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Current streamgaging processes for river flow rate estimation are typically slow
and often hazardous, leading to inadequate coverage across national waterways.
This paper presents a semi-autonomous aerial monitoring system that is
designed for rapid river flow gaging, building upon a recently developed
sensor package that is mounted beneath a small uncrewed aerial vehicle. This
package consists of, among other instruments, a mid-wave infrared camera that
can be used to detect minute thermal variations in the water surface, from which
a particle image velocimetry algorithm is used to extract flow estimation. The
design and testing of this sensor package and velocimetry algorithm for field
evaluation are discussed, and a simulation environment facilitating the
development of algorithms for automatic a priori and live-adaptive vehicle
trajectory planning is presented. The simulation environment captures a
physically based approximation of vehicle flight characteristics, contains digital
terrain models of field test sites, and incorporates water surface flow maps
generated from numerical flow simulation data and real-world measurements.
Field and simulation results are presented validating the design of the sensor
package and the use of simulation as a digital twin for aerial streamgaging
development. This framework and the lessons learned to date lay the
foundation for accelerated improvements in waterway measurement for both
routine and disaster response purposes requiring rapid deployment in novel
locations.
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1 Introduction

Remote aerial surveys at roughly kilometer scale are a growing area of Earth science
interest between relatively low-resolution, semi-static orbital imagery and live but sparse in
situ ground-based data collection. These are particularly valuable in scenarios such as either
disaster response requiring rapid deployment or observation of dynamic phenomena which
may benefit from reactive changes in observation plans mid-mission.

Frequently, aerial platforms at this scale consist of quadrotor, hexrotor, or small fixed-
wing uncrewed aerial vehicles (UAVs) carrying payloads between 4–10 kg. These are
typically launched and controlled by a nearby operator who can preview and provide
preliminary validation of collected data before choosing the next launch site or further
laboratory post-processing. Given the relatively short 10–30 min flight times of such
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vehicles and the labor-intensive nature of both piloting and
reviewing data returns, varying levels of assistive autonomy such
as automated reactive trajectory refinement or waypoint selection
are highly desirable to make the best use of limited time
and personnel.

One type of data collection with the potential to strongly benefit
from small UAV surveys is that of river stream flow monitoring, an
important effort conducted across the United States by the US
Geological Survey (USGS) that is tasked with nationwide flow
observation in support of ensuring continued adequate water
supplies, mitigating flood risks, monitoring active floods, and
preserving aquatic ecosystems. This process currently relies on a
network of approximately 8,500 streamgaging sites (visualized in
Figure 1) that are costly to maintain and often involve potentially
hazardous, labor-intensive tasks such as wading and frequent small
boat operations. Furthermore, despite this apparent breadth, there
remain immense gaps in coverage of waterways with a recent study
by Andrews and Grantham (2024) reporting that barely 8% of rivers
in California are monitored. Aerial streamgaging from small UAVs
would enable faster flow measurements over wider areas with
fewer hazards.

This paper describes the development and early field trials across
two design iterations of the River Observation System (RiOS), a
small UAV payload for non-contact aerial stream flow
measurement. The measurement technique applied is an image-
based optical flow process that uses an onboard thermal camera to
track the motion of minute thermal variations on the water’s surface.
This surface flow rate is used as a critical component of (or proxy
for) total waterway discharge or volumetric flow rate, the target
measurement in the streamgaging process. The field trials verify the
payload design and further validate this flow estimation technique
that was previously demonstrated in stationary and larger aircraft
use cases. Benefits and limitations of the current system are
discussed, along with the path towards a lower-cost rapidly
deployable system usable by field scientists and technicians
without specific expertise in either optical flow sensing or
uncrewed aircraft operations.

This paper also describes RiOS-Sim, an accompanying software
simulation system that was developed based on the Robot Operating

System (ROS) framework to aid in predicting performance under
varying field conditions and optimizing field operations plans. Due
to the many costs of real-world UAV field trials, simulation is a
valuable tool for both developing autonomy algorithms as well as
evaluating the expected performance of a system in yet-unseen
environments. This is of great use when such environments are
inconveniently located or infrequently present (e.g., for disaster
response). The architecture of this simulation environment is
detailed, along with ongoing work on autonomous decision-
making for route finding.

1.1 Related work

1.1.1 Small uncrewed aircraft in earth science
Since the proliferation of UAVs for civilian use in the late 2000s

(Nex and Remondino, 2014), the Earth science community has
quickly recognized and embraced the value of small UAVs in field
investigations (Koh and Wich, 2012). The many appeals include
rapid deployment, wide site overviews, fast motion and ever-
improving payload capacity, cost, and flight times. Initially,
applications focused on aerial photography for land studies and
construction of digital terrain models (DTMs) (Niethammer et al.,
2012). However, applications quickly branched out to areas of
hydrology including shoreline assessment (Mancini et al., 2013),
river bathymetry (Zinke and Flener, 2013), and flood monitoring
(Perks et al., 2016).

1.1.2 Optical and aerial stream flow estimation
Due to the hazards and labor intensiveness of manual stream

flow measurement, non-contact streamgaging methods have
been long sought after, and techniques involving specialized
stroboscope instruments (Rantz, 1982) and doppler radars
(Costa et al., 2006) have been demonstrated with some
success. Direct visual determination of surface flow by
observing the motion of artificial tracer or marker objects
placed on the surface is possible (Harpold et al., 2006), but
also labor intensive and potentially pollutive. More recently,
purely passive vision-based approaches have shown promise,
such as particle image velocimetry (PIV) which tracks the
apparent motion of a set of virtual particles on the water
surface across frames of an aerial video sequence using
contrast introduced by surface perturbations, ripples, or
incidental natural tracers such as foam or debris (Raffel
et al., 2018), albeit with less reliability and greater noise than
artificial ones (Biggs et al., 2022). With adequate resolution and
highly favorable lighting conditions, this process may be
performed on typical visible-light camera imagery (Muste
et al., 2008), but much more reliable performance has been
demonstrated using thermal infrared imagery with a noise
equivalent temperature difference (NETD) sensitivity below
20 mK (Kinzel et al., 2024). We therefore adopt such a
camera in our UAV payload design.

Velocimetry from fixed camera stations on channel banks
providing oblique imagery has been used with success
(Schweitzer and Cowen, 2021), however periodic in situ
streamgaging is still necessary to validate stage-discharge curves
or when channel heights may change (Braca, 2008). Aerial

FIGURE 1
Screenshot of USGS streamflow stations across the continental
United States. Interactively available at https://dashboard.waterdata.
usgs.gov.
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measurement from UAVs provides advantages including
approximately nadir viewpoints of consistent areal resolution and
the ability to cover wider rivers given sufficient altitude.

Surface flow velocity alone is insufficient to estimate total
waterway discharge, or volumetric flow rate. Rather, at any cross-
sectional slice of the waterway, this is comprised of a surface-to-
bottom flow rate curve, integrated across the width of the channel,
which may also vary in depth. Recent studies have confirmed a small
range of correction factors provide reasonable translation between
surface flow velocity and depth-averaged velocity at any one point in
a river (Duan et al., 2023), with a constant factor often assumed for
simplicity (Rantz, 1982) though more elaborate models may prove
substantially more accurate (Biggs et al., 2023). With a cross-section
of depth-averaged velocity, bathymetric depth information is needed
to complete the integration. This may be known directly if the
waterway is an artificially constructed one (e.g., a concrete channel),
from prior topographic maps if the cross-section is stable, or from
any of several survey techniques such as echosounders, water-
penetrating laser rangefinder (LIDAR) (Kinzel and Legleiter,
2019), or radar (Lane et al., 2020).

1.1.3 Vehicle and environmental simulations
As UAV missions grow increasingly complex, particularly with

the incorporation of autonomy capabilities, simulations have
become a critical part of validating vehicle behaviors and
operational performance. Tightly coupled simulations involving
high-fidelity vehicle physics, environmental modeling, sensor
measurements, and control software intended to mirror physical
counterparts - known as Digital Twins (DT) - are a “holy grail” of AI
and robotics (Attaran and Celik, 2023). DT enable high-throughput
debugging, hardening for robustness, and optimization with the
power of computing, while minimizing the significant time and cost
of deploying hardware for field testing. NASA pioneered the DT
concept during the Apollo era (Attaran and Celik, 2023), and now
uses modern, high-fidelity simulators to drive the development of
missions such as RPSim for Lunar exploration (Allan et al., 2019),
OceanWATERS for icy worlds (Dalal et al., 2024), and DARTS for

Mars (Jain, 2020). In the UAV community, notable simulators
include RotorS for micro aerial vehicles (Furrer et al., 2016),
Hector for quadrotor vehicles (Meyer et al., 2012), and the now-
defunct AirSim for AI research (Shah et al., 2018). Many of these
examples are built on the popular open-source ROS/Gazebo
framework (Koenig and Howard, 2004), and this paper continues
this trend by levering the previously mentioned Hector work.
However, our RiOS-Sim is distinguished from prior works with
an approach that is tailored to UAV stream flow applications,
focusing on multi-modal sensing of the water surface with an
intelligent payload.

2 Materials and equipment

Guiding requirements for the RiOS UAV sensor payload were
dictated by a combination of regulatory restrictions,
organizational policies, industry best practices, and
consultation with both hydrological scientists and experienced
small UAV pilots who fly science missions. A number of collected
and distilled desirable properties soon became apparent. Among
the most important was for the payload to be platform-
independent and self-contained (providing its own power,
computing, and data downlink) to provide safety isolation and
portability between different UAVs. Another was for the payload
to contain an appropriate sensor suite, which for this application
came to consist of thermal and visible cameras, a LIDAR
rangefinder for scale recovery, and a satellite/inertial navigation
sensor for image stabilization and vehicle-independent pose
recording. This all must fit within a tight size and mass
envelope. A low-rate downlink provides for live data preview,
and full-rate onboard data logging permits more thorough
laboratory post-processing. Finally, a straightforward semi-
automated operation structure is desirable for field workload
reduction and eventual use by field scientists and technicians
with differing expertise. The overall system architecture settled
upon is depicted in Figure 2.

FIGURE 2
Overall UAV sensing payload system architecture and data flow.
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2.1 UAV airframe

With these guiding principles in mind, the selection of UAV
platform was primarily steered by the approximate size
(3,000–5,000 cm3) and total mass (2–3 kg) of the desired payload
sensors and an estimation of structural overhead. This coincided
well with a common class of aircraft used for field science data
collection, a previously popular model within the Department of the
Interior (DOI) being the DJI Matrice 600 (M600) hexrotor with a
maximum payload capacity of 6 kg. The choice of a rotorcraft over a
fixed-wing design was made due to the desire to loiter above
locations to collect relatively stable imagery sequences to
compute optical flow, plus the ability to readily adjust altitude to
vary the spatial resolution of collected imagery. Rotorcraft are also
more compatible with monolithic “slung load” payloads, whereas
much tighter integration of sensors into the body of a fixed-wing
aircraft would be more typical.

The M600 was chosen as our target archetype platform due to its
long flight heritage for these purposes, its proven reliability, existing
pilot familiarity, availability of vehicles, and replacement components.
Its recent discontinuation by the manufacturer and tightening
restrictions on the use of foreign-produced UAVs by U.S.
government agencies affirmed the value of separating payload design
and operation from the airframe to aid transfer to future alternatives. At
this time, the M600 continues to be used, but domestic competitors
such as the Freefly Alta 6 are under evaluation by the DOI.

2.2 Payload hardware

Payload component selection was heavily influenced by
compatibility of typical specifications such as size, weight, and
power (SWaP) with the tight mass and volume constraints on
what can be carried by a small UAV, as well as the results of
prior field experimentation by partner hydrology scientists.

On the basis of this input and motivated by results from prior
publication on thermal flow estimation (Section 1.1.2), a thermal
camera designed for mid-wave infrared wavelengths (3–5 μm) with
sensitivity below 20mKwas selected. Reliably achieving this requires
an actively cooled sensor to reduce thermal noise, as available
uncooled cameras at this time have sensitivity more typically
above 25 mK. The Mirage 640 camera from Infrared Cameras
Incorporated with an integrated Stirling cryocooler, which is
based on the FLIR Neutrino core with a 640 × 512 Indium
Antimonide (InSb) detector and an NETD sensitivity of less than
12 mK, met these requirements. Paired with an 11 mm lens
providing an approximately 90° horizontal field of view, the
camera has a mass of less than 850 g and consumes below 8 W.
While within the probable budget of likely future science customers
and field missions, this is the dominating component for cost and
mass within the payload, and ongoing work collecting data in
parallel with alternative cameras seeks to determine more
precisely whether smaller uncooled cameras may provide
adequate performance under a sufficient proportion of field
circumstances. Another potential direction of simplification are
the 30 Hz maximum frame rate and industrially-rated
measurement range of −55°C to 350°C, which far exceeds any
operational needs for natural waterways.

An accompanying high-resolution visible light camera was
selected to provide context imagery as well as serve as another
potential source of optical flow data. The chosen Allied Vision
Technologies Mako G-503C color camera contains a 2,592 ×
1944 CMOS sensor and is paired with a 4 mm fixed-focus lens
to provide an approximately 71° horizontal field of view with a
combined mass of 150 g while consuming less than 2 W.

The focal lengths for these two cameras were selected as a
compromise between the competing goals of attempting to
maximize areal resolution to provide the clearest imagery for
optical flow computation (motivating a narrow field of view)
and attempting to maximize the observed portion of a river
channel below to reduce the number of observation locations
required to accumulate a full flow field estimate (motivating a
wide field of view). Variable zoom lenses were dismissed as an
option owing to their substantially larger size and fears that
vehicle vibration might affect zoom stability. Ultimately,
following an iterative evaluation process, commercially
available lenses were selected that provided a full view of the
entire river width at the flying altitudes used during the field
evaluation.

To assist with scale recovery, needed to translate flow rates from
image pixel coordinates to physical distances, a single-point LIDAR
was also included to serve as an altimeter. Under assumed level
orientation during dwell periods and locally flat terrain within the
camera field of view (i.e., river water surface), a single scale factor
may be applied to all flow estimates across the image. To fulfill this
role, a Laser Technology Incorporated TruSense S200 was chosen,
providing 4 cm accuracy at up to 750 m distance, while occupying
100 g and consuming less than 2 W. Operating at a wavelength of
905 nm, this device should reliably measure distances from the
reflection boundary at the surface of the water rather than
penetrating the water.

Likewise, to provide a self-contained and consistent source of
pose estimation to aid with image stabilization (a core step in optical
flow determination), a miniature device combining an additional
GPS receiver and an inertial measurement unit (IMU) consisting of
an accelerometer, a gyroscope, and a compass is included.
Combining satellite positioning and an inertial navigation system,
this is commonly referred to as a GPS-INS unit, though IMU is still
used interchangeably. For this purpose, a Vectornav VN-300 was
selected, which implements a combined pose filter specified to
provide absolute pose estimates with less than 0.5° orientation
and 1.5 m position error, from an underlying gyroscope and
magnetometer with claimed bias stability below 10° per hour and
0.04 mg respectively, placing it in the category of tactical-grade
microelectromechanical system (MEMS) IMUs1 while weighing 30 g
and consuming less than 1.5 W. While higher-accuracy angular
estimation would certainly aid image stabilization, positioning
accuracy is a non-critical parameter as it is only used to identify
the flow estimate grid cell corresponding to the center point of
incoming imagery.

1 https://www.vectornav.com/resources/inertial-navigation-primer/theory-

of-operation/theory-inertial - Introduction to Inertial Sensors [Accessed:

30 December 2024].
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An embedded computer was used to communicate with these
various sensors, record pre-processed data for later study, and
transmit preview data to the ground for review. A wide and ever-
evolving landscape of options is available, but once it was concluded
that live optical flow estimation would occur on the ground, for this
payload the choice was highly constrained by the need to record a
very high-rate data stream with relatively little need for onboard
computational power. As such, internal memory bandwidth, flash
memory write speed, and high parallel thread count support to
handle the many sensor data streams without data loss and with
minimal relative time jitter became the crucial parameters. Based on
this, the Hardkernel Odroid XU4 single board computer (SBC) was
chosen. This computer consumes a peak of 15 W and weighs 125 g
with its attached cooling fan.

A wireless transceiver is also included for live radio downlink
of our preview data for ground-side review visualization and any
desired field processing prior to landing. This link is also used for
control in the reverse direction to issue commands to the payload
such as to start and stop onboard data recording. As a balance of
performance and design simplicity, early testing determined and
later verified in field trials that commercial IEEE 802.11n 5 GHz
WiFi operating at maximum license-free power (1 W) would
provide sufficient range and bandwidth for typical operations.
To implement this, a RadioLabs Wave Stealth 802.11ac compact
transceiver was further included in the payload, with two
monopole “rubber ducky” antennas, each respectively placed on
opposite sides of the exterior of the payload enclosure for
maximum directional coverage. The selection of such common
commercial antennas permits simple replacement in case of
damage and leverages extensive industry experience and design
optimization, while more precise tuning for this application would
require highly specialized laboratory testing of the complete
vehicle and reduce the independence of the payload design
from the choice of airframe. During flight, the two antennas are
oriented outward on the horizontal plane and perpendicular to the
payload, positioning their radiation patterns to be strongest toward
the ground.

To supply power to these components, a custom power
distribution printed circuit board (PCB) was designed containing
two 5 V and 12 V step-down commercial Recom regulators, each

respectively providing up to 30 W. Given the potential sensitivity of
the onboard sensors, each output channel included separate
electrical noise filtering and current limiting for overload
protection. This isolation allows the system to continue operating
if one or more devices suffer a fault, minimizing lost time and data
while speeding diagnosis. Two Inspired Energy 14.4 V rechargeable
Lithium Ion batteries provide input, with one adequate for
operation, allowing hot-swapping of batteries or transfer to an
external power source without shutting down the system. These
batteries were selected for their existing certification and proven
flight heritage on the International Space Station, high energy
density (0.2 Wh/g), and internal monitoring circuitry that is used
to provide visual indication of charge level and battery state
telemetry recording by the power distribution PCB. With this
PCB having a mass of 150 g including heatsinking and each
battery 240 g, the overall power system represents a significant
contribution to overall payload weight.

These components were mounted within a prismatic frame
bordered by aluminum struts and a sturdy 1/8 in thick carbon
fiber plate to provide rigidity to maintain relative alignment
between sensors. The outer enclosure consisted of 1/16 in thick
carbon fiber panels with an additional cooling fan to provide
circulation and slight positive pressurization of the payload
interior to minimize dust accumulation during payload
operations. Various requisite power and data interconnect
cabling between components completed the design. Attachment
to the airframe was made via four rubber dampers to provide

FIGURE 3
Hardware realization of UAV sensing payload, version 1 showing the interior layout and the packaged exterior. Antennas are shown stowed and point
directly outwards during flight.

FIGURE 4
Side view of RiOS’s mass- and shape-optimized UAV sensing
payload, version 2 and its airframe mounting configuration. Antennas
are shown stowed and point directly outwards during flight.
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vibration isolation, with backup steel safety lanyards in case of
attachment failure. Overall, wiring and structure added nearly 2.8 kg
to the overall payload mass, leading to a focus on optimizing this
aspect of this design.

The overall payload in its first assembled iteration is shown in
Figure 3. The payload dimensions are approximately 26 cm ×
28.5 cm × 15.5 cm, for a total volume of 11,600 cm3. Total mass
including batteries is 4.6 kg.

This version of the payload was intended as a first prototype
and proof of concept. Following the success of this design in early
field trials, lessons learned were incorporated into a more
optimized “version 2” of the payload. The primary
optimization made was to reduce size and mass through more
compact mounting and tighter shaping of the outer payload
envelope. This was to improve flight time as well as reduce
vulnerability to buffeting by wind. All sensors and computing
are mounted across both sides of a single carbon fiber plate,
forming a central pillar and ensuring tight coupling in the
presence of any vibration, with the outer shell shaped to fit
tightly over these. With greater confidence in the overall
reliability of the payload, a significant simplification of the
power distribution system was undertaken, removing per-
channel isolation and power telemetry reporting, while
switching to lower-cost and lighter-weight lithium-polymer
batteries now mounted on the top of the airframe to further
shrink the payload itself. While this latter modification does
represent a trade-off in ruggedness and available state

information, the reduction in power system SWaP and
assembly effort has so far proven worthwhile. Finally, a novel
airframe attachment system was introduced that consists of a
single-point quick release (Alta X Short Quick Release Mount
combined with a Toad in the Hole M4 Quick Release Receiver),
directly compatible with the Alta X payload connector and
requiring only a small adapter for the M600. This significantly
reduces field preparation and teardown time compared to the
4 bolts required for the version-1 payload.

The version 2 payload assembly is shown in Figure 4. Overall
dimensions are approximately 18 cm × 14.5 cm in breadth,
narrowing to 13 cm × 9 cm for the proximal 6.5 cm of its
24 cm total height, for a total volume of 5,500 cm3. Total
mass including batteries is 3.6 kg.

2.3 Field ground station

A ground station provides the interface between the UAV
payload and any ground-based field computers that may be used
for live processing and visualization. It also provides centralized data
recording and pre-processing of downlinked data. It consists of a
waterproof hard case containing a modified high-power commercial
WiFi router, breakouts to an external power source and external
antennas, and a small embedded computer. This router bridges two
network segments: a wireless side communicating with the UAV
payload, and a wired network to which the small embedded

FIGURE 5
Deployed ground station (A) and payload to ground communication architecture (B).
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computer is connected along with an additional port for any desired
number of field computers. Typically, at least one laptop would be in
use to view a live preview of collected imagery and to generate
approximate PIV flow measurements from this to guide operational
decision-making and the UAV flight path. For simplicity and
compactness, the internal computer selected was another Odroid
XU4 identical to that in the payload, however arbitrarily more
powerful computing could be used, up to the limits of available
electrical power and thermal cooling capacity. In its present use, this
computer offers a central point of continuous logging of downlinked
data and an optional data relay function so that only one copy of any
data needs to be wirelessly downlinked for any number of attached
field computers.

Attached to the ground station are two RadioLabs dual-band
2.4 GHz/5 GHz WiFi directional patch antennas with 12 dBi peak
gain, each with a 35° beam half-width at 0 dBi along both the
horizontal and vertical axes. These are placed on portable tripods
near the ground station and each is attached with two coaxial cables,
providing an overall 4 × 4 multiple-input/multiple-output (MIMO)
configuration–that is, four simultaneous input channels and four
simultaneous output channels–for improved transfer bandwidth
and signal sensitivity.

The assembled device with attached antennas as typically used in
the field is shown in Figure 5A.

3 Methods

The sensor hardware payload and its contents were subjected to a
progressive sequence of validation and evaluation during development,
consisting of characterization, integrated bench testing, flight
airworthiness trials, and first tests of field science data collection.

In conjunction with this, a complementary simulation
environment was developed to act as a digital twin for purposes
such as mission planning and visualization, aircraft motion planning
and decision-making algorithm development, and studying varying
scenario parameters or introducing varied sensor uncertainties
or anomalies.

3.1 Pre-flight payload testing

Prior to any flight use, payload components underwent
several straightforward but critical assessment steps. After
adjusting and securing lens focus and aperture settings,
intrinsic camera calibration parameters (precisely quantifying
focal length, center of projection, and lens distortion
coefficients) were computed using the OpenCV toolkit
(Bradski, 2000) from collected image sequences of varying
angles of a checkerboard-patterned target. These parameters
are required for accurate simulation modeling, image
rectification, and for any purposes requiring translation of
image coordinates and physical metric distances, including
flow estimation. As this needed to be performed for both the
visible and thermal cameras, a suitable target providing
adequate contrast (sharply spatially varying temperature)
between sections of the pattern was required. Some solutions
have been previously proposed for this nontrivial problem (Liu

et al., 2018), but the most robust and expedient was to use a
commercially available target obtained from the company
calib.io2 consisting of high contrast alternating black squares
printed on a low thermal conductivity and high thermal
capacity substrate. To create the thermal difference between
black and white squares, the target had to be exposed to direct
sunlight for several minutes before calibration.

A number of custom wire harnesses of precise lengths and
having particular endpoint connector types were needed for
interconnection between components, and these were
completed and inspected to the NASA-STD-8739.4 (NASA,
2016) agency standard, with soldering performed to the IPC
J-STD-001/S (IPC, 2020) industry standard. Although not
strictly required, this streamlined organizational approval
processes and served to avoid any potential re-inspections
during flight validation. Joint component electrical compatibility
and overall power load testing were then performed as part of a
burn-in test campaign, in which the payload was left to run for
extended durations in different modes. This verified properties
such as a lack of signal interference between components, adequate
power availability for each, system software stability, and thermal
performance demonstrating adequate cooling. Finally, overall
mechanical integrity of the payload was checked by ensuring
the tightness of all fasteners and the presence of anti-loosening
measures (such as a threadlocker, lock washer, or locknut),
repeating overall weight measurements, and confirming the
center of mass lay near the geometric center of the horizontal
plane to prevent vehicle imbalance during flight.

3.2 Software processing

At its core, the software architecture of the payload is designed to
maximize onboard data collection while providing a reduced wireless
downlink for live preview and approximate flow estimation. For
implementation simplicity, modularity, and future maintainability,
the onboard software is constructed as a collection of task-isolated
ROS nodes with associated ROS topics and sensor hardware drivers. A
ROS node is a small software process within the ROS framework,
while a ROS topic is a communication data stream that can be
broadcast to any other ROS-enabled device on the same network.
Each connected sensor utilizes a ROS node, which wraps a lower-level
device-specific software driver interfacing directly with the respective
hardware component and broadcasts a data stream on a
correspondingly named ROS topic. A logging ROS node is used to
accumulate all data streams into a single ROS bag file for each flight
for later laboratory study offline. A separate ROS “throttle” node was
run to receive and rebroadcast the higher-rate sensor data streams at a
lower rate, e.g. dropping image frames, for wireless downlink. A single
ROS launch script is used to activate and stop all nodes, which in turn
is executed by a top-level startup script that also records several
measures of system health telemetry such as internal temperatures,
wireless signal strength, and (on the version-1 payload) power system

2 https://calib.io/- Camera Calibration Boards, Targets and Software by

Calib.Io [Accessed: 16 December 2024].
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telemetry. For the ground side, the ground station’s embedded
computer subscribes to the “throttle” node’s data streams. A bridge
service transfers these to a separate locally-running ROS network so
that any field computer may in turn subscribe without duplication
over the limited-bandwidth wireless link. This overall architecture is
summarized in the top portion of Figure 5B.

This onboard data recording alone is sufficient if execution of
purely exhaustive or pre-specified flight paths and offline flow
estimation are adequate, but live ground-side processing was
implemented to demonstrate realtime flow estimation and
adaptive flight path decision making. Whether live or offline, the
essential process of PIV consists of comparing two images A and B
of the same portion of a fluid channel at time ti and ti + Δt
respectively, identifying prominent feature points in A, tracking
their individual displacements in B (typically via a windowed image
cross-correlation maximization process), and estimating the
physical velocity of each as the computed displacement divided
by Δt, scaled by the physical distance encompassed by each pixel
(estimated using the LIDAR-reported distance to the water and
which for an orthogonal view of a plane is approximately d/f for
distance d and camera focal length f). While dwelling at a given
location, this process is repeated and averaged over multiple image
pairs for improved field density and reduced signal noise assuming
short-term flow consistency. Nevertheless, gaps in the resultant flow
field may appear where inadequate texture or sun-glint prevented
feature tracking between images or where low flow rates result in no
observable image displacement. In all cases, a pre-processing image
stabilization step based on water’s edge fixed ground features
(i.e., river banks) applies an affine warping of image B onto A to
remove any apparent motion due to any UAV pose change. Purely
IMU-based stabilization, which applies a warping based on the
reported angular displacement between image pairs, was initially
explored but discarded due to excessive noise and drift of the
selected IMU. This technique would however enable flights without
the constraint of having stable features in the camera’s field of view.
The software implementation used for this overall process was the core
of TRiVIA toolbox published by collaborators Legleiter and Kinzel
(2023). A proof of concept implementation was developed to
demonstrate live PIV estimation onboard the payload within
the ROS framework (Legleiter and Dille, 2024), but long
computation times resulted in the early decision to instead
optimize onboard hardware selection for fast data recording.

For live vehicle motion decision making, the “pre-planned” and
“adaptive-time” planning strategies developed in simulation and
detailed in Section 3.4.5 were tested and compared, which
respectively optimize the PIV observation location sequence and
adaptively adjust the time spent dwelling at each location, both with
the goal of minimizing the mission time required to cover
a given area.

3.3 Field flight trials

An iterative test campaign spanning over 4 years has been so far
undertaken to validate the functionality and performance of the
UAV payload, consisting of shake-down tests at local open field sites
near the University of California at Santa Cruz (UCSC) and
University of California at Berkeley, plus four annual data

collections at a high science interest site near Hartley Island on
the Sacramento River. First steps required securing site access
permissions, which for shake-down tests entailed a permit from
the university and for the annual data collections involved
coordination with collaborating National Oceanic and
Atmospheric Administration (NOAA) scientists simultaneously
making use of the site via the property owner, The Nature
Conservancy. Federal Aviation Administration (FAA) regulation
(U.S. Code of Federal Regulations, 2022) permits licensed pilots to
fly within Class G (uncontrolled) airspace up to an above-ground
altitude of 400 ft. This was adequate for initial shake-down flights,
but an FAA Certificate of Authorization (COA) was procured
permitting higher altitudes up to 1,200 ft, as these were desired
in later tests to capture views of the entire river breadth. Operations
and payload safety were further regulated by the DOI National
Uncrewed Systems Office (NUSO) guidelines specifying
requirements such as limitations on weather conditions, visual
line of sight rules, signal strength minimums, operator
certification, and flight crew teaming processes. Key among these
are the need to keep the aircraft within view and the use of a two-
person minimum flight crew consisting of the operating pilot and a
visual observer tasked with “heads-up” monitoring of the aircraft
and the surrounding environment and recording of flight logs.
Further written Project Aviation Safety Plans (PASPs) approved
by respective agencies documented field personnel certifications,
aircraft registrations, hazard risk assessments, and emergency
procedures. Notice to Airmen (NOTAM) filings were made
during periods of flight operations to inform other potential
airspace users. The operating pilot had the training and authority
to determine if environmental conditions were safe for flight. During
all field tests, the weather cooperated, and no tests were canceled due
to adverse conditions such as rain or strong wind. The pilot also
designated clearly marked takeoff and landing areas, free of
vegetation or other obstacles and at a safe distance from
ground personnel.

For the four campaigns on the Sacramento River, data were
collected from a series of pre-determined, manually selected
waypoints corresponding to equally-spaced river cross sections
of interest. These waypoints were chosen to capture potential key
features of the river’s hydrodynamics and flow conditions. For
these flights, up to three ground-side computers were used. For
initial trials, only a single computer was needed, running a live
command-line terminal window connected over the wireless link
to the payload through which commands to execute the ROS
launch scripts could be issued, data logging could be selectively
activated to reserve disk space for only relevant flight segments,
and measures of live system health could be observed. Live image
stream viewers subscribing to either the visible or thermal camera
ROS topics provided situational awareness and were available to
the UAV pilot when desired. Later flights incorporated an
additional laptop running the live PIV estimation software that
subscribed to each of the ROS topics and published resultant local
flow fields that were also visualized for immediate review. Final
flights added a third laptop running the live UAVmotion planning
software that subscribed to receive these flow fields and IMU data
for live position information to determine optimized waypoint
sequence and dwell time selections. A waypoint visualizer
displayed this information on a satellite map for review and
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pilot direction. These ground-based computers are depicted in the
lower half of Figure 5B and effectively corresponded to personnel
roles comprising a payload operator, science data monitor, and
autonomy director. This required considerably more equipment
and larger teaming than would be expected in future operational
use but proved valuable in these earlier stages of iterative system
development and evaluation.

Additional specifics of the field test campaign and observations
and lessons from these flights are summarized in Section 4.2.

3.4 Simulation architecture

Even though field experiments provide the best real-world data,
they are costly in terms of time, travel costs, and wear on the

hardware. Additionally, hardware deployment of untested novel
algorithms for path planning and navigation poses additional risks.
For these reasons, a physics-based simulation was created to
facilitate the development and evaluation of new algorithms
before their deployment in the field. Development was driven by
the requirement of controlled and directed UAV flight over a digital
representation of real-world test sites while collecting PIV flow data.
This simulation, named RiOS-Sim, is built around the ROS1/
Gazebo-classic framework, the core of which is shown in Figure 6.

Themain building block of RiOS-Sim is the Gazebo open-source
3D robotics simulator, which provides a physics engine, 3D
rendering, and support for sensor simulation and actuator
control. Gazebo was chosen for its heritage in several NASA
projects, its community support, and its close integration with
the ROS ecosystem, which is already in use on the physical

FIGURE 6
Core simulation hardware architecture.

FIGURE 7
Gazebo’s user interface with a terrain model representing a section of the Sacramento River.
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payload. Plugins are added to the core simulator to enable specific
capabilities, such as UAV dynamics simulation.

A key step of the RiOS concept is the collection of images of the
water surface, which are then passed to a PIV workflow to generate
estimates of the flow. Recreating this step in RiOS-Simwould require
either a realistic river flow simulation, which is outside the core
capabilities of Gazebo, or a pipeline for synthetic imagery
generation. Given that the core objective of the development of
RiOS-Sim is to test UAV navigation algorithms and not to validate
the PIV-collection process, it was decided to abstract the image
collection and PIV calculation using an external, pre-calculated flow
lookup table. In-depth details of this process are provided in
Section 3.4.4.

3.4.1 Robot description
The UAV and payload structures are modeled using Gazebo’s

Unified Robotics Description Format (URDF), with the aid of Xacro
(XML Macros). The kinematic structure and inertial properties are
derived from CAD models and real-world mass measurements.
Realistic 3D meshes for the UAV and payload are also extracted
from CAD, simplified to reduce the polygon count, and converted
to the Gazebo-friendly COLLADA format. Collision volumes are
simplified using geometric primitives (cylinders for the landing gear
and a cube for the payload), since, during nominal operations, contacts
with the environment are only expected while on the launch pad.

3.4.2 Terrain model
The terrain is modeled using Digital Elevation Models (DEM),

representing either synthetic terrains or real-world locations.
Synthetic terrains are used to test specific scenarios or for unit
testing of the simulator’s components. DEMs of the RiOS field test
site were obtained from USGS, converted to GeoTiff format using
gdal (Geospatial Data Abstraction Library), and imported into
Gazebo as models. Aerial imagery is used as texturing for the
terrain models (Figure 7). Rivers are modeled as static elements
and their surface is part of the DEM.

3.4.3 Payload sensors
The modeling of the payload instrumentation takes advantage of

Gazebo’s built-in sensors. The internal IMU is modeled with a Gazebo
IMU sensor, with added Gaussian noise based on datasheet
specifications. The LIDAR altimeter uses a Gazebo ray sensor, with

one horizontal sample pointed toward the ground. Noise is added based
on datasheet specifications. Since a GPS sensor model is not available in
Gazebo, RiOS-Sim uses a modified P3D plugin (https://wiki.ros.org/
gazebo_ros_pkgs) to get ground truth 3D pose information. Gaussian
noise is added to this reading to simulate position uncertainty of our
payload’s commercial-grade Vectornav GPS receiver. The output
coordinates of the modified P3D plugin, in local Gazebo World
coordinates, are converted to a Vectornav Ins message containing
the current latitude, longitude, and altitude. Cameras are added to
the payloadmodel but at this stage of the project are only used for visual
feedback/debugging. The visible camera is modeled with a Gazebo
camera sensor and appropriate distortion model coefficients calculated
from physical camera geometric calibration. Gazebo does not have a
built-in thermal camera sensor. The implementation of a dedicated
infrared sensor plugin was considered but discarded early on, given the
project’s choice to use flow lookup tables to abstract the PIV process in
RiOS-Sim. The thermal camera is therefore also modeled as a normal
visible-light camera.

3.4.4 River flow and PIV collection
In the ideal scenario, a simulator should simulate all the steps

of a given process. In the case of RiOS-Sim, this would mean
taking images of a time-evolving simulated river surface.
However, flow modeling simulation is outside the basic
capabilities of Gazebo. While there have been some interesting
efforts to implement fluid dynamics in Gazebo [for instance
Angelidis et al. (2022), Bingham et al. (2019)], their level of
realism was deemed insufficient to produce valid aerial images
that could be used in a PIV workflow. Some other approaches
such as synthetic flow image generation have been considered for
future work.

RiOS-Sim abstracts the PIV workflow through specific requests
to external, pre-computed flow lookup tables, as shown in Figure 8.
The framework necessary to mock PIV measurements at a specific
location is composed of the following components:

• A GroundLocator plugin, which calculates the corner
coordinates of the area on the ground that is currently
being imaged by a camera.

• A Flow Lookup Table, generated offline, which contains the
flow values at discretized coordinates within the current map
boundaries.

FIGURE 8
Simulated hovering over a river surface (A). Ground coordinates of the imaged area are computed by the GroundLocator plugin (B), which are used
by the Flow Parser Script to look up flow vectors from the external Flow Lookup Table (C).
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• A Flow Parser Script, which retrieves data from the Flow
Lookup Table using the calculated corner coordinates.

The GroundLocator plugin is a custom Gazebo Model plugin
used to identify the current area of interest. It uses a Gazebo ray
shape sensor to project the current camera FOV (viewing
frustum) onto the ground and extract the four corners of such
footprint. The coordinates of these four corners, along with the
camera’s field of view and resolution, are packaged and published as
a custom/camera/ground_pose ROS topic.

The Flow Lookup Table is a pre-computed comma-separated
values (CSV) file containing flow information at discretized
locations, i.e., each row containing (x, y, flow_x, flow_y,
magnitude) values. Given the essentially planar nature of rivers
considered in this work, the z coordinate is ignored. Data in the Flow
Lookup Table can either be synthetically generated, for instance,
using a River Flow Simulator such as iRIC Software (Shimizu et al.,
2020), or the output of a PIV workflow applied to previously
collected real-world data.

The Flow Parser Script loads the data from a user-defined Flow
Lookup Table and then listens for new/camera/ground_pose
topics. When a new topic is received, the script creates a polygon
using the four new corner coordinates and then extracts all the flow
data points within the polygon using Matplotlib’s mpath module.
These data points are further clustered and averaged according to
user-defined PIV parameters such as the desired interrogation area
and output vector spacing. The resulting values of this operation
are then published as a custom/flow_data ROS topic, containing
(x, y, flow_x, flow_y, magnitude) values for each calculated
flow vector.

3.4.5 UAV flight control
RiOS-Sim,s UAV flight controller has several levels of

abstraction. The low-level controller takes advantage of the
mature hector-quadrotor package (Meyer et al., 2012), which was
adapted to correctly model the properties of the current UAV used

in the RiOS project. Hector-quadrotor is controlled via ROS Twist
topics. A mid-level waypoint UAV controller enables reaching user-
defined positions and orientations, which can be in world or UAV-
relative coordinates. This waypoint controller modulates the linear
x, y, and z components and the angular z component (yaw) of the
Twist topic using four separate PID controllers. The parameters of
these PID controllers are optimized to match the specifications and
performance of the physical UAV. A waypoint tasker manages a
complete flight plan, commanding the UAV to visit several
waypoints and adjusting the dwell time at each destination based
on science data collection. Finally, a high-level planner allows for the
design of different flight plans based on the UAV’s payload sensor’s
output, outlined in Section 3.4.3, and desired performance metrics.
The general data flow between each of these abstraction layers can be
seen in Figure 9. Three planners were developed and evaluated
within our simulation environment which we labeled as pre-
planned, adaptive-data, adaptive-time.

The pre-planned planner is a basic planner where all aspects of
the UAV flight plan are computed prior to the start of a flight. This
includes the waypoints that will be visited and in what order, as well
as the time to dwell during data captures. This planner is used as the
baseline for comparing our other two planners, as it most closely
simulates a typical non-automated UAV flight during a normal
field trial.

The adaptive-data planner tries to maximize the quality of the
data gathered at each waypoint based on a user-set threshold. At
each visited waypoint, the UAV gathers one data sample and then
estimates how many more samples are needed to drive the standard
error of the mean below a defined threshold. This allows the planner
to adapt to increases in sensor noise, such as noise induced by
environmental conditions. However, total flight time may increase
compared to the pre-planned planner.

The adaptive-time planner uses a Markov Decision Process
(MDP) to try and balance flight times with data quality. At each
waypoint, a single data point is taken. This is compared to an a
priori estimation of the expected flow and total allowed flight

FIGURE 9
Basic data flow diagram between simulation levels of abstraction.
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time to visit every waypoint. The MDP will then select an action
to either collect more data or move to the next waypoint. The
expected behavior is a trade-off between the quality of data and
meeting the total flight time requirement. There is no guarantee
that all waypoints will be visited if the planner commands longer
dwell times.

4 Results

Through the process of both pre-flight and field flight trials,
extensive data and numerous qualitative observations were collected
and studied to validate the sensor payload design, assess its
performance at the task of flow rate estimation, and accumulate
feedback useful to the further evolution of the system and operations
plans. Parallel simulation validation has demonstrated the
fundamental usefulness of such a digital twin for the purpose of
mission planning and algorithmic development of vehicle motion
planning strategies.

4.1 Pre-flight validation

During the pre-flight validation, a thermal flat-field correction
was performed by averaging image sequences (to eliminate noise) of
a blank surface with consistent temperature, as a ratio over the
overall mean pixel value, repeated under several different ambient
temperature conditions to generate a correction factor for each pixel
valid across the expected typical ambient operating temperature
range. This improves the performance of the PIV algorithm by
ensuring that the section of the observed river does not depend on its
position within the image. Unlike the Non-Uniformity Correction
(NUC) commonly performed by uncooled thermal cameras during
operation to adjust for minor detector drifts, this flat-field correction
was performed only once during pre-flight validation. The selected
actively cooled Mirage 640 camera does not perform NUC.
Characterization of IMU performance was completed through
observation of noise magnitudes and bias drift rates of each axis
while stationary, roughly validating these against published device
specifications. The extrinsic calibration (describing relative
translational and rotational offsets) between the IMU and each
camera respectively is nominally known from the CADmodel of the

payload but is further optimized by applying the Kalibr toolkit
(Rehder et al., 2016). This is important for any tasks such as using
IMU-reported displacements to stabilize camera imagery during
vehicle motion.

Electrically, the real-world power requirements of each sensor
were individually verified to lie within vendor specifications. The
operation of the custom-built power system was also assessed
through artificial load testing under nominal and overload
conditions, confirming its proper behavior under all
circumstances, that it reliably transferred load between one or
both batteries and an external power source, that no overheating
occurred, and that reported power consumption telemetry
was accurate.

Similar integrated testing took place to validate wireless
communications functionality between the payload and ground
station, via an indoor dry run of typical field operations, to
ensure a consistent wireless link and data transfer. As this cannot
evaluate operation at the expected distances between the two sides,
further outdoor testing took place at varied distances, confirming
adequate signal strength to at least a range of 250 m.

4.2 Field trial performance

A summary of the two shake-down tests and four science data
collection tests comprising the overall field test campaign described
earlier in Section 3.3 is given in Table 1. Overall, these tests spanned
65 flights totaling in excess of 14 h of in-air time and exercised
progressively more complex features of the RiOS payloads.

The first shake-down testing of the version-1 payload at UCSC
consisted of a small number of flights at relatively safer low
altitudes over land and was primarily intended to confirm the
structural integrity of the payload and mounting hardware, its
essential electrical and software functions, and the performance
handling characteristics of the UAV with it attached. This also
served as an opportunity to develop and exercise equipment setup
and flight operations processes. Though near the high end of the
carrying capacity of the M600 vehicle, smooth flying remained
possible albeit with some vulnerability to wind buffeting. Over the
course of these flights, poor performance and unreliability of WiFi
communications were observed. This was rectified in later field
tests by replacing what was at the time a single ground-side patch

TABLE 1 Summary of field test campaign flights with RiOS payloads at sites A (UCSC), B (Berkeley), and C (Sacramento River).

Date Site Focus Version-1 Version-2 Altitude Anomalies

Flights Dur. [min] Flights Dur. [min] AGL [ft]

Jun. 2021 A V-1 vehicle compatibility 3 25 < 100 [a]

Sep. 2021 C Field data quality 4 48 400-1000 [b]

Sep. 2022 C PIV data collection 7 73 400-1200 [b], [c], [d]

Oct. 2023 B V-2 vehicle compatibility 2 20 < 50 [e]

Nov. 2023 C V-2 comparison and live PIV 3 42 24 340 450-750 [a], [f]

Sep. 2024 C Autonomy and closed loop PIV 22 341 900 [a], [f]

Types of observed anomalies referenced include: a) Unrecovered wireless communications drop-out b) Onboard computer shutoff or crash c) UAV low battery warning aborted flight d) Drop-

outs in visible camera data e) Ground station loss of configuration f) Visible camera freeze.
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antenna (providing 2 × 2 MIMO) attached to a transceiver
identical to that in the UAV with instead two patch antennas
(providing 4 × 4 MIMO) attached to the commercial router
previously described.

With the essential safety and function of the payload confirmed,
the next test comprised of a series of longer flights over the
Sacramento River was more ambitious and explored significantly
higher altitudes. Predominantly an opportunity to evaluate data
quality in a realistic relevant environment, varied imagery was
collected at diverse locations and altitudes for later study to
prove that PIV flow estimation is possible with this sensor suite
and to determine most appropriate future flight parameters. This
field test was repeated the following year at the same location,
focusing this time on science-relevant data collection to validate this
overall remote sensing concept against existing manual processes
and to better explore spatiotemporal flow variations at this
particular site.

The next year following the completion of the version-2 payload
saw a brief shakedown test at the Berkeley field site, essentially repeating
the testing performed previously for version-1. Vehicle and payload
performed as expected, except for a briefly serious but readily corrected
anomaly causing loss of software configuration of the ground station
due to inadequately precise assembly documentation. The next month,
a third data collection over the Sacramento River made more intensive
use of this payload in over triple the number of flights and duration,
focusing on two primary objectives: evaluating the performance of the
upgraded RiOS version-2 payload and achieving live PIV estimation.
The payload exceeded expectations in nearly every aspect, with its
lighter and more aerodynamic design enabling longer and more stable
flights. The elimination of live battery monitoring necessitated a more
careful assessment of battery status between flights by field test
personnel. On the other hand, the addition of the new quick-release
attachment greatly streamlined operations, making it easy to connect
and disconnect the payload from theUAV, which in turn reduced setup
time in the morning and packing time at the end of the day. This
efficiency proved invaluable during multi-day testing sessions. Live PIV
flow computation was performed on a ground-based laptop processing
a reduced-framerate thermal image stream transmitted over the
constrained wireless downlink. Full-framerate imagery continued to
be logged onboard the payload for later more precise study, which for
these tests centered on various noise and stability characteristics of the

resultant estimates. Quantitative analyses are summarized in (Kinzel
et al., 2024), an important highlight of which is that there was very good
consistency in estimates taken over successive days over river segments
predicted to have consistent flow.

The fourth and most recent field test over the Sacramento River
continued intensive use of the version-2 payload, extending to even
longer average flight times given growing comfort in its use.
Quantitative analyses of live PIV estimation for the fourth field
test are reported in Legleiter et al. (2024). This test marked the first
demonstration of fully closed-loop autonomy for PIV flow
estimation and vehicle control. As live flow estimates were
computed, the decision-making strategies previously developed in
simulation to either optimize waypoint sequences for most efficient
coverage or adaptively adjust dwell time were evaluated for their
practical efficacy in maximizing the value of data return in
minimum time. For safety and regulatory simplicity, the final
autonomy segment between decision making and vehicle
command issuance was implemented by verbally communicating
machine-generated waypoint selections to the human pilot who
technically retained full control at all times. This hybrid process
proved to be smooth and allowed demonstration of autonomy with
minimum risk. Two key resultant autonomy examples included
slight reduction in overall path lengths of even exhaustive river
coverage patterns over human-selected waypoint sequences and a
deliberate reduction in observation dwell times at locations for
which estimates indicated similar data distributions to prior
datasets. Figure 10 shows the UAV during a test flight and the
live data view on the ground. Combined, we conclude that these tests
strongly validate the sensor payload design for river flowmonitoring
and the value of both a priori and sensor-directed autonomy for 2D
mapping of surface velocity distributions along river reaches.

In all flight tests, the M600 vehicle performed reliably, with only
one case of an emergency abort due to an unexpected rapid drop in
battery level and two flights requiring conservative evasive
maneuvers due to incursion by other aircraft into visible flight
range. Anecdotally, pilots reported minor wind buffeting due to
the surface area of the version-1 payload and nearly none with
version-2, with little to no difficulty in maneuverability despite slim
payload mass margins.

With few exceptions, onboard sensors performed as designed
throughout flight tests, and the small number of operational

FIGURE 10
RiOS version-2 payload in flight over the Sacramento River (A) and the live visualization interface showing the current viewpoint over the river with
visible and thermal video previews (B).
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anomalies recorded in Table 1 required only restarting the recording
software or on rare occasions power-cycling the payload. Occasional
adjustments in frame exposure time for the visible-light camera were
performed to maintain consistent brightness of images throughout
each day while avoiding activating built-in auto-exposure that would
have resulted in unpredictable brightness variability. Similar
adjustments were not required for the thermal camera. The
onboard LIDAR reported highly consistent values for each given
flight altitude that aligned well with approximate water surface
height, indicating reflections were indeed occurring from the
surface as expected. Some measurement drop-outs did occur,
particularly when the vehicle was oriented at highly oblique
angles relative to the water surface or during brief periods of
rapid maneuvering, as well as during moments of significant sun
glint (specularity) off the water surface. However as only a single
distance value is required at each observation waypoint, ample
distance samples were available at each and were easily averaged
for further noise reduction and outlier elimination.

Typical overall payload power consumption as measured by
the instrumented power distribution system incorporated in the

version-1 payload was 32 W during flight and data recording, and
25 W during idle periods. With a pair of 49 Wh batteries, this
permits approximately 2.5 h of runtime before requiring
replacement, such that only one such swap may be needed
during a full day of data collection. Though less precisely
instrumented, bench measurements indicate similar power
consumption for the version-2 payload, and the two 62 Wh
batteries used in this design provide slightly longer runtime,
albeit without the convenience of hot-swapping. During the
course of all flight testing, only one anomaly occurred at one
early point at which the version-1 power system channel for the
embedded computer tripped its over-current protection, which
was quickly identified as being caused by higher than expected
power draw by the WiFi transceiver. This was addressed in future
flights by integrating a miniature USB hub, itself powered by a
separate power system channel, to which the WiFi transceiver was
instead attached.

Wireless connectivity was a constant point of attention
throughout these field tests, with naturally insatiable demand for
bandwidth and range. Specific characterization flights were

FIGURE 11
Geographic visualizations from the September 2023 field test showing the angular dependence of wireless signal strength during operation with
payload monopole antenna tips pointed both cross-stream, towards banks, and stream-wise, parallel to the river.
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undertaken during the 2023 test campaign to evaluate performance
and its influences. As summarized in Figure 11, the primary factor
affecting signal strength was observed to be the relative angle of the
vehicle with respect to the antennas at the ground site. This
behavior arises from the use of two monopole antennas on the
payload, each having a toroidal beam pattern with a relative dead
zone face-on to the long axis of the antenna nominally oriented so
as to be parallel to the ground. Consequently, maintaining specific
vehicle heading orientations during data collection was identified
as critical, as it allowed the ground station to more consistently
view the antennas edge-on, where the signal strength is the highest.
A directional gimbaled antenna would avoid this but contribute
significant mass and complexity, while alternative antenna
mounting configurations may reduce but not completely
eliminate such dead zones and could not be easily iteratively
evaluated without significant internal structural changes to the
payload. Signal strength falloff due to range in open air was a much
less significant effect up to the maximum operational distance of
roughly 1 km required for these field tests. As effective line of sight
operation is likely lost beyond this range, this indicates that the
selection of commercial WiFi as the communication medium
appears to be an entirely appropriate and expedient choice for
this application.

Onboard data logging functioned reliably during all flight tests
except one, where the Odroid computer crashed. Ground
operators remotely monitored the logging process and ensured
sufficient remaining disk space throughout the flights. Recording
data rates were variously adjusted over the course of these field
tests, initially starting near practical maximums for the flash
memory of the onboard computer and in later tests reducing to
approximately 4 Hz for images, 2 Hz for LIDAR range, and 100 Hz
for IMU data. This was determined to be adequate for PIV flow
estimation and results in data rates below 25 MB/s. With
approximately 100 GB of available onboard storage, this fits just
over an hour of flight data, or around 5 flights. This was observed
to align well with typical flight operations, with strategic pauses
around such intervals, and in future use would probably
encompass a complete dataset for most field sites. The primary
observed weakness was a data offload rate of approximately
35 MB/s, which was limited by the data bus speed of the
onboard computer.

4.3 Simulation results

Our simulation environment was built to enable the development
of UAV mission planners with increased levels of autonomy. Three
metrics were used to evaluate each planner’s performance: the Mean
Squared Error (MSE) of the observed data, the flight time during data
gathering, and the percent coverage of the observable data. The
evaluation metrics of percent coverage and MSE were compared
against the non-noisy observable flow data (ground-truth) while the
flight time metric is the relative time difference between each run.
Each planner was simulated 10 times to account for run-to-run
variance, and the same observable flow data was used with realistic
noise injected to simulate sensor and environmental working
conditions. What will be shown in the next sub-sections is that the
adaptive-data and adaptive-time planners will increase the quality of
the data gathered by lowering the MSE by 43% and 34%, respectively.
This is at the sacrifice of total flight time.

4.3.1 Metric 1: mean squared error
The Mean Squared Error (MSE) represents the amount of error

in a run’s data gathering compared to the ground-truth flow data.
The basic formula for calculating the MSE is given in Equation 1 as

MSE � ∑ θgt − θobs( )
2

n
(1)

where θgt represents the ground truth data, θobs is the observed flow
data from a run, and n is the number of ground truth data points.
MSE is typically a non-negative metric where larger values represent
a greater deviation from the ground truth data.

As outlined in Section 3.4.5, each planner was designed around
gathering quality data under different conditions. The pre-planned
planner had a fixed dwell time to gather data at each waypoint,
which was selected as 5 s for each simulation run. Note that this
short dwell time was selected to obtain large spatial coverage for 2D
surface velocity distribution mapping and is not representative of
standard discharge gaging measurement time. The two adaptive
planners could increase their dwell time depending on the estimated
efficacy of the data being collected. The adaptive-data planner had
no limits on the time needed to complete observing all the
waypoints. This allowed the UAV to dwell longer at each

FIGURE 12
The Mean Square Error of the three planners for each simulation run along the X-axis and Y-axis. The UAV is typically oriented so that the detected
water flow magnitude is pointing in the X direction, resulting in higher MSE for the X-axis.
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waypoint during data collection, lowering observation error due to
noise. The more interesting planner is the adaptive-time planner.
This planner tried to increase the dwell time at each waypoint to
decrease the observation error, but did so without breaching flight
time limit. Figure 12 shows the plots of the MSE for each planner’s
10 simulation runs. One can see that there is an improvement in the
quality of the data gathered as the needed dwell time increases
between each planner. However, below we will show that the
adaptive-data planner would routinely be the slowest planner and
may exceed a mission’s total flight time.

4.3.2 Metric 2: flight time
The flight time metric is a comparative value between each of

the planners and a base achievable time. This is the total time
from take-off to landing. Since the waypoints used for all
simulation runs were consistent, the flight times to the first
waypoint and from the last back to the base station were
typically consistent. However, the authors kept the
comparison to total flight time so that any user error in
timing would not be induced. While these simulation runs
allow the UAV to operate for its best-case scenario flight time
of 30 min, a simulation result is however deemed achievable only
if the total flight time remains within a safer and more
conservative 10 min threshold. If a simulation flight exceeded
this achievable time, then the simulation was deemed marginal.
The flight time results are shown in Table 2. It is clear that the
adaptive-data planner exceeded the achievable time for all
simulation runs and the adaptive-time planner was able to
keep the total flight time within the planner condition of 10 min.

4.3.3 Metric 3: percent coverage
The percent coverage is the amount of the observable flow data

that a planner collected data from. For all three planners, waypoints
were selected that would achieve near 90% coverage of the
observable data. This means all planners should achieve near full

coverage of the observable data during each run. If a planner fails to
get within 90%, it is marked as a failure. Table 3 shows the percent
coverage for all runs and shows that at least 90% coverage was met
by every run.

5 Discussion

By applying experience from field use of the initial version-1
RiOS payload, an optimized version-2 payload providing a 52%
reduction in volume and 22% reduction in mass was developed and
extensively field tested. Looking forward to further iteration, an ideal
version-3 is likely to incorporate a slightly less simplified power
system than the version-2 design, as though the much reduced size
and complexity has proven valuable, restoring battery hot-swapping
and more precise estimation of remaining battery life would further
streamline field use. Naturally, component cost reduction is another
avenue of valuable exploration, particularly focusing on the thermal
camera currently constituting the majority of payload cost. Earlier
mentioned existing work suggests that water surface flow rates can
be observed by much less sensitive cameras or radars under some
circumstances, albeit not nearly to the same fidelity, and these merit
further study.

This is counterbalanced by the potential value that even
higher resolution or more sensitive cameras might offer in
allowing higher-altitude operation with fewer required dwell
locations and hence shorter mission times. As this may
drastically escalate payload cost, required airframe size, and
regulatory permissions for operations, such designs would
represent a significant departure from the intended goals of an
accessible, highly-portable, and rapidly-launched system. While
we believe the latter regime to be the most valuable midpoint
between satellite remote sensing and ground-based sensing,
further study of design tradeoffs and customer scientists’
needs remains worthwhile.

TABLE 2 Flight times [min:sec] for all simulation runs. Each time is then shownwith a time difference from the base achievable time of 10min. Times in bold
are deemed marginal for achieving acceptable flight times.

Sim run 1 2 3 4 5 6 7 8 9 10

Pre-planned 7:53 8:02 7:58 8:05 7:47 8:06 7:54 8:01 7:59 8:04

[+2:07] [+1:58] [+2:02] [+1:55] [+2:13] [+1:54] [+2:06] [+1:59] [+2:01] [+1:56]

Adaptive-data 10:18 10:42 10:35 10:50 10:29 10:55 10:31 10:47 10:26 10:39

[–0:18] [–0:42] [–0:35] [–0:50] [–0:29] [–0:55] [–0:31] [–0:47] [–0:26] [–0:39]

Adaptive-time 9:32 9:58 9:41 9:50 9:37 9:55 9:44 9:30 9:48 9:53

[+0:28] [+0:02] [+0:19] [+0:10] [+0:23] [+0:05] [+0:16] [+0:30] [+0:12] [+0:07]

TABLE 3 Percent coverage of the observable flow data. This verifies that all runs visited all waypoints and gather appropriate data.

Sim run 1 2 3 4 5 6 7 8 9 10

Pre-planned 90% 92% 93% 91% 94% 92% 90% 93% 91% 94%

Adaptive-data 91% 90% 92% 93% 94% 91% 90% 92% 93% 94%

Adaptive-time 92% 94% 90% 91% 93% 90% 92% 94% 91% 93%
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The size and weight of the current payload make it challenging
to integrate with a gimbal mount, increasing its susceptibility to
vibrations and changes in orientation during flight. While IMU-
based image stabilization can mitigate the effects of small pose
changes, the absence of a gimbal may limit the payload’s
performance in extremely windy conditions, where UAV
movements are more pronounced. In such conditions, the UAV
and payload may need to hover at an angle, invalidating the
assumption of nadir (vertically downward) imagery and requiring
accurate projection of the images onto the river surface.

Towards operationalization, that is, larger-volume production
and use by field scientists who are not necessarily experts in the
design of the payload, a number of possible improvements in both
payload design and operational process are apparent. Likely design
improvements primarily revolve around identifying components
such as internal wiring harnesses that presently require tedious
assembly to either develop alternatives or procure specialized
automated tooling. Similarly, a more rugged mold and better-
optimized casting process for the outer shell would build upon
the currently hand-shaped molding used for the prototype. Other
small improvements in labeling and intuitiveness of
interconnections would likewise aid non-experts, as also simply
would even more detailed documentation of every aspect of
the system.

Thorough exercise of the live data collection process through
field trials has offered numerous valuable lessons for future field
operations. Chief among these is the importance of a simple but
precise set of procedures for setup, teardown, flight preparation,
flight execution, and data offloading. Taking cues for instance from
flight checklists long used in professional aviation would ensure that
no steps are inadvertently skipped and that errors are minimized,
while maximizing the pace of their implementation. Relatedly,
clearly defined personnel roles for varying potential team sizes
will reduce uncertainty and inefficiency in cooperation, while
simplifying planning for field outings. Another valuable lesson
from field testing is that the time of day of data collection has a
significant impact on data quality, specifically that early morning,
before the air has heated significantly from overnight temperatures,
is most preferable. Analyses of the exact circumstances continue and
would likely benefit from testing at more varied field sites
and seasons.

Reliable wireless communications with the RiOS payload has
consistently been a focus of attention, both due to a desire to
monitor the status of its operation and as a necessary dependency
for live flow estimation if performed on the ground. The current
implementation, built upon commodity WiFi operating near
maximum legal power limits and chosen as a balance of expedience
and function, has proven largely adequate, as it has typically provided
sufficient range to the most distant observation locations reachable
within a UAS flight. Nevertheless, as flight durations, data processing
ambitions, terrain complexity of field sites, and the desire for consistent
turn-key operation continue to increase, further improvements will be
needed. One avenue already under consideration is to transition from
Transmission Control Protocol (TCP) based data transfer (which
incorporates latency-inducing packet acknowledgment and
retransmission steps) to a more loss-tolerant mechanism better
suited for primarily unidirectional downlink. ROS version 2 provides
some such alternatives including the option to use theData Distribution

Service (DDS) middleware, which supports User Datagram Protocol
(UDP) for faster, non-reliable transmission where minimal latency is
prioritized over guaranteed packet delivery. Another path might be to
directly transmit a stream of UDP packets while disabling link-level
WiFi packet acknowledgments and including additional forward error
correction (FEC) data blocks to allow reconstruction of larger data
frames (e.g., images) even in the presence of lost packets, without any
need to acknowledge or retransmit packets.

Though difficult to precisely quantify, evidently pointing of the
ground antennas having finite beam width towards the payload
while in flight is of some importance, yet allocating personnel to this
tedious task is undesirable. In principle, the addition of a small two-
axis motorized head beneath the antennas would allow continuous
accurate pointing without human intervention by computing the
relative angle between the known GPS-reported locations of both
the ground station and vehicle. We expect to attempt this in the
future, though it is not without some complications such as
rotational limits and the need to avoid entangling of cables. On
the payload side, additional experimentation is merited to evaluate
alternative (e.g. orthogonally mounted) antenna arrangements or
transceivers having larger numbers of antennas. Finally, completely
different non-WiFi radio transceivers optimized for long-range
mobile point-to-point communications do exist in several forms
commercially and will be further studied for compatibility with
SWaP constraints and operational needs.

RiOS-Sim was employed to evaluate two adaptive planners
against a pre-planned baseline, eliminating the risk and costs
involved with physical UAV or payload testing for arbitrary
experimentation. These preliminary results showed the advantage
of using a digital twin to extensively test and validate new navigation
algorithms before their deployment in real-world conditions. This
becomes even more evident as novel and more advanced path-
planning and autonomous navigation algorithms are being
developed for RiOS. The simulator provides a safe, controlled,
and repeatable environment where various scenarios, ranging
from ideal conditions to edge cases, can be tested
comprehensively, ensuring that potential challenges, obstacles, or
algorithmic weaknesses are discovered and mitigated before actual
deployment. Additionally, RiOS-Sim can be readily expanded to
support multiple concurrent UAVs, facilitating the investigation of
multi-robot path-planning approaches and collaborative decision-
making strategies for efficient and rapid river flow gaging. As
physical field use of multiple UAVs simultaneously is particularly
challenging and requires special planning and permissions,
developing and thoroughly testing strategies in simulation in
advance will immensely streamline approval processes and ensure
earlier field success.

Section 3.4.4 discussed RiOS-Sim,s design choice of using pre-
computed Flow Lookup Tables. An alternative approach could be to
abstract the simulated image collection process, used in conjunction
with the mature PIV workflow used with the physical system. For
instance, pre-recorded real-world footage from past field tests could
be used as input to the PIV algorithm. Given a database of real-world
image collections, a classifier could pick the images that most closely
represent the current world conditions and UAV state in the
simulation. Another option would be the use of an external
synthetic flow image generator, such as (Mendes et al., 2020).
Environmental and UAV state information (e.g., camera pose)
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would need to be included as inputs to the image generator. The
advantage of this method is that the flow images would match very
well with the UAV state in the simulator and could also capture new
scenarios that have not been seen before with the hardware payload.
The main challenge however would be validating the synthetic
image generator against ground truth flow images.

In the current RiOS-Sim implementation, it is possible to update
the “river flow” in real time, commanding the Flow Parser Script to
load a new Flow Lookup Table. This can be used to simulate a
discrete time evolution of the river flow, enabling interesting
research scenarios such as planning against seasonal flow
variation or sudden flooding. One interesting future research
direction could also be the detection and autonomous
identification of pollutant sources in aquatic environments. This
presents a unique challenge where UAVs could be deployed to not
only detect the presence of contaminants but also trace their origin.
Leveraging RiOS-Sim in this context could provide immediate value,
as it would allow for the testing and validation of path-planning and
navigation algorithms specifically designed for this application.

Paired together, the RiOS UAV sensing payload provides a now
heavily tested aerial monitoring hardware system for rapid semi-
autonomous river flow gaging complemented by RiOS-Sim, a
simulation framework that accelerates development and
exploratory testing of novel field scenarios and autonomy
strategies as a digital twin. Building upon a mix of commercial
hardware components, limited custom hardware assemblies, and
open source software, these systems have so far been shown to be
effective and expedient foundations for fulfilling immediate science
data collection needs and exploring future field operational
processes. With the long term goal of completely closing the loop
to enable fully autonomous, unsupervised river flowmonitoring, key
areas of ongoing work include refined operationalization of such
systems, accessibility to scientist users without requiring aerospace
domain expertise, and algorithmic autonomy development for
expanded and more complex application environments.
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