in California. As observed,
SMAP-HB is well correlated with in situ observations, with a mean
R2 of 0.6 and an RMSE of 0.08 m3 m-3, which is larger than the
community- accepted level of error (0.04 m3 m−3). The observed
deviations could be due to uncertainties in the SMAP-HB inputs
such as topography, land cover, soil properties, and meteorological
data, the lack of representation of human activities, such as
irrigation, reservoir operation, groundwater pumping, and several
other reasons discussed by Vergopolan et al. (2020), Vergopolan
et al. (2021a); Vergopolan et al. (2021b). Nonetheless, SMAP-HB

captures the temporal dynamics of soil moisture at individual sites
well (shown later). This made us confident in using SMAP-HB as a
reliable high-resolution soil moisture dataset for evaluating
OPTRAM in California.

Table 1 lists the calibrated parameters for OPTRAM-CV (entire
CV) and OPTRAM-LS (individual landcover types). As seen, the dry
and wet edges for the entire CV are largely distant from each other,
mainly due to the high spatial variability of STR over the CV (e.g.,
high STR values in oversaturated rice fields versus low STR values in
dry zones of the CV). However, the landcover-specific edges are
much closer in most landcover types. While the dry edge shows a
marginal variability, the wet edge varies significantly in different
landcover classes. To better visualize this variability, Figure 3 shows
the STR-NDVI trapezoidal space in three example CV areas,
including rice fields, grasslands, and the entire CV. As observed,
the trapezoidal space is substantially different for different areas.
This emphasizes the importance of a landcover-specific calibration
of OPTRAM, as proposed here, and the extent to which one might
expect different results from OPTRAM-CV and OPTRAM-LS. For
example, satellite observation of STR = 5 in a grassland over the CV
would be interpreted as nearly dry soil moisture by OPTRAM-CV
but near-saturated soil moisture by OPTRAM-LS (see the first row
of Figure 4).

Figure 4 presents the OPTRAM-CV and OPTRAM-LS soil
moisture estimates compared to SMAP-HB as a reference. As
observed, OPTRAM-LS is significantly more accurate than
OPTRAM-CV. Across all landcover types, the root mean square
error (RMSE) is notably lower in OPTRAM-LS. For instance, in
grassland, a major landcover constituting over 20 percent of the CV,
and in winter wheat, another prevalent landcover type in the CV,
OPTRAM-LS brings the RMSE close to the community-accepted
level of error (0.04 m3m−3), while the error in OPTRAM-CV is more
than twice this level (0.09 m3 m−3). Except for rice fields, walnuts,
and pistachios, OPTRAM-LS provides reasonable soil moisture
estimates, with about 0.04–0.06 (m3 m-3) deviations from
SMAP-HB.

Figure 4 also indicates a generally higher correlation (in terms of
R2) between OPTRAM-LS and SMAP-HB than between OPTRAM-
CV and SMAP-HB. This enhanced correlation is evident across
most landcover types, including almonds, cotton, grapes, fallow idle
cropland, alfalfa, winter wheat, and rice fields. It is important to note
that OPTRAM with CV-wide calibrated parameters shows an
almost zero correlation with SMAP-HB in cotton and grape
landcovers, which constitute a small portion of the CV. However,
a meaningful correlation appears when this model is calibrated
specifically for these landcovers. This emphasizes the nonlinear
nature of OPTRAM, Equation 5, where different sets of model
parameters do not necessarily yield linearly correlated soil moisture
outputs. That said, there are other landcover types where changing
the model parameters led to a linear change in the OPTRAM soil
moisture estimates, resulting in the same R2 between OPTRAM and
SMAP-HB (e.g., shrublands and developed areas). Nonetheless,
OPTRAM-LS decreased the bias in these landcovers, as shown by
the decreased RMSEs. Figure 4 indicates that, despite the significant
improvement of OPTRAM through the landcover-specific
calibration, it still shows relatively large deviations from SMAP-
HB in some landcover types. This deviation is largely due to the
much simpler nature of OPTRAM compared to SMAP-HB, as the

TABLE 1 OPTRAM calibrated parameters for various landcover types in the
Central Valley, California.

Landcover Dry edge Wet edge

id sd iw sw

Developed area 0.61 0.00 7.70 0

Rice field 0.00 0.00 16.7 2.07

Grassland 0.59 0.00 4.17 3.52

Almonds 0.00 5.52 5.03 2.37

Shrubland 0.79 0.00 7.06 0.00

Pistachios 0.00 0.00 8.27 0.00

Cotton 0.00 0.00 3.29 21.90

Grapes 0.00 0.00 0.00 21.75

Walnuts 0.00 0.00 1.09 18.28

Fallow/Idle cropland 0.00 0.00 9.07 0.39

Alfalfa 0.21 3.73 4.34 2.80

Winter wheat 0.00 3.38 4.59 3.18

Entire Central Valley 0.55 0.00 25.65 0.00
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FIGURE 3
Variability of OPTRAM parameters (dry and wet edges) in three example areas of the Central Valley: rice fields, grasslands, and the entire
Central Valley.

FIGURE 4
Soil moisture estimates by SMAP-HB (reference), OPTRAM-CV and OPTRAM-LS from 2015 to 2019 for various landcover types over the Central
Valley, California. The solid lines represent the monthly mean values, and the shaded areas indicate the variability in estimates.
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former tries to estimate soil moisture solely from optical images,
while the latter integrates SMAP brightness temperature and
physically modeled soil moisture, which uses meteorological data,
soil properties, topography, and land cover as input.

The largest deviation between OPTRAM and SMAP-HB is in
rice fields. This deviation, however, could be due to not only
OPTRAM errors but also SMAP-HB errors. As observed, SMAP-
HB shows only one soil moisture peak in the wet season, while
OPTRAM exhibits two peaks, one in the wet season and another in
April and May. The OPTRAM time series is closer to our
expectations for rice fields in California. Farmers in Butte, Glenn,
Colusa, Sutter, and Yuba counties often start to saturate their fields
with flood irrigation at the beginning of May and drain around the
beginning of September. Winter flooded decomposition in many
rice fields brings another soil moisture peak. The timing and
locations of winter flooded decomposition may vary yearly
depending on weather and farming practices. As seen in
Figure 5, OPTRAM captured the distribution of winter flooded
decomposition in these counties in January and November 2018.
Although SMAP-HB has limitations in representing the high-
resolution spatial distribution of human-managed processes (e.g.,
irrigation, reservoir water release), it captures part of the effect

through lower-resolution SMAP soil data. That is why SMAP-HB
showed some increase in soil moisture in rice fields around May but
not full soil saturation. OPTRAM, however, captured the full soil
saturation because it could be clearly seen in the S2 SWIR images.

Figure 5 presents sample soil moisture maps in the CV based on
OPTRAM and SMAP-HB. As observed, significantly different
spatial distributions are shown by these two models. The most
notable observation from this figure is that SMAP-HB soil moisture
is much smoother than that of OPTRAM. By integrating higher
spatial resolution satellite observations, OPTRAM could better
capture the fine-scale variabilities between agricultural fields than
SMAP-HB. Although both methods have a nominal spatial
resolution of 30 m, SMAP-HB’s capability to capture such fine-
scale differences is hampered by the SMAP satellite’s large-scale
footprint. It yields a narrow range of soil moisture for large clusters,
where a high spatial variability is generally expected due to land
surface heterogeneity (see Figure 1).

The contrast in spatial resolution is more clearly highlighted
when comparing soil moisture maps from May, especially in the
Sacramento-San Joaquin Delta and rice fields of northern California.
OPTRAM detects many saturated and oversaturated pixels in these
areas, which are common due to abundant surface water. As

FIGURE 5
The spatial distribution of monthly OPTRAM, OPTRAM-LS, and SMAP-HB retrievals of surface soil moisture (m3m-3) over Central Valley, California, in
January, March, and May 2018.
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mentioned earlier, the high soil moisture values in rice fields are due
to flood irrigation, a common practice in California from May to
August. In contrast, SMAP-HB shows a smooth mid-level soil
moisture for the entire area with no saturated pixels. This
observation agrees with the patterns shown in Figure 4, where
SMAP-HB presents only one soil moisture peak in the wet
season, but OPTRAM exhibits one more soil moisture peak in May.

To better illustrate this, Figure 6 shows additional sample soil
moisture maps over the Delta area and some rice fields within Butte
County (see Figure 1). The true-color images of these areas are also
included, which shed light on the expected actual spatial resolution
of soil moisture. As observed, the spatial variability of OPTRAM is
well aligned with the true-color image. All the individual fields,
surface water pathways, and permanent water bodies are clearly seen
in OPTRAM but are barely distinguishable in SMAP-HB. This
demonstrates that OPTRAM is more accurate in capturing the
spatial variability of soil moisture.

Another observation in Figure 5 is that OPTRAM-CV is
generally biased toward drier soil moisture values compared to
SMAP-HB. As expected, OPTRAM-LS reduces this bias because

it was calibrated for each landcover class directly based on SMAP-
HB data. Figure 7 takes a closer look at the dry bias in OPTRAM-CV
in some sample areas, including grape vineyards within Fresno and
Madera counties (January 2019), grasslands within Tehama County
(April 2019), and shrublands in the northern CV (April 2019). As
observed, OPTRAM-LS and SMAP-HB consistently estimate wetter
soils than OPTRAM-CV in these areas. This dry bias in OPTRAM-
CV can be explained by the model parameters, which are not
representative when averaged out for the entire CV. As shown in
Figure 3, the CV-wide calibration of OPTRAM leads to a much
higher wet edge than expected for most landcovers, causing the
observed dry bias. Figure 7 emphasizes the importance of a
landcover-specific calibration of OPTRAM to achieve reasonable
soil moisture maps based on this optical remote sensing approach.

In Figure 8, remotely sensed soil moisture values from SMAP-
HB, OPTRAM, and OPTRAM-LS are compared with in situ soil
moisture measurements from the NOAA (2024) and AmeriFlux
Networks. As observed, SMAP-HB estimations exhibit a high
correlation with soil moisture measurements in all sites, with an
R2 greater than 0.8. Furthermore, its RMSE ranges between 0.04 and

FIGURE 6
True-color image, SMAP-HB and OPTRAM-LS retrieval of surface soil moisture over the rice fields of Butte County (May 2019) and the California
Delta (February 2019). Locations are indicated in Figure 1.
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0.09 m3 m−3, which is higher than community accepted error
(0.04 m3 m−3) (Entekhabi et al., 2014). As the source of these
errors have been discussed earlier, SMAP-HB remains a reliable
high-resolution soil moisture dataset.

The comparison between OPTRAM-CV and OPTRAM-LS to
the soil moisture measurements shows that in some sites, namely
czc, hbg, and pvc, OPTRAM-LS outperforms OPTRAM-CV by
exhibiting a higher correlation with in situ measurements as well
as a lower RMSE. However, at some other sites, namely bve, rod,
rve, and wls, OPTRAM-CV performs better than OPTRAM-LS.
In general, the difference between OPTRAM-CV and OPTRAM-
LS is marginal in this case. This is mainly because OPTRAM
generally shows poor correlations with in situ data. This reflects
that only drastic soil moisture changes and large-scale patterns
can be seen in the optical images, while many local variations,
such as irrigation effects on soil moisture, remain hidden in the
optical images. Accordingly, OPTRAM is expected to work

beyond a certain spatial resolution and fails at very high
resolutions, where many other variables than soil moisture
(roughness, canopy structure, lighting, image quality, etc.) can
change the optical reflectance.

The higher SMAP-HB performance, in this case, suggests that
OPTRAM’s performance can be improved by feeding it with other
independent variables than just optical reflectance data (e.g.,
precipitation, low-resolution SMAP soil moisture, etc.) or by
applying techniques to minimize noise in the optical reflectance
data caused by non-soil moisture variations such as canopy
dynamics, cloud cover, and shadows.

5 Conclusion

In this paper, we examined the possibility of using Sentinel-2
optical reflectance data to map soil moisture in California’s Central

FIGURE 7
OPTRAM, OPTRAM-LS and SMAP-HB estimates of surface soil moisture for some sample landcovers within the Central Valley, including grapes in
January 2019 and grassland and shrubland in April 2019.
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FIGURE 8
Remote sensing estimated soil moisture (SMAP-HB, OPTRAM-LS, OPTRAM-CV) compared to in situ soil moisture data from the NOAA (2024) and
AmeriFlux Networks.
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Valley (CV) via the OPTRAM approach. We initially calibrated
OPTRAM for the entire CV (OPTRAM-CV) and then studied the
extent to which a landcover-specific calibration (OPTRAM-LS) can
improve the general performance of this model. We used the well-
validated SMAP-HB dataset as a reference in our evaluations.

One major finding of this study is that the landcover-specific
calibration could significantly improve OPTRAM performance
over the CV, owing to the fact that CV is a vast area with a diverse
array of landcover types. In general, OPTRAM-CV showed a dry
bias compared to SMAP-HB, whereas OPTRAM-LS narrowed
down this bias. This error is due to the CV-wide calibrated
parameters, which were not representative of individual
landcover types. In particular, the CV-wide calibration led to
a much higher wet edge than expected for most landcovers, which
caused the dry bias.

Another major finding of this study is the importance of
optical remote sensing in producing high-resolution soil
moisture data. SMAP-HB was shown to be a reliable and
accurate dataset in terms of the temporal dynamics
(seasonality and inter-annual variability) of soil moisture.
However, the coarse SMAP resolution (36 km resampled to
10 km) hinders SMAP-HB’s capability to capture local-scale
irrigation and diverse crop types. In contrast, OPTRAM
explicitly accounts for these variables through Sentinel-2 high-
resolution images. Hence, while SMAP-HB provides a
sophisticated and more accurate approach for soil moisture
estimates every 2–3 days, OPTRAM can be considered a less
demanding and more spatially representative alternative for
monthly scale soil moisture variations.

Higher SMAP-HB accuracy in this study suggests further
research to increase OPTRAM performance by accepting other
independent variables, such as precipitation or SMAP soil
moisture. How to integrate these additional variables into
OPTRAM’s semi-analytical formulation remains a question for
future research. In addition, more specified OPTRAM calibration
strategies, for example, for individual soil textures, can be studied to
further improve its accuracy.
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