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The study explores deep learning to perform direct semantic segmentation of
bathymetric lidar points to improve bathymetry mapping. Focusing on river
bathymetry, the goal is to accurately and simultaneously classify points on the
benthic layer, water surface, and ground near riverbanks. These classifications are
then used to apply depth correction to all points within the water column. The
study aimed to classify the scene into four classes: river surface, riverbed, ground,
and other (for points outside of those three classes), focusing on the river surface
and riverbed classes. To achieve this, PointCNN, a convolutional neural network
model adept at handling unorganized and unstructured data in 3D space was
implemented. The model was trained with airborne bathymetric lidar data from
the Swan River in Montana and the Eel River in California. The model was tested
on the Snake River in Wyoming to evaluate its performance. These diverse
bathymetric datasets across the United States provided a solid foundation for
the model’s robust testing. The results were strong for river surface classification,
achieving an Intersection over Union of (0.89) and a Kappa coefficient of (0.92),
indicating high reliability and minimal errors. The riverbed classification also
showed an IoU of (0.7) and a slightly higher Kappa score of (0.76). Depth
correction was then performed on riverbed points, proportional to the
calculated depth from a surface model formed by Delaunay triangulation of
ground and river surface points. The automated process performs significantly
faster than traditional manual classification and depth correction processes,
saving time and expense. Finally, corrected depths were quantitatively
validated by comparing with independent Acoustic Doppler Current Profiler
measurements from the Snake River, obtaining a mean depth error of 2 cm
and an Root mean square error of 16 cm. These validation results show the
reliability and accuracy of the proposed automated bathymetric depth correction
workflow.
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1 Introduction

Lidar systems produce 3D point clouds, providing high-resolution data essential for
geoscientists to analyze natural and artificial features. These clouds consist of millions of
individual points, each with x, y, and z coordinates and possibly other features like intensity
and RGB; collectively forming a comprehensive 3D model of the surveyed area. Aerial
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bathymetric lidar systems are designed to map underwater features
using laser pulses that can penetrate water, normally operating at a
wavelength of λ � 532 nm (green). Bathymetric lidar sensors
provide high-resolution data of submerged environments,
precisely documenting shallow underwater terrain (Pan et al.,
2015a). An accurate digital model of the benthic layer is crucial
for mapping habitats in fluvial and coastal areas (Letard et al., 2022),
enhancing flood inundation models (Teng et al., 2015), tracking
sediment transport (Anderson and Pitlick, 2014), and for nearshore
bathymetry (Albright and Glennie, 2021). It is invaluable for coastal
management to monitor erosion, identify submerged hazards
(Pricope and Bashit, 2023), guide infrastructure planning, and
conserve ecosystems like coral reefs and seagrasses (Wilson, 2011;
Pan et al., 2014).

Processing bathymetric lidar data has significant challenges,
primarily due to the refraction of the laser pulses in water. While
shifts in the x and y coordinates are minor and dependent upon the
scan angle, the z coordinate (elevation) shifts are more pronounced.
This is because water, with a nominal refractive index of
approximately 1.33 (Xiao et al., 2024), bends and slows the light,
distorting true depths because the travel time of the laser pulses in
water is unknown without precise knowledge of both the water
surface and benthic layer locations (Agrafiotis et al., 2019; Schwarz

et al., 2021). Fluvial environments face significant challenges due to
fluctuating water elevations along a river’s course, especially
downstream, where levels can drop rapidly (Mandlburger et al.,
2015). Dams exacerbate this, causing abrupt elevation changes that
complicate water surface point detection and classification (Letard
et al., 2024). Rivers often have complex hydrological structures with
multiple braided channels that diverge and rejoin, connecting with
abandoned channels or adjacent floodplain lakes, adding to the
complexity. The Snake River in Wyoming, United States, as shown
in Figure 1, exemplifies these challenges.

The industry standard to correct unknown travel time in water
involves manually classifying the water surface and water column
points using a filtering method, creating two surface model using
benthic and water surface points separately, calculating the depth of
water column and waterbed points, and finally correcting their
elevation proportionate to their depth based on the travel time in
water and the resulting change in the speed of light. For the same
Snake River dataset, previous studies such as Legleiter et al. (2016)
applied an adaptive TIN filter (Axelsson, 2000) to identify candidate
water surface points, followed by manual editing to refine surface
and bottom separation. A channel centerline was then fitted to the
surface points, and refraction correction was applied to bottom
returns using the time difference between green laser surface and

FIGURE 1
Snake River, Wyoming, in (a) a dam, and (b) shows a braided river channel, which contributes to the complexity of the river systemdue to varying flow
dynamics, sediment transport, and multiple interconnecting channels.
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benthic echoes. Two separate surface models were generated for the
water surface and riverbed, and morphological filtering was used to
remove noise. Pan et al. (2015a) used a continuous wavelet
transform to pick seed peaks in each full waveform, then
manually classified those peaks into water surface, water-column,
and benthic returns and corrected their ranges using the refractive
index. The manual process of refraction and depth correction for
bathymetric lidar data is inherently time-consuming and susceptible
to human error due to the repetitive nature of the tasks. Therefore,
developing an automated methodology to ensure precision,
efficiency, and repeatability is needed. Automating these
corrections can significantly reduce processing time and
minimize the introduction of errors, thereby improving the
reliability of bathymetric measurements.

Current machine learning research using bathymetric airborne
laser scanning (ALS) focuses on detecting structures (Tsai et al.,
2021), and identifying vegetation. Daniel and Dupont (2020) used a
convolutional neural network (CNN) for seabed features, and Erena
et al. (2019) highlight drones for high-resolution topo-bathymetric
monitoring. While shallow water applications are well-documented
(Wang and Philpot, 2007; Hyejin Kim et al., 2023), deep learning for
water-level semantic segmentation is limited. Innovative methods
like pseudo-waveform decomposition (Hyejin Kim et al., 2023) and
multispectral imaging (Mandlburger et al., 2021) exist, but purely
point cloud applications remain largely unexplored, indicating a
need for further research. Bouhdaoui et al. (2014) studied the impact
of complex water bottom geometries on peak time shifting in
bathymetric lidar waveforms, using the Wa-LID waveform
simulator to model different depths, slopes, and footprint sizes.
Zhou et al. (2023) addressed water depth bias correction by
subdividing the water area into sub-regions based on water
depths and biases, using a subdivision algorithm and least-
squares regression. Agrafiotis et al. (2019) applied a support
vector regression (SVR) model to correct depth underestimation
in point clouds from structure from motion (SfM) and multi-view
stereo (MVS) techniques, using known depth data from bathymetric
lidar to enhance accuracy and robustness by fusing the lidar and
image-based point clouds. For aerial bathymetric lidar data alone,
semantic segmentation is crucial yet underexplored for segmenting
river surfaces using deep learning.

Recent advances in 3D point cloud segmentation have led to a
wide range of deep learning models categorized by their core
processing methods. Pointwise MLP-based models such as
PointNet (Qi et al., 2016) and PointNet++ (Qi et al., 2017) learn
per-point features using shared multilayer perceptrons and
aggregate them with symmetric functions. RandLA-Net (Hu
et al., 2020) and ShellNet (Zhang et al., 2019) improve efficiency
and local structure learning, though MLP-based methods generally
lack strong spatial context modeling. Volumetric methods, such as
SEGCloud (Tchapmi et al., 2017) and SparseConvNet (Graham
et al., 2018), convert point clouds into voxel grids before processing,
which allows the use of 3D convolutions but sacrifices geometric
precision and incurs high memory and computation due to
voxelization. These methods do not operate directly on the raw
point cloud and may lose fine-grained details. Spherical projection
models such as SqueezeSeg (Wu et al., 2018) transform 3D data into
2D spherical range images to enable fast processing with 2D
convolutions. However, this transformation alters the spatial

structure and introduces distortions, limiting the model’s ability
to preserve the native geometry of the point cloud. Point
convolution methods and graph-based methods represent the
most reliable classes of architectures. PointCNN (Li et al., 2018)
and DGCNN (Wang et al., 2019b) are widely recognized as the
standard baselines in these categories due to their consistent
performance. PointCNN transforms unordered inputs into
canonical forms for convolution, while models like PCNN
(Atzmon et al., 2018), ConvPoint (Boulch, 2020), and KPConv
(Thomas et al., 2019) apply continuous or deformable filters.
Graph-based models such as DGCNN and GACNet (Wang et al.,
2019a) dynamically build neighborhood graphs and extract features
using edge-based mechanisms. According to Bello et al. (2020),
many deep learning models for point cloud segmentation achieve
comparable performance across standard benchmarks. Therefore,
we focus on PointCNN and DGCNN, which are inherently different
in design but have been widely used across diverse applications and
reflect the two dominant paradigms of point cloud learning
(Lumban-Gaol et al., 2021; Koguciuk et al., 2019).

3D semantic segmentation is widely applied in computer
vision and remote sensing, providing point-wise segmentation
of point clouds. In environmental applications, topographic and
bathymetric lidar data are used for land cover mapping (Arief
et al., 2018; Ekhtari et al., 2018; Zhang et al., 2022), distinguishing
terrestrial and aquatic features to support hydrological modeling,
flood risk analysis, and environmental monitoring (Zhao et al.,
2016). Building on segmentation methods, PointCNN (Li et al.,
2018) and DGCNN (Wang et al., 2019b) represent two leading
architectures for 3D point cloud processing. PointCNN, adapted
from PointNet++ (Qi et al., 2017), introduces hierarchical feature
learning and has been applied in environmental mapping (Fareed
et al., 2023), 3D object recognition (Koguciuk et al., 2019), and
autonomous navigation (A Arief et al., 2019). DGCNN extends
PointNet (Qi et al., 2016) with dynamic graph-based
convolutions to better capture local and global shape
information. These models are not only technically robust but
also highly relevant in practical domains, establishing themselves
as essential tools for modern 3D data understanding.

Achieving accurate segmentation of bathymetric lidar through
deep learning models like PointCNN or DGCNN can eliminate the
need for manual processes, which are time-consuming and prone to
human error due to their qualitative and repetitive nature. Manual
classification lacks repeatability, as two individuals performing the
classification independently may get different results. Utilizing deep
learning models can streamline the workflow by removing the
necessity for additional steps such as delineating the river,
incorporating external images for verification, and manually
classifying the water surface. This new automated approach
enhances efficiency, accuracy and repeatability in the
classification of bathymetric lidar data by performing water
column classification with high precision. Although PointCNN
and DGCNN presented as candidate segmentation approaches in
this study, the workflow remains architecture-agnostic; any point-
cloud network (e.g., PointNet++, KPConv, or a transformer-based
model) capable of reliably separating water-surface from water-bed
points can be substituted without altering the subsequent refraction-
correction and depth-estimation steps. To our knowledge, this is the
first model trained and tested for simultaneous semantic
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segmentation for both the river surface and riverbed. The
segmentation of these two layers aids in the calculation of water
depth, making it more automated and accurate for refraction and
depth correction of the benthic layer.

2 Study area and methods

2.1 Study area

The three datasets used in this study, shown in Table 1, are
bathymetric lidar survey data for three rivers in the United States:
the Swan River in Montana, the Snake River in Wyoming, and the
Eel River in California. All three datasets were collected by the
National Center for Airborne Laser Mapping (NCALM) (ncalm.
cive.uh.edu) and the data includes independent ground truth data.
The ground truth was created using manual classification, ensuring
high accuracy through multiple iterations. The process involved
using Terrasolid’s Terrascan software to guarantee precise data
labeling, with verification using Google Earth images. The Swan
River survey was conducted in 2023, the Snake River in 2012, and the
Eel River in 2014. These surveys cover a range of geographical areas,
with the Swan River encompassing 53 km2, the Snake River 77 km2,
and the Eel River 57 km2. However, only a narrow corridor along
each river was selected for analysis to focus the study on only the
river itself, significantly reducing the total point count and
concentrating solely on river classes as shown in Table 2. The
surveyed corridor length of these rivers is 27 km for the Swan
River, 44 km for the Snake River, and 204 km for the Eel River. An
important aspect of these surveys is the point density, expressed as
the number of lidar points per square meter. This metric is used for
determining the survey data’s resolution and level of detail. The
Swan River survey has a high point density of 28 pts/m2, which
suggests a very detailed and fine-scale survey. In contrast, the Snake
River survey has amuch lower point density of 3 pts/m2, indicating a
coarser resolution. The Eel River survey falls between these two, with
a point density of 14 pts/m2. The sensor technologies employed for

these surveys also differ, reflecting technological advancements and
specific sensor capabilities. The Snake River and Eel River surveys
were conducted using the Optech AQUARIUS sensor (Guo et al.,
2018) and the Swan River survey used the RIEGL VQ-840-G sensor
(Pfennigbauer et al., 2022). The datasets used in our study are
diverse in terms of river hydrogeomorphology, lidar sensor
technologies, and point cloud densities. This diversity enhances
the robustness and generalizability of any machine learning model,
allowing it to effectively learn and predict river channel evolution in
various geographic and environmental contexts.

The data for all three rivers were manually classified into four
categories: river surface, riverbed, ground, and other. The river
surface class represents the interface between the water and the
atmosphere, capturing the mostly specular reflection of laser light on
the water surface. The riverbed class encompasses the benthic layer
at the bottom of the water, including both the sediment and any
submerged vegetation. The riverbed class also accounts for
volumetric scattering in the water column. Volumetric scattering
occurs when light interacts with suspended particles and water
molecules. These interactions cause the lidar signal to scatter in
multiple directions, affecting its penetration depth and the peak of
the backscatter signal received. The ground class includes terrestrial
surfaces, excluding aquatic or vegetative components, clearly
differentiated from the marine environment. Lastly, the other
class includes all remaining data points that do not fall into the
previous three categories and predominantly consist of vegetation.
This categorization ensures comprehensive mapping and analysis of
the riverine and adjacent environments. To focus on the riverine
environment, only a subset of each dataset was used, including
points along a 50-m corridor from the centerline of each river. The
class distribution for this corridor is given in Table 2. Even after
reducing to a narrow along the river, the ground and other classes
still comprise the majority of points, whereas the river surface and
riverbed classes account for only a small percentage.

To validate our depth corrections on the Snake River, we used
the ground truth acquired by Legleiter et al. (2016). They surveyed
Rusty Bend (a specific bend in the Snake River) with a SonTek

TABLE 1 Details of lidar datasets used in this research.

River name State
in USA

Year
collected

River corridor
length (km)

Point density
(points/m2)

Sensor Total points
(million)

Swan (Marshall,
2023)

Montana 2023 27 28 RIEGL VQ-
840-G

1,469

Eel (Dietrich,
2014)

California 2014 204 14 Optech
AQUARIUS

822

Snake (Legleiter,
2024)

Wyoming 2012 44 4 Optech
AQUARIUS

213

TABLE 2 Total points after clipping to river center corridor and class percentage distribution for each river dataset.

River name Total Points (million) Other (%) Ground (%) Riverbed (%) River surface (%)

Swan 186 71.9 14.3 11.8 2.0

Eel 44 50.7 31.0 12.2 6.1

Snake 20 18.7 44.8 26.7 9.7
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RiverSurveyor S5 Acoustic Doppler Current Profiler (ADCP)
mounted on a kayak and tied to an RTK-GPS base station,
getting depth soundings with 0.001 m resolution and 1%
accuracy over 0.2–15 m. Along the channel margins, they also
measured water edge elevations with RTK-GPS to correct for
instrument drift and kayak offset. All ADCP returns within
0.5 m of a GPS control point were cross-calibrated to ensure
vertical consistency. We used these rigorously corrected and
georeferenced ADCP measurements as the bathymetric ground-
truth along the Snake River for validating our fully automated depth
correction model.

2.2 Methodology

The methodology starts with the data processing steps used to
convert light detection and ranging files into uniformly sized blocks

suitable for deep learning input. The process continues with data
augmentation techniques aimed at increasing the dataset’s size and
generalizability for the machine learning model. The model is then
discussed with an in-depth analysis of the PointCNN
implementation using ESRI’s deep learning module arcgis.learn
(Esri, 2024). Different metrics and error rates are then used to
evaluate the model’s performance. Finally, the methodology
addresses depth and refraction corrections to achieve the desired
corrected final riverbed points, as shown in Figure 2.

2.2.1 Data preprocessing
Point cloud data cannot be directly fed into a deep learning

model due to its unstructured and unorganized nature. To make it
suitable for deep learning, the data must be preprocessed into a
uniform dataset, as demonstrated in methods such as, Pointnet++
(Qi et al., 2017) and PointCNN (Li et al., 2018). The entire dataset is
broken down into smaller blocks, each with a constant size of S x S as

FIGURE 2
Workflow diagram showing the steps involved in this research. The process starts with input data, followed by pre-processed data where data
cleaning and transformation occur. Augmenting the dataset is the next step in enhancing the training dataset. After the training and testing phase, the
model is evaluated against the ground truth. Finally, depth and refraction corrections are applied to the riverbed points classified by the model.

FIGURE 3
Point cloud data (with ground truth) is divided into frames, as seen on the left side of the diagram. Points are extracted from each frame to create
uniform-sized blocks S x S (square blocks are required for the model) with a fixed number of points P using Farthest Point Sampling (FPS). n number of
blocks are generated after a single frame is fully sampled.
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shown in Figure 3. Block size S is selected based on the specific
application requirements as determined by the user. Block sizes are
based on the data characteristics, scene complexity, and
point density.

The gridded squares shown in Figure 3 are the frames that
contain the raw point cloud sets. Points are sampled from these
frames to create the final product called a block. The sampling from
each frame starts with an initial point selected randomly. This point
serves as the starting reference for the sampling process. Because the
initial point is chosen randomly, it introduces some variability in the
sampling process; different initial points can lead to different
sampled sets. From this initial point, Farthest Point Sampling
(FPS) (Qi et al., 2017) calculates the Euclidean distance to every
other point in the point cloud frame. The point farthest from this
initial point, i.e., the point with the maximum distance, is then
selected and added to the sampled set. In subsequent iterations, the
algorithm updates the newly added point as the reference to find the
next farthest point. This iterative process continues until the desired
number of points are chosen and a block is created. Each block is
represented as a set of points:

x1, y1, z1( ), x2, y2, z2( ), . . . , xp, yp, zp( ){ }
where P is the number of points within the block. Similar to block
size, the value of P can be decided based on point density, however,
another critical factor is computational power. The larger the value
of P, the more dedicated memory is required. Once the sample set is
complete, the process repeats on the remaining points in the frame
until all points are sampled to create blocks. FPS effectively spreads
out the sampled points, ensuring a uniform and comprehensive
coverage of the entire point cloud. This method preserves the
structural diversity and spatial distribution of the original dataset.

2.2.2 Augmenting data
A rotationmatrix about the z-axis is extensively used to augment

point cloud data in various machine learning and computer vision
applications (Shi et al., 2021; Choi et al., 2021). This matrix, given by:

Rz θ( ) �
cos θ −sin θ 0
sin θ cos θ 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,

allows for the rotation of 3D points around the z-axis by an angle θ.
Augmenting point cloud data through such rotations helps
artificially increase the dataset’s size, introducing variations that
can improve the robustness and generalization of machine learning
models. Three data orientations are created by applying this
transformation to all points in a point cloud by 90°, 180°, and
270°. This augmentation technique ensures that the models are not
overly dependent on specific orientations and can effectively handle
diverse real-world scenarios.

2.2.3 Deep learning model
PointNet++ (Qi et al., 2017) extends the original PointNet (Qi

et al., 2016) by capturing local geometric structures in point clouds
through a hierarchical framework. It divides point clouds into local
regions and recursively applies PointNet using set abstraction layers
that perform sampling, grouping, and multi-scale feature
aggregation. This enables effective learning of both local and

global features, making PointNet++ suitable for classification and
segmentation tasks. It has been successfully applied to semantic
segmentation of airborne lidar in urban environments. For example,
Shin et al. (2022) used it for building extraction by incorporating
multiple lidar returns, while Jing et al. (2021) applied it to large-scale
point cloud segmentation.

PointCNN (Li et al., 2018) further improves classification by
learning spatial relationships through its X-Conv (X-transformation
convolution) module, which reorders and weights local
neighborhoods using a learned transformation matrix. This
enhances local feature aggregation and pattern recognition in 3D
space. PointCNN has shown strong performance across diverse
applications, including powerline classification (Kumar et al.,
2024), tree species identification (Hell et al., 2022), and UAS-
LiDAR ground point classification in agriculture (Fareed et al.,
2023), outperforming traditional filters like CSF and PMF. Due
to its robustness and consistent performance across various ALS
segmentation tasks, PointCNN was selected for bathymetric lidar
data classification in this study.

The X-Conv operation in PointCNN (Li et al., 2018), as depicted
in Figure 4, is designed to extract higher-level features from
unstructured point cloud data, enabling more precise and
effective point cloud analysis.
Step 1: For each selected center point (shown in Figure 4a), the k

nearest neighbors are collected, and their coordinates are
stacked into a matrix:

P � p1, . . . , pk[ ]⊤ ∈ Rk×d,

where pi ∈ Rd are the coordinates (e.g., d � 3 for (x, y, z)
positions), and k is the number of neighboring points. Figure 4b
illustrates these neighbors connected to the center.
Step 2: Each neighbor’s coordinate pi is passed through a point-wise

multilayer perceptron (MLP), producing a higher-
dimensional feature embedding:

Fδ � MLPδ P( ) ∈ Rk×Cδ ,

where Cδ is the dimensionality of the extracted features.
Simultaneously, a second MLP generates a transformation matrix:

X � MLP P( ) ∈ Rk×k ,

which learns to both re-order and re-weight the k neighbors. The
transformed coordinates and features are then combined:

P′ � XP, F* � XFδ ⊕ XF( ) ∈ Rk× Cδ+C0( ),

where F represents any additional raw point attributes (such as
intensity or color), and ⊕ denotes feature concatenation along the
feature dimension.
Step 3: Finally, the ordered and weighted feature block F* is passed

through a linear layer with learnable weightsW ∈ Rm×(Cδ+C0):

Conv P′( ) � WF*,

producing the output features for the center point, where m is the
output feature dimension.

This operation combines the k neighbour features into a single
vector of length m, producing one new point that carries richer
information than any individual neighbour. Repeating the same
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procedure in deeper layers Figure 4c reduces the number of points
(for example, 10 → 6 → 3 in the Figure 4) while increasing each
point’s feature dimension, thereby enlarging the receptive field and
capturing progressively more contextual detail.

Because the transformation matrix X is learned directly from
each local neighbourhood, X–Conv simultaneously: (i) re-orders
points into a data driven canonical sequence, ensuring permutation
invariance, (ii) assigns geometry aware weights that emphasises
informative neighbours and suppresses noise, giving it shape
adaptivity. These properties suit the unordered and highly
detailed nature of lidar data.

The architecture diagram in Figure 5 shows Esri’s
implementation of PointCNN (Esri, 2024), which is different
from the original PointCNN primarily in the parameter settings
for each X-Conv layer. In this configuration, the number of points
(N) decreases from 8,192 to 1,024, while the number of channels
(C) increases from 128 to 768, allowing deeper layers to extract
more complex features. The neighborhood size (K) ranges from
96 to 128, representing the number of nearest neighbors, and
dilation rates (D) of 8 and 16 enable the model to capture
multi-scale spatial patterns. The original PointCNN architecture
used different parameter values and was tuned for specific datasets
and tasks, often involving additional configurations for feature
extraction and layer-wise optimization.

For comparison, a second model was also trained and tested,
Dynamic Graph CNN (DGCNN), which enhances PointNet (Qi
et al., 2016) for point cloud data with its EdgeConv operation,
dynamically updating point connections based on learned features
to capture local geometric structures. DGCNN applies CNN
principles to dynamic graphs, adapting Graph Neural Networks
(GNNs) for unstructured data, but updates its graph structure
during training (Scarselli et al., 2009). This combination
improves DGCNN’s effectiveness in classification and
segmentation tasks (Wang et al., 2019b). Widyaningrum et al.
(2021) applied DGCNN to classify airborne laser scanning point
clouds in urban areas, using datasets from Surabaya and the
Netherlands. They explored various input features, block sizes,

and loss functions and concluded that DGCNN is highly effective
for urban ALS point cloud classification, achieving near-production
quality results. Due to its native ability to compute unorganized 3D
data, similar to how NLP (Natural Language Processing) models
handle text, DGCNN was used to determine if a graph-based CNN
could outperform a 3D CNN like PointCNN for
bathymetric lidar data.

2.2.4 Refraction and depth correction
The depth of riverbed points can be calculated using a water

surface model. Such a model is formed by Delaunay
triangulation of water surface and ground points which
results in a seamless Triangulated Irregular Network (TIN).
An interpolation function fTIN can then be used to obtain the
equivalent water surface elevation for each riverbed point. Using
this function, we calculated the interpolated surface height at
the precise X and Y positions of each riverbed point with
the function:

zinterpolated � fTIN x, y( )
The interpolated surface points are then used to compute the

water depths by subtracting the interpolated surface points from the
original Z-values for the riverbed points:

Water Depth � zriver − zsurface

The water depth is then adjusted for the refraction of light in
water. This correction factor, given by the refractive index of water
(approximately nwater � 1.33 for light refraction), is applied to obtain
the final corrected riverbed depths:

zcorrected � WaterDepth × nwater − 1( )
Finally, the refraction corrections for the riverbed points are

applied to the horizontal coordinates. Using the methodology
described in Pan et al. (2015b), this process involves adjusting
each riverbed point return for refraction at the air-water
interface. Using Snell’s law, the adjustment accounts for the

FIGURE 4
X-Convolution operation from PointCNN extracting higher features from unstructured point cloud data. (a) Initial point cloud with scattered points
(orange circles). (b) Local regions are formed after the first X-Conv layer, and the relationships between neighboring points are established (indicated by
the red arrows). The initial 10 points are reduced to 6 (cyan circles) based on feature and spatial relationships. (c) After the second X-Conv layer, more
refined local regions are created (red circles), with stronger connections among neighboring points. This leads to a higher-level representation of
the point cloud with only three remaining points.
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change in refractive indices between air and water, requiring
correction for the lidar pulse angles. This iterative process
continues until the corrections for the angle are minimized,
ensuring accurate horizontal adjustments.

3 Experiments and results

This section presents a comprehensive analysis of the
experiments conducted, focused on comparing neural networks,
the impact of both varying block sizes and the number of points used
in a block on semantic segmentation performance, and the final
model training process. For model evaluation, IoU, Accuracy,
Precision, Recall, F1, Kappa, Commission Error (CE), and
Omission Error (OE) metrics were used. The results underscore
the effectiveness of PointCNN to deliver balanced precision and
recall, its robustness across different segmentation tasks, and present
the optimal configurations for achieving high performance in
complex riverine environments.

3.1 Hardware configuration and training
parameters

All of the training was performed on an NVIDIA Quadro
P6000 GPU (24 GB VRAM) under Ubuntu 22.04.5 LTS. For both
PointCNN and DGCNN, Adam optimizer was used with a learning
rate of 0.004 and a dropout rate of 0.25. In PointCNN, we used point-
wise cross-entropy loss with a batch size of 6. For DGCNN, cross-
entropy loss was used with a batch size of 2. Both setups required
approximately 22 GB of GPU memory. Block size and per-block
point-sampling configurations were explored in Section 3.2, and then
the optimal setting was selected for the final model.

3.2 Block size and number of points in
a block

Analyzing semantic segmentation performance across various
block sizes (S) and number of points (P) reveals crucial insights into

FIGURE 5
PointCNN architecture shows the first layer receiving inputs of point clouds, followed by the convolutional layers consisting of X-Conv layers. The
final output layer gives the classified outputs of points designated by (O).
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how these parameters impact the model’s effectiveness. This analysis
focuses exclusively on classifying the primary classes, river surface,
and riverbed, as those are needed to apply depth and refraction
correction.

3.2.1 Analysis for number of points in a block
Impact of varying number of block points (P = 32,768, P =

16,384, P = 8,192): For this experiment, a constant block size of 50 ×
50 square meters is used with a varying number of points. The
training and testing were done on the Swan River dataset only. In the
top half of Table 3, a model trained with P = 16,384 consistently
delivers balanced performance across both classes. The performance
metrics for the river surface class across different numbers of points
highlight that the P=16384 configuration is optimal. This number of
points in a block achieves the highest IoU at 0.94 and the highest
Kappa coefficient at 0.96 for the river surface, indicating the most
accurate model performance. The CE remains consistently low at
0.01 across all numbers of points, but the OE is notably lower at
0.05 for P=16384, compared to 0.08 for both P=32768 and P=8192.
This indicates that the P=16384 configuration has fewer missed
detections, making it the best performer among the tested block
point counts. While the observed differences in metrics are not huge,
they are significant in bathymetric lidar segmentation. In this
specific application, even small improvements in accuracy can
significantly impact the quality of underwater terrain mapping,

where precision is crucial. The point density on this
configuration, 6 points/m2 appears to provide the optimal
balance between feature quality and computational efficiency.

3.2.2 Block size analysis
Comparison across block sizes, S = 100 m, S = 50 m, and S =

30 m: The training of these models was done using the Swan River
datasets, but the testing was done on our benchmark Snake River
dataset. The Swan River was initially used as test data to determine
the block size, but the performance was similar for all blocks.
However, the performance varies when it is used on unseen
datasets. The performance on varying block sizes with the
constant number of points (16,384) is shown in the bottom half
of Table 3. The performance metrics for the river surface class across
different block sizes show that the S = 50 m configuration performs
best. It achieves the highest IoU (0.58) and Kappa (0.67), indicating
better model accuracy. The CE is also lowest at 0.04, suggesting
fewer false positives. Although the OE is slightly lower at
0.41 compared to 0.43 for S = 100 m, it is significantly better
than 0.64 for S = 30m. For the riverbed class, S = 50m also shows the
best performance with the highest IoU (0.56), Kappa (0.62), and the
lowest OE (0.27), though it has a higher CE (0.29) than S = 100 m.
Overall, the S = 50 m configuration provides the best balance of
accuracy and error rates for both classes, which has a point density of
6 points/m2 as well.

TABLE 3 Performance Metrics for different experiment settings.

Optimal number of block points, Swan river, MT

Class Metric P = 8,192 (3 pts/m2) P = 16,384 (6 pts/m2) P = 32,768 (13 pts/m2)

River Surface IoU 0.92 0.94 0.92

Kappa 0.94 0.96 0.94

CE 0.01 0.01 0.01

OE 0.08 0.05 0.08

Riverbed IoU 0.81 0.83 0.78

Kappa 0.86 0.88 0.83

CE 0.09 0.11 0.14

OE 0.12 0.08 0.11

Optimal Block Size, Snake River, WY

Class Metric S = 30 m (18 pts/m2) S = 50 m (6 pts/m2) S = 100 m (1 pts/m2)

River Surface IoU 0.34 0.58 0.55

Kappa 0.42 0.67 0.64

CE 0.15 0.04 0.06

OE 0.64 0.41 0.43

Riverbed IoU 0.41 0.56 0.49

Kappa 0.44 0.62 0.58

CE 0.40 0.29 0.17

OE 0.44 0.27 0.45
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3.2.3 Optimal configuration for semantic
segmentation

Considering the relationship between block size and the number
of points on model performance, our experiments suggest that a block
size of S = 50m combined with P = 16,384 provides the most effective
configuration for bathymetric segmentation. This setting has a point
density of 6 points/m2, balancing spatial context and local feature
detail to achieve high segmentation accuracy across both river surface
and riverbed classes. This point density ensures sufficient coverage to
distinguish complex riverine geometry without overwhelming the
model with redundant points or excessive computational burden.
Validating the experiments on both the Swan River (training) and the
Snake River (testing) demonstrated that this configuration generalized
well across different river environments, supporting its applicability to
diverse bathymetric mapping tasks.

3.3 Neural network comparison

We first tested PointCNN’s performance against DGCNN with
optimized values for P and S (as defined in Section 3.1). We set P to
8,192 and S to 50 m. Both the training and testing were done using
the Swan River data. In Table 4, PointCNN has more balanced
results between Precision and Recall, leading to higher F1 scores
than DGCNN. This balance suggests that PointCNN is better at
identifying the correct points.

DGCNN manages to achieve low CE for the river surface and
riverbed classes but struggles with high OE. This indicates a
tendency to misclassify points more than PointCNN, which is
particularly problematic in classes requiring better scores, like
riverbed and river surface for our application. PointCNN’s
consistently high performance across both classes reflects its
robustness and adaptability to segmentation challenges. The
model’s ability to maintain low error rates while achieving high
IoU and Kappa scores shows its effectiveness in semantic
segmentation tasks.

3.4 Final model

For the final modeling, 80% of the data from the Swan and Eel
Rivers was used to train the model, while the remaining 20% was set

aside for testing on seen data. The results of these tests on the seen
data are detailed in Supplementary Appendix SA, demonstrating the
model’s performance across various metrics for the Swan and Eel
Rivers. For the final evaluation and analysis, the focus is on the
unseen data from the Snake River. This unseen data serves as a test of
the model’s ability to generalize and accurately classify river features
in previously unobserved environments, providing insights into its
overall performance. On average, the model training took 2 h and
50 min per epoch. Over 30 epochs, the total training time amounted
to approximately 85 h. For inference, the classification of the entire
Snake River dataset was completed in approximately 12 min.

3.4.1 Training and validation loss
The loss graph for the training model in Figure 6 shows the

changes in training loss and validation loss over 30 epochs. Initially,
both losses decrease rapidly, indicating effective learning. By the fifth
epoch losses drop significantly below 0.4. After the 13th epoch, the
loss values hardly change, and the reason the training loss becomes
slightly lower than the validation loss after epoch 13 is due to the
onset of overfitting. Therefore, the model was selected at the 13th
epoch to prevent overfitting and maintain good generalization
performance for the validation dataset. This decision is crucial to
balance underfitting and overfitting, optimizing the model’s
performance on unseen data.

3.4.2 Confusion matrix
A normalized confusion matrix was constructed to show the

inter-class relationships, providing insights into the patterns of
misclassifications. The normalized confusion matrix demonstrates
the classification performance of a model for four categories: river
surface, riverbed, ground, and other, with a particular emphasis on
the river-related classes. In Figure 7, the riverbed class was correctly
identified in 88% of instances. However, 8% of riverbed instances
were misclassified as ground, 2% as other, and 2% as river surface. In
the case of the river surface class, the model achieved its highest
accuracy, correctly classifying 93% of instances. Despite this high
accuracy, there were some misclassifications: 2% of river surface
instances were incorrectly predicted as riverbed and ground, and 3%
as other. These results highlight the model’s strong ability to
accurately identify river features, especially the river surface,
while indicating some confusion, primarily with ground and
other classes. This suggests that while the model effectively
distinguishes river features, there is still room for improvement
to reduce misclassification.

3.4.3 Performance metrics
The data in Table 5 showcases the performance metrics of the

classification model across four classes: river surface, riverbed,
ground, and other. The model exhibits strong performance, with
IoU scores above 0.67 for all classes. Notably, the river surface class
achieved the highest scores across all metrics, with an IoU of
0.89 and a Kappa statistic of 0.92, indicating excellent agreement.
Precision is consistently high, although slightly lower for the ground
and riverbed classes. The recall is exceptionally high for the riverbed,
suggesting good sensitivity. The F1 scores, which balance precision
and recall, are robust across all classes. The highlighted results in
Table 5 for the river surface indicate the most important
classifications where the model performed well. CE is lowest for

TABLE 4 Performance Metrics for PointCNN vs. DGCNN Models, Swan
River, MT.

Class Metric PointCNN DGCNN

River Surface IoU 0.92 0.63

Kappa 0.94 0.72

CE 0.01 0.01

OE 0.08 0.36

Riverbed IoU 0.81 0.59

Kappa 0.86 0.68

CE 0.09 0.09

OE 0.12 0.37
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the river surface, while OE was minimal for the riverbed and river
surface, highlighting the model’s accuracy in detecting these
features. Our training data was focused on areas along river
corridors, resulting in less training data from the ground and
other classes. This focus aligns with our application to classify
river surface and riverbed classes for depth correction. However,

PointCNN also shows potential for classifying non-bathymetric
classes with further training.

3.5 Depth adjustment

A detailed analysis of a river segmentation using both a top-
down and a cross-section view derived from the lidar data is shown
in Figure 8. The top section of the image presents a classified map of
the river and its surrounding areas, with different colors
representing the classes. The cross-section view compares
adjusted and unadjusted riverbed depths from the river surface.
The raw data is biased due to the bending and slowing of light as it
passes through the water. The adjusted depth from the river surface
is measured at 0.86 m, accounting for the refraction and distortion
effects caused by the interaction of the laser pulses with the water
column. By comparing these two measurements, the image
highlights the significant impact of the change in speed of light
on the accuracy of bathymetric data. Adjusting for these distortions
is crucial for producing reliable maps of underwater features.

3.6 Depth evaluation with ADCP
measurements

To evaluate our automated bathymetry lidar depth correction
workflow, we validated our results using 1,595 independent high-
accuracy ADCP depth measurements collected from the clear-water

FIGURE 6
Loss graph for training model over 30 epochs. Both the training loss and validation loss is measured to examine model fit.

FIGURE 7
Normalized confusion matrix for the Snake river, Wyoming.
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Snake River (Legleiter et al., 2016). Metrics used for the depth
accuracy validation are based on Pan et al. (2015a) and Legleiter
et al. (2016). Mean error was used to quantify the systematic offset
between predicted and true depths. The standard deviation of errors
measures the variability of individual errors around the mean,
reflecting the consistency of predictions. Root mean square error
(RMSE) combines both bias and variability into a single metric,
giving greater weight to larger errors. Mean absolute error (MAE)
captures the typical magnitude of errors without considering their
direction. Finally, the coefficient of determination (R2) assessed how
well the predicted depths explained the variability in the true depth
measurements, with values closer to 1 indicating stronger predictive
performance.

Initially, our uncorrected bathymetric data showed a mean
bias of 45 cm, indicating systematic overestimation. After
refraction correction, this bias was eliminated, reducing the
mean bias to 2 cm as shown in Table 6. This improvement
highlights the effectiveness of the method in addressing
systematic depth overestimation. Compared to previous
studies using the same dataset, our bathymetry depth accuracy
show improved mean bias. Pan et al. (2015a) and Legleiter et al.
(2016) reported mean bias of approximately 6 cm and 8 cm,
respectively, both higher than the 2 cm error achieved by our
automated method. The RMSE decreased from 0.47 m to 0.16 m
after correction, and the MAE decreased from 0.45 m to 0.12 m.
We observed a slight increase in the standard deviation of errors,

TABLE 5 Performance metrics for the Snake river, WY, S = 50 and P = 16,384.

Class IoU Accuracy Precision Recall F1 Kappa CE OE

River Surface 0.89 0.97 0.95 0.93 0.94 0.92 0.05 0.07

Riverbed 0.70 0.90 0.77 0.88 0.82 0.76 0.23 0.12

Ground 0.67 0.90 0.78 0.83 0.80 0.74 0.22 0.17

Other 0.68 0.91 0.91 0.73 0.81 0.76 0.09 0.27

FIGURE 8
The plan view at the top displays the spatial distribution of different classes. The profile below shows the unadjusted and adjusted depths of riverbed
class, along with other classes in a vertical view.
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from 0.12 m before correction to 0.15 m. This increase indicates
greater variability among corrected measurements rather than
persistent systematic errors. The model significantly improves
bathymetric accuracy by effectively eliminating bias and

achieving precision on par with previously published
continuous wavelet transform (CWT) based approaches. These
results confirm the reliability and consistency of our workflow for
automated bathymetric depth estimation.

TABLE 6 Comparison of depth accuracy for Snake River dataset.

Study Mean (m) Std. Dev. (m) R2 RMSE (m) MAE (m)

Our Model (Before depth correction) 0.45 0.12 0.95 0.47 0.45

Pan et al. (2015a) 0.06 0.14 0.93 N/A N/A

Legleiter et al. (2016) 0.08 0.16 0.95 N/A N/A

Our Model (After depth correction) 0.02 0.15 0.95 0.16 0.12

FIGURE 9
(a) Plan and profile view of two representative areas along the Snake River. The highlighted areas demonstrate locations where the algorithm
misclassified data, particularly around the river edges. The circled points are areas where the riverbed class is misclassified as ground and vice versa.
Histograms showing the frequency distribution of riverbed points misclassified as (b) ground and (c) river surface, plotted against their depth values
(distance from river surface to benthic layer) for the Snake River dataset. The red line in each subplot indicates the depth error that would result from
themisclassification due to the improper application of the speed of light correction. Misclassifications aremore frequent at shallower depths, with errors
increasing with water depth, the overall impact on point cloud accuracy remains minimal.
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3.7 Error analysis

The misclassification of the riverbed class as ground can be
attributed to several factors. The riverbed and the ground have
similar characteristics, especially near the edges of the river where
small changes in water level is the only factor governing the difference
between ground and riverbed classes. This likely confused classification
algorithms, leading to misclassification. Vegetation and debris on the
riverbed further complicated classification, as plants, fallen branches, or
other debris were mistaken for ground. These misclassifications often
occurred around the river’s edges, as shown in Figure 9a. One thing to
note is that this occurs in very shallow water regions, where the
elevation of the ground and water is nearly the same, and the river
surface class is absent because the river surface and benthic layer returns
overlap in the lidar response (Pan et al., 2015a).

In Figure 9b, the histogram (blue bars) shows that the majority of
misclassifications occur at shallower depths, with the frequency
decreasing as depth increases. A total of 431,225 points are
misclassified. The red line represents the depth error, which rises
linearly from 0.0 to 0.8 m as the depth ranges from 0.0 to 2.5 m.
Misclassifications are more frequent at shallower depths, with the errors
increasing with water depth. However, because a majority of the
misclassifications are in shallow areas, the overall point cloud errors
due to the improper application of refraction and speed of light
corrections is minimal for this majority of misclassified points. The
misclassification for river-related classes decreases with increasing water
depth and shallow river regions are more susceptible to errors. As
depicted in Figure 9c, most misclassifications between the riverbed
and river surface classes occur within the 0.4 m depth range. The
histogram (blue bars) reveals the majority of misclassifications occur
at shallower depths, with the frequency decreasing as depth increases. A
total of 127,162 points are misclassified. The red line illustrates the depth
error, which rises linearly from 0.0 to 0.2 m as the depth increases from
0.0 to 0.6 m. The algorithm struggles to accurately differentiate between
the benthic layer and the water surface in extremely shallow areas (below
20 cm), due to the laser pulse width of the bathymetric lidar system (8 ns
for Aquarius (Fernandez-Diaz et al., 2014) and 1.5 ns for the Riegl 840-G
(Mandlburger et al., 2020). The shallowwater lidar returns are normally a
convolution of the water surface and benthic layer, and therefore
distinguishing these two surfaces from convolved lidar returns is
difficult, both for the lidar processing algorithms (e.g., Schwarz et al.,
2019) and the machine learning results presented herein. Since most
misclassifications occur at very shallow depths where the differences
between the riverbed and surface are minimal, the impact due to
incorrect application of depth corrections and therefore the accuracy
of the final point cloud is minor. Figures 9b,c show that although the
algorithm struggles in shallow regions, the depth error caused by
misclassification remains relatively small and localized for the
majority of the misclassified points. As a result, the overall effect on
point cloud accuracy is minimal.

4 Discussion

4.1 Model generalization

The strong agreement between our corrected lidar depths and
independent ADCP measurements on the Snake River demonstrates

the robustness of the semantic segmentation results. The high
classification accuracy achieved for the river surface and riverbed
classes suggests that the model generalized well across different river
environments, despite being trained on datasets from geographically
distinct rivers. Because accurate river surface and riverbed identification
is important for reliable depth estimation, the close match with the
ADCP ground truth confirms that the semantic segmentation was
precise and can support real-world depth correction applications. These
findings indicate that our model effectively transfers across diverse
bathymetric conditions, leading to accurate and consistent results even
on an unseen river system. Because of the strong generalization
performance, we found no need for additional data or further data
augmentation techniques for training.

4.2 Computational efficiency and scalability

Deep learning models are often computationally intensive,
particularly for large-scale 3D point cloud data. This was evident
with DGCNN, which required nearly 7 h per epoch with a limited
batch size of 2 due to its dynamic graph recomputation at every layer. In
contrast, PointCNN demonstrated strong computational efficiency by
completing each training epoch in approximately 2 h and 50min with a
larger batch size of 6. This efficiency comes from the fixed
neighborhood structure, where local point relationships are
established once during initial sampling and reused throughout the
network, avoiding the costly repeat of graph construction. During
inference, PointCNN further demonstrated scalability by classifying
the entire Snake River dataset (approximately 20 million points) in just
12min. These results show that by integrating an efficient deep learning
model like PointCNN into our workflow, we achieve fast, scalable, and
practical processing for large-scale bathymetric lidar applications.

4.3 Model agnostic

Although PointCNN yielded the strongest results in our
experiments, the primary aim of this study was not to optimize a
specific architecture but to establish a generalizable workflow for
automating bathymetric lidar classification and depth correction.
The segmentation stage was designed to be modular, allowing for the
substitution of any deep learning model capable of distinguishing
the river surface from the riverbed points. Numerous point-cloud
segmentation architectures have been developed in recent years with
varying trade-offs in accuracy, complexity, and computational
efficiency. Our workflow demonstrated that such models can be
integrated interchangeably without altering the downstream
refraction-correction or depth-estimation components. This
flexibility enables the method to benefit from future
advancements in 3D point-cloud learning and provides a robust
foundation for developing fully automated bathymetric
processing pipelines.

4.4 Practical application

This study presents an automated workflow specifically aimed at
supporting engineering surveys that require accurate bathymetric
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mapping. By validating our corrected lidar depths against high-
accuracy ADCP measurements, we demonstrated that the method
reliably captures riverbed topography with minimal bias. The ability
to generate precise riverbed digital elevation models (DEMs) or
estimate river volumes makes this approach highly suitable for
bathymetric engineering surveys. By automating the classification
process, the workflow enables large-scale surveys to reduce time,
cost, and manual effort traditionally associated with riverine
bathymetric surveys.

4.5 Misclassification in shallow water

In PointCNN, X-Conv operations transform local
neighborhoods relative to a center point by applying a learned
transformation matrix. The effectiveness of classification relies on
meaningful spatial differences (x, y, z) and feature differences
among neighboring points. In shallow water regions, river surface
and riverbed points have minimal vertical separation. Similarly,
along riverbanks, the horizontal and vertical distances between
riverbed and ground points are small, resulting in overlapping
local geometries. When such local differences diminish, the
learned transformation matrix X cannot effectively distinguish
between classes, leading to increased misclassification errors.

5 Conclusion

The high scores achieved for both water surface and underwater
feature segmentation highlight that deep learning models, such as
PointCNN, can differentiate and classify accurately. We used about
275 km of river corridor bathymetric lidar data for training and
testing. Specifically, 27 km from the Swan River and 204 km from
the Eel River were used for training, while 44 km from the Snake
River were used for testing and evaluation. This comprehensive
dataset provided a robust foundation for evaluating the effectiveness
of our methods to identify and classify river surfaces and riverbeds.
We only trained and tested the model on subsets of ALS data using
narrow strips along the river corridor. Despite the variability in
sensor types, data density, and locations, the performance of the
model was not affected, demonstrating that it is weakly correlated
with these three factors.

The model achieved high accuracy using only the basic x, y, and
z point cloud coordinates as features, without the need for additional
attributes such as intensity or number of returns. Only the
coordinates were sufficient for classification, indicating that
semantic segmentation can be effectively achieved by focusing
solely on scene geometry. The structural (geometrical)
characteristics of the four classes used in this study were distinct
enough for the model to learn their differences.

The experiments highlighted the optimal configurations for
block size and the number of points in a block. The 50 m block
size and 16,384 points per block emerged as the most effective setup
for achieving high precision and recall in segmenting narrow and
shallow rivers. The 3D CNN(PointCNN) model’s performance was
also better than a graph-based model (DGCNN), providing better
precision and recall in our segmentation tasks. Successfully using the
semantic segmentation of PointCNN to automate riverbed data

depth correction eliminates the need for manual classification and
significantly enhances efficiency. The model enables precise depth
corrections by achieving IoU scores of 0.89 for river surface and
0.7 for riverbed classifications, accounting for light refraction effects
in water. Errors were primarily in shallow water, where the depth
correction has a negligible effect on the final point cloud accuracy.

The independent validation using ADCP measurements
highlights the robustness and accuracy of our depth correction
workflow. Achieving a mean depth bias of only 2 cm and an
RMSE of 16 cm confirms that the automated method produces
results consistent with the field data. This close agreement with
ADCP ground truth demonstrates that the model both generalizes
well to unseen river environments and meets the accuracy standards
required for real-world engineering applications. ADCP validation
showed the effectiveness of our approach in delivering operationally
reliable bathymetric data suitable for detailed bathymetry mapping.

In summary, the application of deep learning in our study
significantly improves traditional manual processes. Conventional
methods of analyzing point cloud data are time-consuming, labor-
intensive, and prone to human error. Our automated deep learning
approach reduces time and resource demandswhile ensuring consistent
and precise analysis of point cloud data. This automation enhances the
reliability and efficiency of bathymetry mapping, making it a valuable
tool for researchers and professionals in the field.

6 Limitations

Experiments using the number of returns as an additional
feature revealed that the x, y, and z coordinates alone provided
sufficient geometric information for the model to accurately
differentiate between the river surface and riverbed, rendering the
number of returns unnecessary. We also considered using intensity
as a feature, focusing on first returns only to avoid the potential
misleading effects of partial returns caused by factors like water
surface reflection and vegetation interference. However, this
approach led to significant data imbalance, making it impractical
to include intensity as a reliable feature in the model.

7 Future work

A potential improvement could be introduced by using attention
mechanisms in the network architecture. In an attention-based
framework, rather than treating all neighboring points equally,
the model learns to assign different importance weights to each
neighbor based on the relative spatial and feature differences from
the center point. This dynamic weighting allows the network to
focus on the most informative neighbors, improving its ability to
distinguish between river surface, riverbed, and ground points, even
under conditions of low geometric contrast. While similar attention-
based concepts have been successfully applied to point cloud
analysis in other domains, their potential for improving the
semantic segmentation of bathymetric lidar remains largely
unexplored. Future work could investigate adapting such
approaches to further enhance classification accuracy and depth
correction performance in challenging shallow water and riverbank
environments.
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