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Amid warming seas, high rates of pollution and declining fish stocks observed
around the UK, the vital role of kelp as ecosystem mediators on our coastlines is
increasingly significant; currently estimated at £500 billion. Extensive research on
the rapid decline of kelp forests and its potential consequences has prompted the
initiation of numerous conservation efforts. This research set out to determine
the applicability and efficiency of a less invasive, remote sensing technique for
monitoring kelp. A high resolution multibeam echosounder (MBES) survey was
performed to acquire depths, backscatter and water column data in an area
known to have kelp. An evaluation of different combinations of the MBES data
products for kelp forest monitoring was carried out. An image-based processing
methodology using a random forests algorithm was used to generate
classification models, which were trained and tested using ground truth
samples obtained through video imagery. This study reports climbing model
accuracy scores from 62.2% (±11%, 1σ) to 90% (±10%, 1σ) on consecutive input of
data products, indicating MBES as an effective tool with respect to other
technologies. When considering practical difficulties associated with
simultaneous record of all data products against their individual value, this
study suggests that bathymetry and backscatter products deliver greatest
value for distinction of small form kelp, while angular response analysis and
water column data deliver lesser value but are required for optimised accuracy.
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Introduction

The challenge to develop an effective and standardised approach to kelp forest
monitoring is significant. In a period where global environmental health metrics are
indicative of decline (Butchart et al., 2010), it is essential that strategies to monitor and
support foundation species are prioritised. Unfortunately, society’s reduced exposure to
marine ecosystems means that their value is generally overlooked (Townsend et al., 2018);
few people realise the extent of the benefits reaped from our oceans. The lack of attention,
compounded with the physical challenges associated with subsea monitoring, provides a
clear motive for the development of an innovative solution.

It is estimated that kelp forests generate ~$500 billion of natural capital value annually
(Eger et al., 2023). This claim is substantiated by the environmental roles of kelp that
include, but are not limited to, fixation of carbon to deep sea sinks (Wernberg et al., 2019;
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Filbee-Dexter et al., 2024), filtration and oxygenation of waters
(Umanzor and Stephens, 2023), provision of habitats for aquatic
life, and absorption of wave energy (Koehl, 1984; Morris et al., 2020).
Global abundance of kelp is falling by ~2% per annum (Wernberg
et al., 2019), however some areas report losses of up to 90% in living
memory (Eger et al., 2024). Decline is attributed to the increased
ubiquity of the known stressors of kelp (Wear et al., 2023), which
include overfishing, damaging fishing practices, warming seas, and
polluted waters. Within the UK, conservation efforts such as the
Sussex Kelp Recovery Project (SKRP) and the Great Yorkshire Kelp
Recovery project have been launched within the worst affected areas
where observational records indicate an almost complete loss of
what were once thriving kelp populations – the reported success of
these efforts depends partly on the effectiveness of the chosen
monitoring approach.

Numerous remote sensing technologies have been explored for
their applicability to kelp forest monitoring. Given the success of
Satellite Imagery as a tool for leveraging photosynthesizers’ unique
interactions with the visible spectrum to map terrestrial vegetation
(Alam et al., 2020; Liu et al., 2019; Wulder et al., 2024),
transferability to subsea photosynthesizers (including kelp) has
been investigated. Reported accuracies of models for
discrimination of expansive floating kelp forests derived from
Satellite Imagery are in the range of 80%–90% (St-Pierre and
Gagnon, 2020; Gendall et al., 2023). Low spatial and temporal
resolution limit the applicability of this technology for
monitoring of dynamic, small form and sparse kelp populations.
Cameras deployed on divers or towed frames are common due to
their affordability and ease of operation, however the poor coverage
and qualitative nature of output data makes production of spatial
distribution maps challenging. While automated image analysis of
subsea imagery has proven effective in controlled environments
(kelp farms) (Overrein et al., 2024), feature ambiguity in
uncontrolled waters means the technology still requires human
interpretation which is subjective in nature. Acoustic technologies
benefit from the improved propagation of sound through water
relative to light, and so constitute the bulk of the subsea
surveyors’ toolbox.

This study explores the use of the multibeam echosounder as a
tool for high resolution monitoring of kelp populations common to
the UK’s coastline, with a focus on identifying the added value of
each of the multibeam data products. Bathymetry, uncalibrated
backscatter mosaics, angular response analysis (ARA), and water
column (WC) data constitute the considered data products. While
previous research indicates improvement of classification model
performance on addition of each individual data product, variability
of parameters across studies means the scale of improvements
derived from each product cannot be compared. This research
works to unify the assessment of all data products within a single
study, enabling evaluation of their respective value.

MBES data was acquired in Lulworth Cove, situated on
England’s south coast. 2D georeferenced grids were produced for
each data product and used alongside ground truth data as input
into a random forests (RF) algorithm. Generation, testing, and
comparison of multiple models associated with different
combinations of data product inputs with varying levels of
smoothing provided an indication of the discriminatory power
derived from each product. Through consideration of each

product’s impact on model performance as well as the known
challenges associated with their collection, this study aims to
present pragmatic recommendations pertaining to design of an
MBES survey for kelp monitoring applications in the UK.
Additionally, this study aims to identify existing survey
campaigns in the UK that could be leveraged, by virtue of their
appropriate survey design (collection of the most valuable data
products), to facilitate cost-effective provision of data for
monitoring of kelp.

Methodology

Study site – Lulworth Cove

Lulworth Cove, situated on England’s south coast was
selected as the study area for this research due to its sheltered
nature, known presence of kelp, and good accessibility (Figure 1).
Depths within the cove rarely exceed 5 m (below chart datum),
with tides ranging between ~0.4 m and ~2 m during the week of
data collection in June 2024. The cove is almost fully enclosed,
with high cliffs providing good shelter from wind resulting in
minimal swells which was ideal for data collection using a small
USV. Through discussion with locals, a site visit, and evaluation
of satellite imagery, it was evident that the site had a strong
presence of kelp in the North West and South East of the cove,
with areas of weed and sand distributed towards the centre.
Reported kelp species include Laminaria digitata (Oarweed),
Laminaria hyperborea (Forest Kelp), and Sacchoriza
polyschides (Furbelows). Lulworth Cove is a tourist
destination, with provision of easy access and amenities.

Multibeam survey

Survey platform
The multibeam survey was conducted on the 26th of June 2024.

The chosen survey vessel was the UCL Tamesis, a Maritime Robotics
Otter USV, (Figure 2). The employment of the Tamesis was
appropriate for the following reasons:

• Small draft of the Tamesis (~15 cm) facilitates access to very
shallow waters, improving survey coverage. For survey of
sensitive environments, smaller craft could be considered
less invasive. This is especially significant given kelp’s
affinity to shoal rocks.

• Improved manoeuvrability. Small form relative to traditional
craft allows access to confined spaces, again
improving coverage

The Tamesis was equipped with a Norbit Winghead i80s
multibeam sonar (which includes an integrated sound velocity
probe and inertial measurement unit), a tightly coupled Applanix
POS MV and a Valeport Swift sound velocity probe (lowered via
winch). Maritime Robotics software was used for navigation, while
data was collected in both BeamworX’s NavAQ software and
Norbit’s proprietary user interface. Data was collected in two
software packages given:
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• Norbit’s s7k format is accepted by Espresso software (see data
processing methodology)

• BeamworX’s NavAQ software provides numerous live data
stream visualisations important for real time quality control

Survey design
Backscatter and water column data collection are optimised

through slightly differing survey designs. An important
consideration when recording all three data products
simultaneously with a Norbit system is that water column is only
collected for every 1 in 5 pings. In the interest of time, a single survey
was performed, with the following configuration based on
recommendations from equipment manuals and the literature
(Norbit, 2024).

A larger swath overlap is especially advantageous for
backscatter data collection, as it ensures that areas are
ensonified by pings at various angles of incidence. This
variability can then enhance the accuracy of ARA. This is also
a fundamental method for ensuring data quality through cross
validation of adjacent lines, as such 100% overlap was targeted.
Additionally, sharp turns were avoided due to the associated loss
of data at the outside extents of the swath.

Survey from multiple directions is common for a standard
bathymetric survey to facilitate further cross validation,
however, this approach results in ensonification from many
different perspectives - this has been known to reduce
coherence of backscatter data (Lamarche and Lurton, 2018;
Lurton et al., 2018) (especially for areas of complex
bathymetry such as Lulworth) as artefacts of inaccurate
backscatter slope correction begin to accrue. In practice, the
achievement of the above targets was variable largely due to
challenges including obstacles such as boats, mooring lines and
swimmers as well as the effect of tidal currents and swell on
vessel navigation. Figure 1 shows the post processed vessel
trajectory with the aim to visualise deviations from the
survey plan.

Multibeam echosounder configuration

Through the Norbit user interface, key parameters were set as
shown in Table 1.

Ensuring sweep time is constant through the survey is of
particular importance for backscatter surveys. The default Auto

FIGURE 1
Map of the Survey site produced in QGIS using satellite imagery as well as Ordnance Survey’s GB overview product. Red lines show survey track,
coloured points indicate the ground truth observations used.
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mode will jump between sweep times, complicating data processing
(Norbit, 2024).

GNSS sensors for absolute georeference
For absolute georeferencing of the Norbit system, and therefore

the soundings, Applanix GNSS receivers were used alongside
Norbit’s integrated IMU. Due to the steep cliffs surrounding the
cove, no mobile data was available, resulting in a reliance on
standard differential GNSS corrections (encoded within the
satellite transmission signal). 3D position was initially referenced
in WGS84 (ESPG: 4326) prior to transfomation to OSGB36 (ESPG:
27700) with Ordnance Datum Newlyn. OSTN15 and

OSGM15 models were used to derive horizontal and vertical
reference, respectively.

Sound velocity measurements
The cove receives inflow from a small freshwater stream to the

North, introducing some level of freshwater/saltwater mixing. Given
the contrasting properties of each water body and their impact on
acoustic propagation, it is important that mixing is modelled to
appropriately calculate the path and speed of the sound waves within
the water column. It is especially important to measure frequent
sound velocity (SV) profiles in this environment given the dynamic
effect of the flooding and ebbing tide on freshwater mixing. The

FIGURE 2
UCL Tamesis before launch from the beach at Lulworth Cove.

TABLE 1 Summary of key MBES configuration parameters.

Operating frequency 400 kHz - optimal frequency for the i80s

Pulse mode FM Long Range (500 µs sweep time), 0.9 cm range resolution (80 kHz pulse bandwidth)

Range resolution 0.9 cm (80 kHz pulse bandwidth)

Pulse amplitude (Power) Setting 15

Swath opening angle 130°

Beam distribution 1024 Equiangular beams

Beam steering No beam steering

Static Gain −30 dB

Gain settings Default Time Varying Gain settings

Ping rate Adaptive

Adaptive Gates Manual - Narrow

Stabilisation Roll stabilisation only – Pitch and Yaw stabilisation disabled
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sound velocity probe was therefore deployed via the onboard winch
every 30 minutes and the recorded profiles were imported into
NavAQ for live corrections. Six dips were taken with minimal
observed variation in SV.

Ground truth survey

The ground truth survey was performed on the 5th of July 2024.
A remote sensing approach (video imagery) was taken for ground
truthing (over traditional grab sampling approaches) to reduce
impact on the environment and simplify both acquisition and
processing. A small (~2 m) inflatable vessel was used to navigate
the site, while a weighted line was used to lower a GoPro Hero
5 Session to the seabed. Video was recorded to provide both the local
bed type and contextual information (water column and
surrounding area). To combat light attenuation, survey was
performed near low tide to improve natural light, and an LED
panel was appended to the camera line. Sample sites were selected at
graduated distances along transects within the survey area,
producing a grid with approximate 5–10 m separation. A
Trimble R12i GNSS receiver was used to log raw GNSS
observables, which were later processed relative to nearby
Ordnance Survey reference stations using published RINEX data.
Due to the layback of the rope, horizontal error of ground truth
positions is estimated to be ~1 m. A total of 92 ground truth samples
were collected.

Data processing

The data processing methodology consists of independent
workflows for each of the MBES data products and video survey
to produce 2D georeferenced raster layers and ground truth points,
respectively. Supervised image classification was then performed
using a random forests machine learning algorithm, which was
validated by an unused subset of the ground truth points. Several
different models were produced to test the effect of:

• Contribution of each data product on model performance
• Varying neighbourhood sizes when generating
derivative layers

Figure 3 visualises the key steps within the data processing
methodology leading to generation of a classification model, each
processing step is then discussed in further detail below.

Preliminary MBES data corrections

On import of s7k files into both AutoClean and Qimera,
corrections were made to account for:

1. Real-time GNSS inaccuracies
2. Angular misalignment of the sonar head
3. Sound velocity profiles within the water column

FIGURE 3
A flowchart of the processing workflow. Data and parameters were adjusted to produce models for subsequent comparison.
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Post processing of position and motion data
As discussed, Real Time Kinematic GNSS corrections were not

available on site. Applanix’s POSPac software was used for post
processing the combined motion and position. Logged GNSS
observables (in RINEX format) from a local OS Net reference
station (the closest being Portland Bill) were downloaded. A
double differencing approach was taken for correction of most
environment and hardware derived errors. A
Rauch–Tung–Striebel (R–T–S) fixed-interval smoother was also
applied prior to generation of the finalised trajectory in the form
of an SBET (Smoothed Best Estimate of Trajectory) file (Gong
et al., 2013).

Angular misalignment of the sonar head
A patch test was performed in AutoPatch to define the angular

misalignment of the sonar head with respect to the inertial
measurement unit. Values were then applied in AutoClean.

Sound velocity profiles
Although applied in real time to improve live quality control,

measured sound velocity profiles were visually assessed for outliers
and edited accordingly before being reapplied. Profiles nearest in
time to each ping were used for corrections.

Bathymetry

Once the above corrections had been applied, data was cleaned,
gridded, and exported using BeamworX AutoClean. Due to the
small size and high complexity of the site, the majority of the data
cleaning was performed manually, with occasional use of a Cloth
Simulation Filter (CSF) (Sabirova et al., 2019). After cleaning, two
raster layers were exported after sorting based on mean depths
within cells of size 0.25 m. Raster layers were exported as
TIFFs (Figure 6).

Backscatter

Backscatter processing was performed in the QPS FMGT
(v7.11.1) software. Bathymetric corrections were made as
described in Preliminary MBES data corrections. After cleaning in
AutoClean, data was exported as GSF files - these were then merged
with raw s7k files in FMGT. Merger of GSF and s7k files allows for
use of the processed navigation, attitude and sounding data present
in the GSF as well as the raw backscatter intensities present in the
s7k. Beam pattern corrections, radiometric corrections and Angle
Varying Gain (AVG) were applied in FMGT prior to mosaicking. A
mosaic was generated at a resolution of 0.25 m and exported as a
TIFF. Angular response analysis (ARA) layers were also generated at
a resolution of 0.25 m and exported, namely “Impedance” (sediment
bulk density multiplied by sound velocity ratio) (Pouliquen and
Lyons, 2002), “Volume” (Jackson et al., 1986), and Phi (mean grain
size) (Porskamp et al., 2022). FMGT currently does not support
export of ARA layers as floating values, layers were therefore
normalised to fit within a 0–255 range (layers were exported as
8-bit TIFFs). Although ARA is derived from backscatter data, it was
treated in this study as a separate data product – commercial

software packages vary in their ability to perform ARA, access to
a backscatter mosaic and not ARA products is therefore a possibility.
See Figure 6 for backscatter and ARA products.

Water column

Water column data was processed in Espresso software (Turco
et al., 2022; Porskamp et al., 2022). S7k files were loaded, converted,
and processed in accordance with Espresso’s workflow. Raster
mosaic layers were generated for the WC 0–1 m and 1–2 m
above the bottom detections. Processing included:

1. Masking of data within 1 m of the sonar head, all bottom
detections, and all data below the bottom detections.

2. Application of radiometric corrections
3. Filtering of sidelobe artefacts. The filtering process makes use

of a Slant Range Signal Normalisation algorithm (Schimel
et al., 2020).

WC for each depth range was then gridded to a resolution of
0.25 m and exported as a TIFF (Figure 6).

Ground truth

After post processing of GNSS observables in Trimble Business
Centre, ground truth data points were positioned to sub decimetric
precisions. All ground truth points were then manually classed
according to the schema outlined in Figure 4. Each category was
assigned an integer value to comply with the RF algorithm’s
requirement for numeric categorisation.

Once classified, data was stored in a CSV file with columns
labelled “x,” “y,” “class.”Due to the nature of the site, representation
of classes “Laminaria Digitata” and “Sand” was lower in the ground
truth dataset relative to “Mixed Weed/Kelp.” Given that imbalanced
train/test datasets can lead to overfitting of the majority class
(Johnson and Khoshgoftaar, 2020), random down sampling of
majority classes was performed – 29 ground truth points
remained. A Synthetic Minority Oversampling Technique
(SMOTE) (Elreedy et al., 2024) was trialled but failed to correctly
model the bed type.

Python processing

Standardisation of raster layer properties
Using bespoke code in python, several data preparation steps

were performed prior to development of the classification models.
Given that raster layers are stacked for data extraction at each pixel,
both the extents and the resolution of each raster layer need to be
identical. Spatial resolution was checked to be 0.25 m and raster
layers were clipped to common spatial extents.

Next, “NoData” values were standardised. Sci-Kit’s Random
Forests function does not accept the “NoData” string as a pixel
value, so all no data values were converted to a placeholder integer. A
standardised no data value of 9999 was chosen over 0 as some
genuine values were equal to 0 (within the span bathymetry grid).
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Generation of derivatives
For the bathymetry grid, the following derivatives were then

generated using varying neighbourhood sizes (k = 3, 9, 15, 21,
27, 33):

• Mean
• Standard Deviation
• Slope
• Rugosity
• Curvature
• Eastness
• Northness

The same was performed for the backscatter mosaic, however only
mean and standard deviation derivative layers apply. Derivatives were
chosen based on their efficacy in previous studies (Porskamp et al.,
2022). Derivatives were generated at different scales using SciPy’s
Generic Filter module – smaller neighbourhood sizes are preferential
for capturing finer details however are more susceptible to noise, larger
neighbourhood sizes are resilient to noise but can lead to underfitting
(Deng et al., 2023).

Segmentation and aggregation of ARA and
WC layers

For the following reasons, ARA and WC layers required
additional processing steps:

• ARA layers contained excess noise, likely due to failure to
achieve the data acquisition targets outlined in Survey design
above. Regions with reduced overlap suffer from fewer angular
response comparisons

• Due to the implementation of the sidelobe filtering algorithm
in Espresso, the WC mosaics suffered from narrowing swath
widths and subsequent data gaps.

To combat the above, ARA and WC values were aggregated
according to segments derived from the backscatter mosaic.
Segmentation was performed in ArcGIS Pro, where a mean shift
segmentation approach was implemented (Zhou et al., 2011).
Parameters were adjusted until segments were representative of

the bed’s variation at a level of detail equivalent to the desired
classification resolution – spectral detail, spatial detail, and
minimum segment size were set at 18, 1 and 20, respectively. For
each of the ARA andWC layers, values of pixels within each segment
were averaged and reassigned to all pixels within the segment.
Figure 5 shows the results of the segmentation and aggregation
process for WC (1–2 m) and ARA (Impedance) layers.

Random forests algorithm
Classification models were generated using Sci-Kit’s random

forests (RF) algorithm. Hyperparameters were tuned using an
iterative grid search function (also from Sci-Kit) – 150 trees were
found to be optimal and used for all models. A K-Folds validation
method was employed, whereby data is split into distinct training
and testing subsets, with prediction accuracy of the trained model
informing performance metrics. Accuracy and F1-score metrics
were output and evaluated for statistical significance using an
ANOVA and Tukey’s HSD tests. This training and testing split is
performed k number of times, with multiple rounds ensuring that
the trained model is robust to different areas within the site. Given
the small number of ground truth points, 3 folds (k = 3) were
performed for model evaluation. A random state seed value of
42 was used for all RF executions to ensure data splits are
reproducible and consistent amongst trials.

Model performance was measured using several different statistics.
For each fold, the following metrics were output and averaged:

• Accuracy metric representing the percentage of successful
predictions

• Precision metric representing the number of successful
positive predictions over total positive predictions
(successful and unsuccessful) for each class

• Recall metric representing the number of successful positive
predictions over total number of positive samples (regardless
of prediction success) for each class

• F1-score which is the harmonic mean of both precision
and recall

In Sci-kit learn, a global feature importance measure, namely the
Gini importance, was used to attribute normalised importance

FIGURE 4
Classification schema. Labels and example screenshots taken from the ground truth video imagery survey.
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values to each input feature (in this case the input raster layers)
(Saarela and Jauhiainen, 2021; Hapfelmeier et al., 2014). Although
importance values do not come with metadata to facilitate
evaluation of their trustworthiness, they do provide insight into
what layers provide the best discriminatory power.

Results

From each of the data product outputs (Figure 6), common
seabed patterns can be discerned. Through assessment of ground
truth data, satellite imagery, and site observations these patterns
appear to correlate with different seabed types. Perhaps the most
clearly defined zone across all data product outputs is in the
North West of the survey area, which is associated with sandy
seabed. From the Bathymetry, Backscatter and ARA outputs it is
possible to discern areas of dense foliage to the West/South West,
as well as more sparse foliage in the North. It is difficult to discern
dense foliage from sparse foliage based on the water
column outputs.

Performance across data product input

Model accuracy
As shown in Figure 7, mean accuracy values ranged from 62% ±

11% (1σ) (Bathymetry) to 90% ± 10% (1σ) (All products) – error

bars indicate standard deviation across folds. Mean accuracies
indicate a steady increase in ability to distinguish bed types as
each data product is input, with consecutive additions producing
accuracy improvements of between 3%–17%.

An ANOVA test of fold accuracies for each model returned an
F-statistic of 4.21 (2 d.p) and P value of 0.046 (3 d.p). The null
hypothesis that all models have indifferent accuracies can therefore
be rejected to a confidence level (CL) of 95%. A subsequent Tukey’s
HSD test determined that a statistically significant (CL of 95%)
difference in accuracy was only present between the models derived
from Bathymetry and all products (Bathymetry, Backscatter, ARA,
and WC) – the mean difference is 27.8% and the Tukey’s P value is
0.047 (3 d.p).

F1-score
Reporting of F1-scores provides some insight into the

effect of each data product on model recall and precision for
each class. Figure 8 shows F1-scores averaged over each fold,
with error bars delimiting standard deviation. It appears that
mixed weed/kelp is poorly predicted when the model is solely
reliant on bathymetry data, scores then climb steadily as each
product is incorporated. Prediction of Laminaria Digitata is
relatively reliable even for the most basic model, while scores for
Sand prediction jump on input of the backscatter data.
Variability across folds means that none of the differences
between models for each class are statistically significant (to
a CL of 95%) – the Weed class is closest, with a P value of 0.156

FIGURE 5
ARA Impedance and Water Column data before and after aggregation. Selection of maps showing the effect of aggregation of WC and ARA raster
layers with respect to a segmented backscattermosaic. To the upper left is theWC data between 1 and 2m above the seabed inmosaic form, produced in
Espresso. To the upper right is the ARA Impedance, produced in FMGT. The aggregation process was performed for a total of 5 raster layers. Maps
generated in ArcGIS Pro.
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(3 d.p). On top of this, there are no statistically significant (95%
CL) differences between F1-scores of different classes within
any one model – the lowest P value being 0.115 (3 d.p) for the
Bathymetry model.

Variable importances
Figure 9 shows the top 20 highest normalised feature

importances reported after generation of the most accurate
model (input of all data products).

FIGURE 6
All data product outputs at a resolution of 0.25m. (A)Mean bathymetry (BeamworX)in metres above ODN (B) Backscatter mosaic (ArcGIS) (C) Echo
integrated water column mosaic 0-1m above the seabed (ArcGIS) (D) Echo integrated water column mosaic 1–2 m above the seabed (ArcGIS) (E) ARA
Impedance (QGIS) (F) ARA Phi (QGIS) (G) ARA Volume (QGIS).
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There is a clear reliance on backscatter standard deviation and
bathymetry derived rugosity layers, these constitute the top 7 most
important features. It is also important to note the neighbourhood
scales of the most important layers – there is a disproportionate
presence of the derivative layers calculated using larger k values. Of
the ARA layers, only ARA Phi is included in the top 20. Only the
WC layer between 0 and 1 m is included. All 61 layers were used for
generation of the classifier except for mean bathymetry layers where
k = 21 and k = 27, which had importance values of 0.

Smoothing improved model accuracy

As shown in Figure 10, the model input with the full range of
derivatives reported higher accuracy than the one only using
derivatives smoothed with a neighbourhood of size 3.

The accuracy of the model with all derivative layers was reported
to be 27.5 percentage points higher than the model with the smaller
neighbourhood size. A t-test was performed and produced a P value
of 0.051. As this is greater than the critical value of 0.05 (for a 95%
CL), the null hypothesis that the model accuracies are not
significantly different can be accepted.

Classification maps

The output classification maps themselves can also be used to
better understand how the model uses input layers to classify, as
well as areas of higher and lower performance. While evaluation
of the classification maps is qualitative, it does constitute an
independent check of model performance across the entire site,
rather than being limited to the ground truth sample points.

FIGURE 7
Mean accuracies across three folds for each of the data product combinations. Error bars indicate standard deviation, while the asterisks over
Bathymetry and All Products models indicate statistical significance (at a CL of 95%).

FIGURE 8
Class F1-scores across models. See discussion for assessment of trustworthiness.
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Figure 11 shows a classification map for each model. All
classification maps present similar distributions of each class
within the survey site (dominance of Sand in the East, Mixed
Weed/Kelp in the middle and Laminaria Digitata in the West).
Besides some disagreement at the intersection of all three classes
in the Northwest, classification maps generated by all three
models except for the bathymetry only model are very similar.
The bathymetry only classification map presents striations of
Sand within the areas dominated by Mixed Weed/Kelp – these
striations mirror the appearance of the bedrock on which the
Mixed Weed/Kelp is attached.

Discussion

All products classification model accuracy

When using all available MBES data products, an average of
90% ± 10% (1σ) of all test sample predictions were correct, while the
class Laminaria Digitata achieved an F1-score of 89% ± 19% (1σ)
(2 s.f). These scores are “good” by most image classification
standards; however, the specific application of such technology
will determine whether the method is fit for purpose. For
monitoring projects for conservation of kelp, this method is far

FIGURE 9
Top 20 variable importances for the All-Products’ classification model. See discussion for assessment of trustworthiness.

FIGURE 10
Plot showing the effect of differing levels of smoothing on model accuracy.
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superior to traditional technologies such as towed cameras that
feature an overreliance on observational and interpolated data,
leading to overgeneralisation and therefore inaccuracy.

The study by Porskamp et al. (2022) is the only other example of
previous research that considers all MBES data products for an
image based classification of macroalgae. The accuracy reported for
the relevant model was 67.77%, with the macroalgae class scoring
76.57%. The variations between these studies could be due to several
reasons, these are discussed below.

Differing survey sites
The Porskamp, Schimel et al. (2022) study site was in Southern

Australia and housed different species of kelp. Named macroalgae
species observed in the ground truth survey included Seirococcus
axilaris, Acrocarpia paniculata and Cystophora platylobium–the
acoustic properties of these species likely differ from those found in
the UK. Given that an accurate model will discriminate based on
contrasting properties of the seabed, similarities amongst the bed types
will make classes inherently difficult to differentiate. This is perhaps
particularly pertinent in the Porskamp et al. (2022) study as there is a
class containing “tall branching sponge communities” - these may bear
similar characteristics with the macroalgae and therefore explain
confusion between classes. The Porskamp et al. (2022) study was
conducted in an open coastal environment over a much greater
depth range, the greater noise and reduced data density associated
with this environment may have influenced model performance.

Differing input layer resolutions
This study inputted raster layers at a horizontal resolution of

0.25 m, while Porskamp et al. (2022) used layers at a resolution of
1 m. Higher resolution could explain the greater model accuracies.
The smoothing effect associated with calculating derivatives using k
neighbourhoods likely results in further loss of detail and model
accuracy - Porskamp et al. (2022) used greater neighbourhood sizes
(up to 501). Equally, it could be that discrete areas of a single bed
type within the site were smaller and therefore more prone to
misclassification.

Larger classification schema
The category including brown macroalgae (kelp) was only

introduced in the classification schema of the highest detail,
where there were 7 other categories. By virtue of a higher
number of categories, the probability of misclassification increases.

Model accuracy on addition of MBES
data products

The results showed a steady increase in mean accuracy as each
data product was inputted. This data serves to inform survey design
for MBES kelp monitoring surveys, as the added value of
incorporation of each data product can be considered against the
challenges associated with their collection.

FIGURE 11
Classification maps representing the effect of consecutive addition of data products. Maps generated in ArcGIS Pro.
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Value of bathymetry
The model generated on input of bathymetry and its derivatives

achieved surprisingly good accuracy of 62.2% (±0.11%, 1σ). A study
performed over similar seabed containing seagrass species in Greece
reported similar results, whereby the bathymetry only model
achieved an accuracy of 62.8% (Fakiris et al., 2019). The F1-
scores indicated better precision and recall of the class Laminaria
Digitata (F1-score of 0.785) relative to classes Mixed Kelp and Sand
(F1-scores of 0.451 and 0.574, respectively). This is likely because of
the dense foliage associated with the class Laminaria Digitata was
classified as bottom detections, so the kelp morphology was
represented in the data product. On the other hand, the Mixed
Kelp class contained less dense foliage, so bottom detections may be
representative of the actual seabed rather than the kelp canopy – the
model’s confusion between Sand and Mixed Kelp is therefore more
understandable. Also, given that the class Laminaria Digitata
contains only one species, there will be less variation within the
class, and characteristics will therefore be well represented at the
ground truth points. On the other hand, the extensive variation of
kelp species present in the Mixed Kelp class are unlikely to be well
represented in the small number of training samples. Bathymetry
data is logged by MBES systems as standard and provides a strong
foundation prior to supplementation with other data products.

Value of backscatter intensities
On addition of the backscatter mosaic and its derivative layers,

the model accuracy increased by 17.4 percentage points. Fakiris et al.
(2019) also reported a significant jump after input of the MBES
backscatter mosaic, with model performance increasing from 62.8%
to 74.2%. F1-scores suggest that while the Laminaria Digitata class
precision and recall rises slightly on addition of backscatter data,
Mixed Kelp and Sand rise more significantly, by 25.1% and 28.3%,
respectively. While bathymetry only considers the bottom detection
points, snippets data includes samples in proximity to the bottom
detection (within the snippets window). Therefore, even if the
bottom detections are representative of the seabed rather than
the canopy (as suggested in Value of Bathymetry), the backscatter
mosaic will likely consider reflectivity of the kelp foliage (if it exists
within the snippets window). The differing reflectivity of sand and
kelp provide strong discriminatory power in areas that bathymetry
alone could not provide. Backscatter snippets are particularly
valuable in this study as features are at or near the bottom
detection point, kelp species where foliage is not proximal to the
seabed (such as Bull kelp) will likely not be detected. Optimal survey
design for backscatter and bathymetry differs slightly, however
compromises can be made without major reduction in data quality.

Value of angular range analysis
This study found that mean model accuracy increased by

7.1 percentage points on addition of ARA layers, although this
increase is not statistically significant. These results are somewhat
supported by those presented in Che Hasan et al. (2014) and Fakiris
et al. (2019), whereby the ARA features improved classification
accuracy by 5.1% and 2.4%, respectively. Che Hasan et al. (2014),
however, reported ARA features to be more important than the
backscatter mosaic (and its derivatives), a finding not observed
during this study. The observed insignificance of the ARA features is
likely at least in part due to ground truth sample size and loss of

detail associated with the aggregation process, both of which are
discussed in Study limitations. While ARA Impedance, Volume, and
Phi were identified as the most valuable exports for a similar
classification application (Porskamp et al., 2022), they are derived
from the ARA mean and so may not retain across track angular
resolution. The value of the ARA data may have been improved if
separate layers were exported for the distinct angular ranges (nadir,
near and far) (Lurton et al., 2015). To perform meaningful angular
response analysis, 100% overlap is required instead of the commonly
adopted 20% target for standard bathymetry survey.While increased
overlap does not degrade bathymetry data (data redundancy is
healthy), it will significantly increase survey time.

Value of water column data
This study found a rise of mean accuracy by 3.3% on additional

input of WC data – this increase is not statistically significant;
however this is likely at least in part due to validation sample size,
which is discussed further in Study limitations. A marginal gain
returned after addition of water column data was also observed in
Porskamp et al. (2022), where model accuracy improved by 1.18%.
The small increase in performance on input of WC data could be
attributed to the small form of kelp present in this study – from the
ground truth it was clear that all the kelp species rarely exceeded
30 cm in height, with the exception of Sea Oak (Halidrys siliquosa)
which occasionally exceeded 1 m. Also, the density of kelp in some
regions (western extents) meant that the canopy returns were
classified as bottom detections – intensities were therefore
captured by the backscatter (snippets) rather than the WC
(where bottom detections were masked in processing). Efficacy of
WC data is likely greater for monitoring kelp species such as bull
kelp and giant kelp, where there is a greater prominence of foliage
within the water column. Problems associated with the increasing
data volumes attributed to improved sonar systems (wider swath,
increased ping rates) are compounded when all data products are
acquired. As returns and intensities are logged over increasing
portions of the echogram for each beam, data volumes rise
dramatically from bathymetry to backscatter (snippets) to water
column. Despite compression of WC data by many systems
(including the Norbit system used in this study), data storage,
transfer, and processing can still become significant challenges.
Although all data considered in this study was collected during a
single survey, an additional survey was performed beforehand to
refine configurations, collecting bathymetry and backscatter
(snippets) data only. The volume of MBES data collected during
the test survey totalled 6.15 GB, while collected data volume from
the survey with all products (including WC) totalled 18.7 GB. It is
important to note that as both backscatter and WC were collected
simultaneously, the Norbit system automatically restricted WC
logging to 1 in every 5 pings – logging WC data for every ping
would have further increased volume. While these surveys were not
identical, they were performed for approximately equal amounts of
time over the same area, and so their comparison provides an
indication of the effect of WC data collection on data volumes.
This study was designed as a proof of concept at a scale whereby this
was not problematic, however a cost-effective implementation of
this technology will surely be on a larger scale; the necessity of WC
data therefore must be questioned. It seems thatWC data is required
for optimal model performance, however improvements are small,
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and model performance is already strong prior to its
inclusion – opting not to collect WC data could be the more
cost-effective solution.

Model inaccuracies undetected by
validation method

Performance metrics are based on subsets of the ground truth
sampling points and serve only as an estimation of true
performance. Knowledge of the site, derived from observations
during acquisition, ground truth, and the MBES data itself, can
serve as a means for further validation. On generating the
classification maps, it was clear that a particular area had been
misclassified due to presence of a mooring line – Figure 12 shows a
screenshot of the point cloud as well as an indication of the area on a
classification map. This misclassification examples the vulnerability
of machine learning methodologies to anomalies not represented in
the training data – the extension of the mooring line into the water
column has obvious similarities with the Laminaria Digitata class,
explaining the classification as such.

MBES technology for high resolution kelp
monitoring

Although the output classification maps are of 0.25 m resolution,
the smoothing performed for generation of the derivative layers reduces
the effective resolution. The variable importances suggest that in order
to maximise performance, layers derived with neighbourhood sizes of
21, 27 and 33 pixels were favoured – each pixel describes the variation
over a ~5–9 m square. When minimal smoothing is performed (only
derivatives of k = 3 are input), model accuracy falls from 90% (±10%,
1σ) to 62.6% (±11%, 1σ). This fall in accuracy is likely related to the
training data – if resolution exceeds the positioning accuracy of the
ground truth, the model will be trained and tested improperly. Also,
classification of ground truth samples was performed with the

positioning imprecision in mind, classes were assigned based on the
properties of the local area of seabed rather than directly below the
camera. As a result, the indication that accuracy suffers at high
resolution (0.25 m) is likely due mostly to design of the ground
truth survey rather than shortcomings of the MBES technology.
While the increased data samples attributed to snippets means
mosaic resolution can be high, resolution of bathymetry data often
restricts the resolution of model inputs (as all layers must be of the same
resolution and extents). Rate of data collection of modern MBES
systems in shallow water facilitates gridding at a resolution of
0.25 m (sufficient samples are required in each pixel to improve
confidence) – while more resolute grids can be produced, the
increased survey time makes this costly. Even if different kelp
species could be distinguished based on form and reflectivity,
0.25 m resolution is not sufficient to discriminate between single
organisms within a mixed kelp bed (see Figure 13 below for a
highly mixed kelp bed). As a result, some level of aggregation (as
seen in the Laminaria Digitata class) is required for successful
identification of a kelp species.

Study limitations

This study was designed in accordance with several constraints,
some of which introduced limitations.

Sub optimal navigation tracks
As discussed in the methodology, the study site was chosen for

its known presence of kelp as well as its sheltered waters to suit the
survey platform. Due to the high occurrence of obstacles within the
cove and poor navigational control of the survey vessel, motion
artefacts accrued within the backscatter mosaic (despite post
processing of position and motion data) – reasons for this are
discussed in the Survey design. The effect of the sub-optimal
navigation on predictive accuracy is difficult to quantify however
is likely to be minimal given most of the site characterised by flat
seabed (Lurton et al., 2018).

FIGURE 12
Indication of misclassification by Bathymetry and Classification map comparison. Left: Screenshot taken from Autoclean (BeamworX) shwoing
bathymetry grid and an inspection area containing point data of a mooring line. Both are coloured according to height above ODN. Right: All data
products classification map with a red box delimiting the extents equivalent to the inspection area in Autoclean. The mooring line has caused a
misclassification.
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Lack of ground truth samples for training
and testing

Lack of training samples reduces the ability of the Random
Forests algorithm to derive relationships between classes and
extracted features, while lack of testing samples reduces the
ability to confidently evaluate the model. The lack of samples
relates to the disproportionality of class presence (by area) within
the site, large areas were classed as Mixed Weed/Kelp. This
disproportionality was then reflected in the ground truth
dataset, with the classes Laminaria Digitata, Mixed Weed/Kelp
and Sand represented by 61, 18 and 13 samples, respectively. For
sites of complex class distribution, synthetic up-sampling
techniques are unreliable; down-sampling of majority classes
is therefore the only way to prevent imbalance and overfitting.
Although ground truth samples could be made at a higher
density, this could introduce effects of spatial autocorrelation,
whereby the RF algorithm learns to what extent homogeneous
classes aggregate in space, leading to geographical variables (X,
Y) being used to improve prediction – this introduces
overestimation of model accuracy and poor predictive
performance on unseen data (Griffith and Chun, 2014).

Loss of detail associated with the segmentation
and aggregation process

The approach taken when dealing with missing values has been
shown to have a significant impact on Machine Learning derived
models (Hasan et al., 2021). The poor spatial coverage of the ARA
and WC data relative to the bathymetry and backscatter warranted
the reliance on a different approach to dealing with missing values.
While the segmentation and aggregation method used in this study
improves spatial coverage, it also involves averaging large amounts
of data – this inevitably removes much of the detail within these
datasets. As well as this, the segmentation was performed using the
backscatter dataset – by averaging over segments produced based on
a different dataset, the patterns inherent to the ARA and WC
datasets may be lost or skewed.

Positional accuracy of ground truth data
While GNSS observables were post processed to achieve sub-

decimetric precision, layback of the weighted rope introduces
additional error. While this error is difficult to quantify given it
is highly dependent on depth, current and speed of rope release, it is
estimated to be up to 1 m. Given that a model cannot accurately
resolve beyond the resolution of its training data, this constitutes a
significant limitation. Layback could be mitigated by use of a
telescopic pole instead of rope (significant practical challenges) or
incorporation of SONAR based positioning such as Ultra Short Base
Line (USBL) (high expense).

Identification of kelp species from ground
truthing imagery

Kelp was identified and subsequently classified based on
morphological characteristics. As some kelp species appear
similar to the untrained eye, ground truth samples may in some
instances suffer from misclassification. Figure 13 examples
this ambiguity.

Correlation of input variables
Naturally, input layers are highly correlated, especially given that

many are derived from the same data. Although correlated variables
are known to cause overfitting for many machine learning
algorithms, Random Forests (as well as other decision tree
algorithms) are known to be robust to multicollinearity
(Grömping, 2009; Dormann et al., 2013). Despite this, it is noted
that collinearity can have an impact on variable importance scores,
making them unreliable. With more time, this study would have
benefitted from some form of iterative feature selection procedure to
mitigate this problem.

Software provision
The novel WC processing software Espresso is the first to

produce WC mosaics, an exciting development when considering
image classification methodologies for benthic monitoring. Despite

FIGURE 13
A screenshot of a ground truth sample containing several species of kelp in close proximity.
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this, the current version does not support some functions common
to other MBES processing software.

• A post processed trajectory (such as Applanix’s SBET) cannot
be applied. A reliance on the live trajectory is particularly
damaging in this study given that only satellite based DGNSS
corrections were received and applied (resulting in GNSS
accuracies in the order of tens of centimetres)

• Sound velocity corrections cannot be applied

Opportunities for integration with present
survey campaigns

MBES technology has become standard for the majority of
subsea survey applications. As accessibility and capability of
hardware improves, there has been an occurrence of exponential
growth in data acquired both within the UK and globally.
Emergence of USVs is expected to compound this growth as well
as improve coverage in otherwise uncharted territories.
Organisations such as the UKHO commission regular surveys for
safety of navigation, while the huge volume of engineering works in
the energy and communications sectors demands frequent near
shore surveys. The regularity and often iterative nature of these
MBES surveys paired with their presence in near shore regions
makes for potentially valuable data with regards to kelp forest
monitoring. This study shows that acquisition of multiple data
products, collected with minimal deviation from standard
bathymetric survey design, can be leveraged to distinguish kelp
species; although the challenge of coordination is significant there is
clear opportunity to exploit existing survey infrastructure to derive
valuable kelp distribution data as a biproduct, which will form the
foundation of kelp forest conservation efforts.

Conclusion and recommendations

While considering other technologies, this study has
demonstrated the applicability of MBES systems for monitoring
kelp species common to the UK coastline, with models achieving
mean accuracy scores as high as 90% (±10%, 1σ). The classification
schema used demonstrates the ability to distinguish a single kelp
species from areas of mixed kelp (provided it is sufficiently
aggregated) – F1-score for the class Laminaria Digitata was 0.889
(3 d.p). Distinction of kelp species is of interest given the range of
different environmental services they provide. Features such as
capacity for improved spatial and temporal resolution relative to
satellite imagery as well as superior coverage relative to camera surveys
likely outweigh the costs associated with hardware, software, and
training. When considering MBES data products, bathymetry,
backscatter (including ARA) and water column all improved
discriminatory power. Bathymetry and backscatter were highly
valuable and introduce fewer trade-offs while ARA and WC
products introduced less impressive model accuracy improvements
and challenges with survey design and data volumes, respectively. The
primary limitation of this study was that, by virtue of a small study
area, amount of training and testing data was reduced, leading to
reduced confidence in model performance metrics.

Future research could work to improve confidence in observed
results, as well as explore the effect of factors such as frequency on
predictive power. Novel analysis of multispectral multibeam data
associated with benthic habitats has indicated that a range of
frequencies expose additional differences between seabed
types – with high and low frequencies delivering improved
differentiation of fine reef/seagrass texture and more course
sediments, respectively (Schulze et al., 2022; Menandro et al.,
2024). The applicability of this multispectral approach to kelp
monitoring in the UK is currently untested. Also, incorporation
of signal-based processing approaches (demonstrated by Kruss et al.
(2019) and Che Hasan et al. (2014)) with the image based approach
used in this study could reap benefits in the form of improved
classification and biomass estimations. This study focusses on the
ability to distinguish Laminaria Digitata from mixed kelp species,
however the extent to which other species can be discerned is
another area for future research. As potential performance of this
technology is clarified, a requirement for effective implementation
strategies will emerge, benthic survey as a biproduct of engineering
and safety of navigation surveys could be a method to reduce costs.
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