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Land use and land cover (LULC) changes in the Piura River Basin, Peru, were
analyzed from 2001 to 2022 using global MODIS and ESA-CCI datasets
harmonized into six major land cover classes (Forest, Non-Forest Vegetation,
Cropland, Bare Soil, Water and Urban) for comparative analysis. Pearson
correlation analyses with hydroclimatic variables, including precipitation (PP),
maximum (Tx) and minimum (Tn) temperatures, and El Niño Southern Oscillation
(ENSO) indices (Eastern Pacific, Central Pacific, and Coastal El Niño),
complemented the intensity analysis to explore environmental drivers. The
analyses focused on the lower-middle and upper basin regions during wet
(December-May) and dry (June-November) seasons. MODIS detected more
dynamic LULC transitions, with 32.8% of pixels showing changes, compared
to 6.8% detected by the ESA-CCI product. These differences reflect the distinct
sensitivities of MODIS and ESA-CCI products to short-term fluctuations and
long-term variations, respectively. Specifically, MODIS identified higher annual
change intensities and more frequent transitions, especially in the upper basin,
whereas ESA-CCI provided a more conservative view of land cover trends. Both
datasets consistently indicated a decline in cropland areas and an increase in bare
soil, suggesting agricultural degradation and potential desertification processes.
Correlation analyses revealed significant relationships between vegetation
dynamics and climatic variables, notably ENSO events, precipitation, and
temperature extremes, highlighting how hydroclimatic factors drive vegetation
variability. The upper basin experienced notable urban expansion and
deforestation dynamics linked to temperature fluctuations and intensified El
Niño events, particularly after 2011. These findings underscore the critical
influence of climatic extremes and human activities on vegetation dynamics,
emphasizing the need for integrated, adaptivemanagement strategies tomitigate
desertification in lowlands and enhance forest conservation in highlands.
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1 Introduction

Vegetation cover plays a crucial role in maintaining ecosystem
services, such as biodiversity preservation, water regulation, and
carbon sequestration (Yapp et al., 2010). Changes in vegetation
cover, driven by climatic events or human activities, can significantly
alter these ecosystem functions and directly impact local
communities (Dale, 1997; Aber et al., 2001). In arid and semi-
arid regions like the Piura River Basin in northern Peru, changes in
vegetation cover are especially critical due to the region’s
vulnerability to both environmental stressors and socioeconomic
pressures. Understanding these changes is essential for effective
landscape management and conservation efforts (Barboza et al.,
2024; Otivo Meza, 2015).

The sixth report of the Intergovernmental Panel for Climate
Change (IPCC) highlighted the increasing frequency and intensity
of extreme climatic events, such as droughts, floods, and heat waves,
as a result of climate change (IPCC, 2021). These events continue to
have substantial impacts in terms of hazard exposure, vulnerability,
and risk management challenges, despite recent advances in climate
adaptation strategies (Kreibich et al., 2022). In South America, the El
Niño Southern Oscillation (ENSO) is a key driver of extreme events,
bringing heavy rainfall to northwestern regions and causing floods
in coastal areas and droughts in the Andes and the Amazon (Cai
et al., 2020).

The Piura River Basin, located in northern Peru, is particularly
affected by ENSO events. Previous events, such as the 1997–1998 El
Niño, caused widespread flooding, disrupting infrastructure and
local livelihoods, particularly in agriculture (Atarama and Rashid,
2019; Rubiños and Anderies, 2020). Agriculture, the main economic
activity in the Piura Basin, mostly dependent on irrigation (Mills-
Novoa, 2020), is highly sensitive to changes in temperature and
precipitation (CONAM, 2006; Torres Ruiz de Castilla, 2010). The
region’s vulnerability to climatic events (Rau et al., 2017), combined
with the influence of human activities, makes it essential to study
long-term trends in vegetation cover and their relationship with
hydrometeorological variables.

Studies have extensively examined the impacts of ENSO and
land-use changes on vegetation dynamics in Peru, particularly in
tropical dry forest ecosystems (e.g., Móstiga et al., 2024a; Muenchow
et al., 2013). However, the Piura River Basin remains underexplored
in terms of how these dynamics vary across elevational gradients.
Land cover plays a fundamental role in regulating multiple
ecological processes, such as the hydrological cycle and the
radiative balance (Song et al., 2018). As both a cause and
consequence of environmental changes, land cover can influence
climatic variability and hydrological processes, and these
interactions are particularly relevant in arid regions like Piura
(Eltahir and Bras, 1996; Rau et al., 2019; Rau et al., 2018).
Nonetheless, there is still limited understanding of how these
interactions vary across highland and lowland areas in the basin
(Otivo Meza, 2015; Salazar et al., 2018).

This study aims to investigate the spatial and temporal dynamics
of vegetation cover change in the Piura River Basin over the past
2 decades, focusing on comparing highland and lowland areas. This
research will provide insights into the patterns of land cover change
and their correlation with both climatic drivers, such as ENSO
(Bourrel et al., 2015; Córdova et al., 2023), and human activities

(Barboza et al., 2024; Yglesias-González et al., 2023). The findings
will contribute to the broader understanding of how arid and semi-
arid ecosystems in Peru respond to natural and
anthropogenic pressures.

2 The Piura River Basin

The Piura River Basin is located in the northwestern part of Peru,
between latitudes 4.71°S and 6.01°S and longitudes 79.45°W and
81.03°W, with a maximum elevation of 3470 m.a.s.l (see Figure 1).
The climate of the Piura Basin is characterized by a well-marked
seasonality, with a wet season from December to May and a dry
season from June to November. During the period from 1981 to 2020,
the average monthly temperature in the basin ranged between 19.3°C
and 31.2°C, with an annual mean precipitation of approximately
24 mm/month. The hydrology of the Piura Basin is influenced by
various water bodies, including rivers, lagoons, and irrigation cana ls
that are part of the region’s hydraulic infrastructure. The diversion dam
and associated channels enable water management for agricultural
purposes, which is the main economic activity in the basin. Between
February and April, the average streamflow peaks at Puente Sánchez
Cerro hydrological station due to heavy rainfall typical of the wet
season. In contrast, minimum streamflow levels are observed between
September and November, reflecting the natural cycle of water
availability in the basin (see Figure 2).

The upper part of the Piura basin is located at higher altitudes
and is predominantly characterized by mountain ecosystems,
including relict montane forests and páramo. In contrast, the
middle and lower parts, which are closer to the coast, feature
seasonally dry forests and agricultural areas, representative of the
arid and semi-arid ecosystems of northern Peru, also have a diverse
range of vegetation types, including dry hill and mountain forests,
riparian forests, and even mangrove areas near the coast (MINAM,
2019). (see Supplementary Figure S1). The montane forests are
critical in stabilizing soils and reducing runoff, whereas dry forests in
the lower-middle basin are highly susceptible to desertification,
which is exacerbated by El Niño-related climatic anomalies.

In the upper Piura Basin, agricultural production is diverse,
mostly consisting of rice (3,819 ha), corn (2,721 ha), beans (1,168 ha)
for local and regional markets, but also mango (3,352 ha), banana
(1,399 ha), cacao (811 ha) for export and currently increasing
(Autoridad Nacional del Agua (ANA), 2014). It relies on
traditional irrigation practices applied by small-holder farmers
(Mills-Novoa, 2020). In the upstream part of the middle Piura
Basin, the San Lorenzo district benefits from its own reservoir
built by the Peruvian government in 1950s with funds from the
World Bank in the framework of the Peruvian Agrarian Reform
(Lynch, 2019). It allows the production of mangos (16,634 ha) and
limes (5,176 ha) destined to export by small-holder farmers
(Autoridad Nacional del Agua (ANA), 2014; Lynch, 2019). The
middle and lower parts of the Piura Basin are experiencing large
agricultural expansion (Mills-Novoa, 2020). Irrigated land increased
from 19,140 ha to 28,210 ha (47%) between 2006 and 2013 (Junta de
Usuarios: Medio-Bajo Piura, 2011; Junta de Usuarios: Medio-Bajo
Piura, 2014), using both surface and poorly regulated groundwater
resources, driven by Peruvian and international agro-business
investments in large-scale table grape vineyards (Autoridad
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Nacional de Agua, 2012; Autoridad Nacional del Agua (ANA), 2014;
Autoridad Nacional del Agua (ANA), 2015; Autoridad Nacional del
Agua (ANA), 2016). In parallel, agricultural productions from
small-holder farmers also shifted toward banana, lime, and
mango destined to export (Mills-Novoa, 2020). The lower Piura
shifted from its historically cotton production to small-scale rice

production (8,011 ha) in rotation with corn (5,703 ha) and beans
(1,574 ha) for the domestic market (Autoridad Nacional del Agua
(ANA), 2014). This area is characterized by extensive drainage and
irrigation infrastructures needed for historical cotton production
and nowadays intensive land use with two harvests per year (Mills-
Novoa, 2020).

FIGURE 1
Location of the Piura River basin and hydroclimatological stations. Black lines delineate the upper, middle and lower Piura Basin (from east to west).

FIGURE 2
Hydroclimatology of Piura River basin 1981–2020 (A) climograph presenting mean monthly minimum (blue) and maximum (red) temperatures and
rainfall (light blue bar) using San Miguel, Miraflores, and Morropon conventional climatological stations record and (B) mean monthly streamflow at
Puente Sanchez Cerro hydrological station.
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The Piura River Basin also experiences strong socioeconomic
pressures due to the expansion of agricultural and urban activities,
which have led to significant transformations in vegetation cover
over recent decades. These pressures, combined with the influence of
climatic phenomena such as El Niño, contribute to soil degradation
and vegetation loss, especially in vulnerable areas like the seasonally
dry forests (Móstiga et al., 2024a; Muenchow et al., 2013). Studies
have shown that the expansion of agricultural lands and
urbanization are major drivers of deforestation and land cover
change in the region, leading to the fragmentation of habitats,
decline in biodiversity and increasing vulnerability to flooding
(Rau et al., 2022; Rubiños and Anderies, 2020; Torres Ruiz de
Castilla, 2010; Móstiga et al., 2024b). Changes in vegetation cover
in this region reflect how ecosystems respond to both natural
disturbances and human activities, highlighting the need for
integrated land management to ensure the conservation of
natural resources and the resilience of local ecosystems (Otivo
Meza, 2015; Song et al., 2018).

3 Data and methods

3.1 Land cover dataset

For this study, data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) and European Space Agency Climate
Change Initiative (ESA-CCI) global satellite-based land cover
products were used, along with the National Ecosystem Map of
Peru (MINAM, 2019). The MODIS product, specifically the Type
1 classification from the International Geosphere-Biosphere
Programme (IGBP) (Friedl and Sulla-Menashe, 2022), provides
annual global land cover maps at a 500 m resolution from
2001 to the present. In contrast, the ESA-CCI Land Cover
dataset (ESA, 2017) offers annual global land cover classifications
at a finer 300 m resolution, covering the period from 1992 to 2022.
The National Ecosystem Map, developed using Sentinel-2 and
Landsat imagery, provides a static, high-resolution reference
dataset (30 m resolution) with field-based validation, making it a

key resource for evaluating land cover classification
accuracy in Peru.

Despite similarities in thematic classification, MODIS and ESA-
CCI differ in their methodological approaches and sensitivity to land
cover change detection (see Table 1). MODIS applies a Random
Forest classification algorithm with smoothed time-series
reflectance, which increases sensitivity to interannual changes,
including variations in land cover condition (e.g., agricultural
cycles or shifts in vegetation density). In contrast, ESA-CCI
employs a probability-based classification with a 2-year temporal
filter, prioritizing long-term, robust thematic changes and reducing
short-term variability. These methodological differences affect the
spatial distribution and extent of certain land cover types.

To standardize the classification across datasets Herold et al.,
2008, we harmonized the land cover categories into six major classes:
Forest, Non-Forest Vegetation, Cropland, Urban, Water Bodies, and
Bare Soil (Supplementary Table S1). This aggregation was based on
class correspondence between the datasets and further cross-
validated using the National Ecosystem Map. Supplementary
Table S1 provides a detailed breakdown of how original land
cover classes from MODIS and ESA-CCI were assigned to these
macroclasses.

Supplementary Figure S1B presents the spatial distribution of
these six macroclasses across the three datasets. Notably, MODIS’s
Urban and Non-Forest Vegetation classifications show greater
similarity to the National Ecosystem Map, while ESA-CCI’s
Cropland classification more closely aligns with the mapped
agricultural areas in the reference dataset. Additionally,
substantial variations exist in the distribution of forested areas
among the three datasets, highlighting differences in how each
product classifies dense vegetated regions. Bare Soil areas appear
more extensive in both ESA-CCI and MODIS compared to the
National Ecosystem Map (MINAM, 2019), based on local
information satellite images from several sensors acquired over
several years, suggesting possible overestimation of barren land in
the global datasets.

This standardized classification enables a more robust analysis
of land cover changes, facilitating direct comparisons between

TABLE 1 Comparison of three LULC datasets: MODIS, ESA-CCI, and the National Ecosystems Map (MNE).

Characteristic MODIS (MCD12Q1) ESA-CCI (v2.0.7 and v2.1.1) National ecosystems
map (MNE)

Spatial res. 500 m 300 m 30 m

Temporal res. Annual Annual Static

Period 2001–2022 1992–2022 Single reference year (2010–2016)

Number of categories 17 land cover types 22 land cover types 36 ecosystem types

Classification
algorithm

Random Forest with smoothed time
series

Probability-based classification with a 2-year temporal
filter

Expert-based classification using field data
and remote sensing

Spectral references Based on MODIS NBAR (8-day
reflectance)

Based on multiple sensors (AVHRR, SPOT-VGT, MERIS,
PROBA-V, Sentinel-3)

Sentinel-2 and Landsat imagery

Change definition Detects annual changes in classes or
conditions

Detects robust and permanent thematic class changes Not applicable (static map)

Validation Stage 2 (cross-validation within the
training dataset)

External validation (~70% global accuracy) Expert-reviewed, with regional field
validation
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datasets while maintaining ecological relevance within the Piura
River Basin.

3.2 ENSO indices

ENSO indices are defined using Sea Surface Temperature (SST)
anomalies in different regions of the Pacific Ocean. In this study, El
Niño 1+2, 3 and 4 indices were used. They are computed over
regions located in the eastern and central Pacific, between longitudes
80°W and 90°W/90°W and 150°W/150°W and 160°E, and latitudes 0°

and 10°S/5°N and 5°S/5°N and 5°S, respectively (Rayner et al., 2003).
They are available on a monthly time step starting from January
1870 at: https://psl.noaa.gov/data/timeseries/month/.

3.3 Intensity analysis

Intensity analysis is a method used to understand LULC changes
over time by breaking them down into three levels: interval,
category, and transition. It compares observed changes to a
uniform reference to determine whether certain land transitions
are happening more or less frequently than expected. This approach
helps differentiate real changes in landscape from variations due to
data classification errors and is particularly useful for examining
how land cover changes relate to climatic events and human
activities (Aldwaik and Pontius, 2012).

The intensity analysis was carried out following the structure
proposed by Aldwaik and Pontius (2012) and was implemented
using the OpenLand package (Exavier and Zeilhofer, 2020). This
paper focuses on the comparison of change rates, the equations for
each level of analysis is on Supplementary Material, also for further
details, please refer to Aldwaik and Pontius (2012).

To analyze potential influences of climate variability on land
cover changes, the study period was divided into two intervals:
2000–2010, characterized by a lower frequency of strong warm
events, and 2011–2022, which includes a higher occurrence of El
Niño Costero events. This division was selected to balance the length
of the time periods while also capturing a shift in climatic patterns,
particularly the increased frequency of El Niño events after 2014, as
shown in the ENFEN (2024) technical report. Additionally, an
annual-scale analysis, included in the Supplementary Material,
provides insights into specific years where significant deviations
may have occurred.

3.3.1 Interval level analysis
This approach helps to determine whether the rate of change is

accelerating or decelerating over time by comparing each interval’s
change rate to a uniform reference value. There are two key variables
used in this level:

• St (Observed Annual Change Rate): Represents the percentage
of land cover change within a specific time interval. If the
study period is from 2001 to 2022 using 1-year intervals, there
are 21 values of St.

• U (Uniform Annual Change Rate): A single value representing
the expected annual change rate if the land cover change were

evenly distributed across all intervals. If all St values were the
same, they would be equal to U.

By comparing St to U, it is possible to determine whether a
particular interval experiences a slower or faster-than-average
change rate. If St is below U, the change is relatively slow; if it is
above U, the change is relatively fast.

3.3.2 Category level analysis
This analysis examines how land cover changes differ among

categories over time. It helps identify whether a specific land cover
type is experiencing more gains or losses than expected under a
uniform change scenario. The three key variables are used at
this level:

• St (Uniform Change Rate for the Interval): Represents the
expected change rate if land transitions were evenly
distributed.

• Gtj (Gain Intensity): Measures how much a category expands
in each time interval.

• Lti (Loss Intensity): Measures how much a category shrinks in
each time interval.

If the gain or loss intensity of a category is below (above) the
uniform change rate (St), the category is considered inactive (active)
during that interval. A category is defined as stationary if its gain or
loss intensity rate remains consistently above or below the uniform
line across all intervals.

3.3.3 Transition level analysis
The transition level of intensity analysis examines how

specific land cover categories transition into or out of each
other over time. This level helps determine whether a category
tends to systematically gain from or lose to particular categories
more than expected under a uniform transition assumption. It’s
considered a transition from a “m” category to “n.” Four key
variables are used at this level:

• Rtin (Observed Transition Intensity): Measures the actual rate
at which category i transitions into category n in a given
time interval.

• Wtn (Uniform Transition Gain Intensity): Represents the
expected transition rate if category n were to gain
uniformly from all other categories in proportion to their
initial sizes.

• Qtmj (Observed Transition Loss Intensity): Measures the
actual rate at which category m transitions into
another category j.

• Vtm (Uniform Transition Loss Intensity): Represents the
expected loss rate of category m if its losses were uniformly
distributed across all possible receiving categories

If the intensity bar ends to the left (right) of the uniform line, the
transition systematically avoids (targets) that category. A transition
is classified as stationary if it follows a consistent pattern across all
time intervals, meaning it systematically targets, avoids, or remains
neutral toward a specific transition over time.
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3.4 Correlation with
hydroclimatological variables

For the analysis of correlations between land cover and
hydroclimatological variables, a Pearson correlation was used
considering a 95% confidence interval. The data on land cover
was transformed into proportions to normalize the varying
extents of land cover categories across the study area. The
hydroclimatological variables, from Peruvian Interpolated data
of Peruvian hydrometeorological Service (SENAMHI)’s
Climatological and hydrological Observations (PISCO-

SENAMHI) datasets, included precipitation (Aybar et al.,
2020) for the period 2001–2022, and maximum and minimum
temperatures (Huerta et al., 2023) for the period 2001–2020.
These datasets were averaged over both the upper and mid-lower
catchments of the Piura basin.

To take into account large-scale climatic patterns, the two
atmospheric El Niño indices E (Eastern Pacific) and C (Central
Pacific), defined by (Takahashi et al., 2011) were included in the
correlation analysis. The E index is calculated as approximately
1.7×Niño4 − 0.1×Niño1+2, capturing El Niño events centered in
the Eastern Pacific, while the C index (Niño4 + 0.5×Niño3 −

FIGURE 3
Temporal changes in LULC categories from 2001 to 2022 for MODIS (A,B) and CCI (C,D) LULC products. Panels (A) and (C) correspond to the upper
basin, while panels (B) and (D) correspond to the lower-middle basin.
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0.5×Niño1+2) reflects events centered in the Central Pacific
(Takahashi et al., 2011). Additionally, the Coastal El Niño
Index (ICEN), based on Niño1+2, with
1990–2020 climatology was incorporated to capture regional
coastal variability (ENFEN, 2024) and served to assess the
impacts of coastal El Niño and La Niña events on vegetation
cover. These three indices were calculated using the DJF (Dec-
Jan-Feb) seasonal averages (Supplementary Table S2). The
correlations were conducted separately for the wet
(December–May) and dry (June–September) season to
account for seasonal variability in both land cover and
hydroclimatological dynamics, also they were correlated for
different time lags and leads, particularly focusing on a 1-year
lead or lag for the climatic indices to assess delayed or
anticipatory impacts on land cover.

4 Results

4.1 Spatial and temporal analysis of LULC

Land use and land cover (LULC) changes analysis in the Piura
Basin from 2001 to 2022 was conducted using MODIS and CCI
products, allowing the evaluation of spatial distribution and
temporal evolution. The results show that Non-Forest Vegetation
is the dominant category throughout the study period, with
significant differences in the detection of changes between the
two products.

In the upper basin, MODIS (Figure 3A) shows a clear
predominance of Non-Forest Vegetation, with noticeable
variability over time, particularly when compared to Forest,
which also experiences large fluctuations. In contrast,

FIGURE 4
Number of changed pixels from 2001 to 2022 and the percentage of the basin with that number of changes, using MODIS (A) and CCI (B)
LULC products.
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Cropland and Urban areas remain more stable across the years.
The lower-middle basin (Figure 3B) presents a similar pattern,
where Non-Forest Vegetation is the most widespread category,
followed by Bare Soil and Cropland, which exhibit higher
interannual variability. The CCI product, on the other hand,
presents a lower (higher) area of Non-Forest Vegetation (Forest)
in the upper basin, respectively (Figure 3C), with a smoother
temporal evolution. In the lower-middle basin (Figure 3D), Bare
Soil dominates slightly over Non-Forest Vegetation, with changes
remaining relatively small except for a visible shift between
2001 and 2002–2003.

When evaluating the magnitude of land cover changes
(Figure 4), the MODIS product shows that 67.2% of the basin
remained unchanged, while CCI indicates a significantly higher
stability, with 93.2% of the area without change s. The percentage of
the area experiencing up to five changes between 2011 and 2022 is
29.2% in MODIS and 6.8% in CCI, suggesting that MODIS captures
more frequent LULC variations. Notably, only MODIS identifies a
3.6% area undergoing more than five changes, primarily
concentrated in the upper basin, near the curved section of the
watershed. The areas experiencing three to five changes are mostly
located in the lower basin, whereas the most stable regions are found
in the central part of the basin.

For the CCI product, changes are mostly limited to one to two
transitions, mostly occurring in the upper and lower basins, while
the central region remains the most stable. These discrepancies
highlight the differences in sensitivity between the two products,
with MODIS detecting more dynamic and frequent changes, while
CCI provides a more stable representation of LULC evolution over
the 22-year period. This variation suggests that MODIS is more
responsive to short-term changes, potentially related to seasonal
fluctuations or land management practices, whereas CCI offers a
broader perspective on long-term transitions.

4.2 LULC intensity analysis by interval level

This section presents the analysis of land use changes in the
upper and lower-middle catchments of Piura basin using the
MODIS and CCI product, focusing on the temporal intensity of
these changes.

4.2.1 Upper Piura Basin
The analysis of land cover change in the upper Piura basin

reveals notable differences between MODIS and CCI, particularly in
the magnitude of detected changes (Figure 5). The uniform annual

FIGURE 5
Annual land cover change rates for the upper basin usingMODIS (A) and CCI (B) LULC data from 2001 to 2022. Bars represent the percentage of area
change per year, with rapid changes highlighted in pink and slower changes in green. The dashed line indicates the uniform annual change intensity (U).
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change intensity (U) for MODIS is 4.9%, which is ten times higher
than the 0.4% reported by CCI. This means that the total area
affected by land cover change per year is ten times larger in MODIS
than in CCI, indicating that MODIS detects more extensive
transformations across the landscape.

Despite differences in change magnitude, both datasets
consistently identify 2008–2009 as a period of rapid land
cover change, reinforcing the reliability of this transition.
Additionally, both MODIS and CCI indicate a net loss of
cropland over the study period, suggesting a sustained decline
in agricultural land use in the upper basin. However,
discrepancies arise in the net balance of Forest and Non-
Forest Vegetation. MODIS shows a net rapid loss of Forest
cover and a net slower gain of Non-Forest Vegetation,
whereas CCI presents the opposite behavior, with a slow net
gain in Forest cover and a rapid net loss in Non-Forest
Vegetation.

4.2.2 Lower-middle Piura Basin
In the lower-middle basin, the magnitude of land cover

change differs considerably between MODIS and CCI, with
MODIS reporting a uniform annual change intensity (U) of
4.7%, compared to only 0.3% in CCI (Figure 6). This indicates
that the total area affected by land cover change per year is
15 times larger in MODIS than in CCI, suggesting that MODIS

detects a significantly more intense transformation of land cover
over time. While MODIS captures more detailed interannual
variations, CCI portrays a more stable landscape, meaning that
MODIS is more sensitive to detecting smaller or transient
changes, while CCI provides a more conservative estimate of
long-term land cover transitions.

Despite these differences, both datasets identify 2002–2003 and
2016–2017 as key periods of rapid land cover change, suggesting that
significant transformations occurred in these years. Additionally,
while MODIS and CCI differ in the magnitude of detected changes,
they consistently indicate the same overall land cover trends. Both
datasets show a rapid net loss of Non-Forest Vegetation and
Cropland, along with a slower net gain in Bare Soil.

4.3 LULC intensity analysis by
categories level

The analysis of land use and land cover (LULC) intensity at the
category level provides a detailed assessment of the relative gains and
losses of different land cover types in the Piura basin. By comparing
decadal time periods (2001–2011 and 2011–2022, Figure 6) with
annual variations (Supplementary Material), it is possible to
determine which categories exhibit systematic changes and
whether their behavior remains stationary over time.

FIGURE 6
Annual land cover change rates for the lower-middle basin using MODIS (A) and CCI (B) LULC data from 2001 to 2022. Bars represent the
percentage of area change per year, with rapid changes highlighted in pink and slower changes in green. The dashed line indicates the uniform annual
change intensity (U).
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4.3.1 MODIS LULC product
Intensity analysis using MODIS data identified clear differences

in land cover change between the upper and mid-lower Piura basins
across two broad intervals (2001–2011 and 2011–2022) (Figure 7A).
In the upper basin, the first interval (2001–2011) exhibited roughly
twice the change intensity (St = 1.87%) compared to the second
interval (2011–2022, St = 0.89%), despite a similar duration. Non-
Forest vegetation gained the largest absolute area during
2001–2011 but consistently remained below the uniform intensity
threshold (St). Conversely, Forest and Cropland frequently exceeded
St, highlighting significant relative dynamics. Specifically, Forest
exhibited non-stationary behavior, shifting from below St in
2001–2002 to consistently surpassing it from 2002 to
2003 onward. Cropland showed pronounced gains surpassing St
in periods such as 2007–2009 and 2014–2017 (Supplementary
Figure S2). Water bodies exhibited notable losses surpassing St
during 2009–2010, 2012–2013, and 2016–2017, while Forest
recorded significant losses particularly in 2001–2002, 2010–2011,
2012–2013, and 2016–2018, although without substantial absolute
area reductions.

Annual-scale analysis (Supplementary Figure S2) highlighted
that the most intense year for land cover changes in the upper basin

was 2001–2002 (St = 14.29%), followed by marked peaks during
2008–2010 and 2016–2018. Gains in Forest and Non-Forest
categories revealed a pattern of stationarity, consistently
remaining either above or below the uniform threshold, with
Forest showing fluctuations around clear peak years (e.g.,
2008–2009). Cropland displayed notable annual losses
predominantly in 2002–2003 and 2017–2018, while Non-Forest
losses peaked notably in 2008–2009 and 2015–2016.

In the mid-lower basin, the first period (2001–2011, St = 1.69%)
also presented nearly double the change intensity compared to the
second period (2011–2022, St = 0.87%) (Figure 7B). Cropland
exhibited a non-stationary pattern, transitioning from below St in
the first interval to above it in the second, indicating an
intensification of agricultural expansion after 2011. Urban
expansion also increased notably during the second interval.
Forest losses exceeded St only in the first interval and were
negligible thereafter. Bare Soil showed minimal change in the
upper basin but displayed pronounced dynamics in the mid-
lower basin, consistently surpassing St from 2015 onward,
indicating ongoing transformation towards other land cover types.

Annual variations (Supplementary Figure S3) in the mid-lower
basin revealed intense gains in Non-Forest vegetation notably in

FIGURE 7
Spatial gains and losses by land cover category in the upper (A) and mid-lower (B) Piura basin for the intervals 2001–2011 and 2011–2022, using
MODIS LULC data. The left-side graphs show gains, while the right-side graphs represent losses. The dashed line indicates the uniform change intensity
(St). Forest appears in dark green, Non-Forest vegetation in light green, Cropland in pink, Urban in red, water bodies in light blue, bare soil in beige.
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2002–2003, 2007–2008, and 2016–2018, while Bare Soil gains
peaked during 2002–2003, 2006–2007, and 2018–2019. Cropland
gains occurred prominently in 2005–2006, 2008–2009, and
2016–2017. Losses in Non-Forest vegetation were significant
primarily during 2002–2003 and from 2018 to 2021, whereas
Cropland losses were prominent across multiple years
(2002–2003, 2010–2011, 2013–2014, 2017–2018, and 2019–2020).
Bare Soil recorded notable losses mainly during
2007–2008 and 2016–2017.

4.3.2 CCI LULC product
Intensity analysis using CCI LULC data revealed clear

differences in land cover dynamics between the upper and mid-
lower Piura basins across two broad intervals: 2001–2011 and
2011–2022 (Figure 8). In the upper basin, the period
2011–2022 showed significantly greater change intensity (St =
0.53%) compared to the earlier interval, 2001–2011 (St = 0.17%),
with this difference evident for both land gains and losses. Forest and
cropland displayed stationary behaviors regarding gains, with only
forest consistently surpassing the uniform intensity threshold (St)
during the second interval, while cropland remained consistently
below it. In contrast, urban areas did not exhibit stationarity,

appearing with notable intensity only during 2011–2022. Non-
forest vegetation experienced significant losses in 2011–2022,
clearly exceeding St, and bare soil losses also appeared during
this time period, although without surpassing St, indicating
transformations from exposed land to other land cover types.

The annual-scale analysis (Supplementary Figure S6) in the
upper basin highlighted that the most intense land cover changes
occurred between 2015 and 2021. Urban areas showed the highest
intensity gains in 2016–2017 and 2020–2021, despite their relatively
limited spatial extent. Forest gained consistently above St from
2011 onwards, reaching a peak in 2015–2016. Non-forest
vegetation recorded its highest losses in 2015–2016 and
2018–2019, while cropland’s greatest losses were observed in
2018–2019. Bare soil surpassed St only in gains for
2001–2002 and in losses for 2020–2021, though with minimal
area impact. Water exhibited minimal losses, with noticeable
intensity only in specific years, such as 2002–2003.

In the mid-lower basin, the first period (2001–2011, St =
0.53%) had a significantly higher intensity of land cover changes,
approximately four times greater than in the subsequent interval
(2011–2022, St = 0.14%). No land cover category displayed
stationary behavior throughout the entire study period. There

FIGURE 8
Spatial gains and losses by land cover category in the upper (A) andmid-lower (B) Piura basin for the intervals 2001–2011 and 2011–2022, using CCI
LULC data. The left-side graphs show gains, while the right-side graphs represent losses. The dashed line indicates the uniform change intensity (St).
Forest appears in dark green, Non-Forest vegetation in light green, Cropland in pink, Urban in red, water bodies in light blue, bare soil in beige.

Frontiers in Remote Sensing frontiersin.org11

Castillón et al. 10.3389/frsen.2025.1529044

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1529044


was a clear net gain of bare soil during the first interval, aligned
with notable losses in non-forest vegetation and cropland, clearly
illustrated in Figure 6. Urban area gains progressively increased
after 2011, while the highest gains for non-forest vegetation
occurred during 2016–2017. Annual variations (Supplementary
Figure S7) showed peak gains for bare soil in 2001–2002 and
2002–2003, coinciding with the highest losses in non-forest
vegetation and cropland during the same years. These patterns
underscore substantial land cover transitions, particularly in the
early 2000s, highlighting distinct dynamics compared to the
upper basin. Loss intensity for non-forest vegetation was
particularly pronounced in the early years, while cropland
losses were distributed across various years, emphasizing
ongoing agricultural land-use shifts.

4.4 LULC intensity analysis by transition level

The transition analysis at the category level reveals essential
dynamics of land use and land cover changes across both the lower-
middle and upper basins. This section will describe these transitions,

focusing on gains and losses across the same group periods from the
previous analysis.

4.4.1 MODIS LULC product
In the upper basin, MODIS data showed distinct transition

patterns (Figure 9A). Non-Forest vegetation predominantly gained
area from Forest, surpassing the uniform transition intensity (Wtn =
6.46% for 2001–2011 and Wtn = 4.64% for 2011–2022) in both
intervals. Cropland exceeded the uniform transition intensity only
during 2001–2011, while Water exceeded the threshold solely in this
interval. Regarding Cropland losses, transitions predominantly
targeted Non-Forest vegetation, significantly surpassing the
uniform transition intensity (Vtm = 0.41%) during the first
interval and showing a marked reduction in the second interval
(Vtm = 0.07%).

Annual-scale analysis for the upper basin (Supplementary
Figure S4) showed intense gains for Non-Forest vegetation,
particularly in 2001–2002 (Wtn = 56.66%) and 2017–2018
(Wtn = 35.09%), with contributions mainly from Forest and
Cropland categories. Forest frequently surpassed the uniform
intensity threshold, except during 2008–2010 and 2012–2013,

FIGURE 9
Transition intensity analysis for the loss of cropland and gain of bare soil in the Upper (A) and Lower-Middle (B) Piura basin over two intervals from
2001 to 2022 (MODIS). The dashed line represents the uniform loss transition intensity (Vtm), which indicates the expected intensity of losses from each
land cover category if changes were uniformly distributed across all possible transitions. Forest appears in dark green, Non-Forest vegetation in light
green, Cropland in pink, Urban in red, water bodies in light blue, bare soil in beige.

Frontiers in Remote Sensing frontiersin.org12

Castillón et al. 10.3389/frsen.2025.1529044

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1529044


when it either stayed at or slightly below this threshold. Cropland
transitions to Non-Forest vegetation surpassed the threshold
notably during 2008–2010 and aligned with the threshold during
2003–2004 and 2012–2013, remaining below in other years. In terms
of Cropland losses, transitions exclusively targeted Non-Forest
vegetation, consistently surpassing or matching the uniform
intensity threshold. The highest intensity was observed in
2002–2003 (Vtm≈2.4%), while in several years (2004–2006,
2017–2018, 2018–2019, and 2020–2021), transition intensity
aligned closely with the uniform rate.

In the mid-lower basin, MODIS data also exhibited clear
transition dynamics (Figure 9B). Bare Soil gains were primarily
driven by transitions from Non-Forest vegetation, which
significantly exceeded the uniform transition intensity (Wtn =
1.28%) in the first interval (2001–2011). During the second
interval (2011–2022; Wtn = 0.5%), transitions into Bare Soil were
minimal. Cropland losses consistently favored Non-Forest
vegetation, surpassing the uniform intensity threshold in both
intervals (Vtm = 0.65% for 2001–2011 and Vtm = 0.15% for
2011–2022), although transitions were notably more intense
during the first interval.

Annual-scale analysis for the mid-lower basin (Supplementary
Figure S5) revealed significant variations in Bare Soil gain intensity.
Years with the highest uniform transition intensities included
2019–2020 (Wtn = 4.83%), 2018–2019 (Wtn = 4.67%), and
2002–2003 (Wtn = 4.54%). Non-Forest vegetation frequently
surpassed the uniform intensity threshold in most years, except
during 2016–2017, 2011–2012, and 2007–2008, when it matched the
threshold, and 2009–2010, when it was slightly below. Water
transitions into Bare Soil exceeded the uniform threshold during
multiple intervals (2002–2003, 2007–2008, 2009–2013, and
2015–2018), whereas it remained below or absent in other years.
For Cropland losses, transitions exclusively targeted Non-Forest
vegetation, consistently exceeding the uniform transition intensity
threshold (Vtm). The highest intensities were recorded in
2002–2003 (Vtm = 5.65%), followed by notable peaks in
2010–2011 (Vtm = 2.97%), 2013–2014 (Vtm = 2.25%), and
2017–2018 (Vtm = 3.25%).

4.4.2 CCI LULC product
Transition-level intensity analysis with the CCI dataset

highlighted different land cover dynamics between the upper and

FIGURE 10
Transition intensity analysis for the loss of cropland and gain of bare soil in the Upper (A) and Lower-Middle (B) Piura basin over two intervals from
2001 to 2022 (CCI). The dashed line represents the uniform loss transition intensity (Vtm), which indicates the expected intensity of losses from each land
cover category if changes were uniformly distributed across all possible transitions. Forest appears in dark green, Non-Forest vegetation in light green,
Cropland in pink, Urban in red, water bodies in light blue, bare soil in beige.
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TABLE 2 Significant (95%) correlation values between land cover categories and hydroclimatic variables in the lower-middle basin. E index, PP (precipitation), TN (minimum temperature), and TX (maximum
temperature) with indicated yearly lags.

Dataset LULC class Forest Non-forest
vegetation

Cropland Bare
soil

E ICEN PP TN TX

−2 −1 0 +1 −2 −1 0 +1 +2 −2 −1 0 +1 +2

MODIS Forest NS NS NS NS NS 0.94 (+1) NS NS NS 0.93 NS 0.98 NS 0.93 −0.91 NS NS NS NS NS

Non-forest
vegetation

NS NS NS NS NS NS 0.47
−0.47

−0.48 NS NS NS NS NS NS −0.48 NS NS NS NS NS

Cropland NS NS NS NS NS NS NS 0.49 0.78 NS NS NS NS NS NS NS NS NS NS NS

Urban NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

Bare soil NS −0.83 −0.62 NS NS NS −0.49 −0.60 −0.43 NS −0.52 NS NS NS NS NS NS NS NS NS

Water 0.88 NS 0.56 NS 0.64 0.54 (0) NS NS 0.51 0.49 NS 0.57 0.49 NS NS NS NS NS NS NS

CCI Forest NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

Non-forest
vegetation

NS NS NS NS NS NS NS NS NS NS 0.54 NS NS NS NS 0.49 NS NS NS NS

Cropland NS 0.82 NS NS NS NS NS NS NS NS 0.6 0.52 NS NS NS 0.65
0.57

0.47 NS NS NS

Urban NS NS 0.48 NS NS NS NS NS NS 0.56 0.56 0.59 0.64 0.59 0.73
0.58

0.69
0.57

0.69
0.59

0.71
0.53

0.66

Bare soil NS −0.97 −0.94 NS NS NS NS NS NS NS −0.62 −0.45 NS NS NS −0.64
−0.47

NS NS NS NS

Water NS 0.79 0.55 −0.71 NS NS NS NS 0.54 NS NS NS NS NS NS NS NS NS NS NS

NS: Not significant. Bold numbers correspond to the wet season, and underlined numbers correspond to the dry season.
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TABLE 3 Significant (95%) correlation values between land cover categories and hydroclimatic variables in the upper basin. E index, PP (precipitation), TN (minimum temperature), and TX (maximum temperature) with
indicated yearly lags.

Dataset LULC class Forest Non-forest
vegetation

Cropland Urban E (+1) ICEN PP TN TX

−2 −1 0 +1 2 −2 −1 0 1 2

MODIS Forest NS NS NS NS NS NS NS NS 0.46 NS NS NS NS 0.54 NS NS NS

Non-forest vegetation −0.97 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

Cropland NS −0.60 NS NS NS NS NS NS NS NS NS NS NS −0.47 −0.56
−0.57

−0.48 NS

Urban NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

Bare soil NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

CCI Forest NS NS NS NS NS NS NS 0.52 0.52 0.57 NS NS 0.54
0.61

0.56
0.62

0.61
0.55

0.50 0.53
0.49

Non-forest vegetation −0.99 NS NS NS NS NS NS −0.57 −0.56 −0.57 NS NS −0.57
−0.65

−0.56
−0.62

−0.60
−0.51

NS −0.5

Cropland −0.95 0.91 NS NS NS NS NS NS NS −0.52 −0.48 −0.5 −0.45
−0.48

−0.51
−0.57

−0.59
−0.62

−0.59
−0.67

−0.51
−0.69

Urban 0.82 −0.8 −0.83 NS −0.47 NS NS 0.53 0.5 NS NS NS 0.58
0.49

0.64 NS NS NS

Bare soil −0.51 0.48 0.57 −0.85 0.47 0.44 −0.47 NS NS NS NS NS −0.46 −0.51 NS NS NS

NS: Not significant. Bold numbers correspond to the wet season, and underlined numbers correspond to the dry season.
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mid-lower basins for two intervals: 2001–2011 and
2011–2022 (Figure 10).

In the upper basin, forest gains predominantly originated from
non-forest vegetation and cropland. During 2001–2011 (Wtn = 0.18%),
cropland significantly exceeded the uniform intensity, while in
2011–2022 (Wtn = 0.75%), non-forest vegetation was the primary
contributor surpassing the uniform rate. Annual analysis
(Supplementary Figure S8) indicated peak forest gains in 2015–2016
(3.5%) mainly from non-forest vegetation, and in 2018–2019 (2.2%)
primarily from cropland. Cropland consistently contributed modestly
from 2006 to 2010. Regarding cropland losses, forest consistently
exceeded the uniform intensity rate in both intervals (Vtm = 0.08%
for 2001–2011 and Vtm = 0.18% for 2011–2022), with urban areas
surpassing the threshold only during 2016–2017 and 2020–2022. The
highest annual intensities of cropland loss occurred in 2018–2019
(0.89%) and 2019–2020 (0.45%).

In the mid-lower basin, bare soil gained mainly from cropland
and non-forest vegetation during the earlier interval (2001–2011,
Wtn = 0.8%), with cropland consistently exceeding the uniform
intensity rate. However, during the later interval (2011–2022, Wtn =
0.01%), intensity gains were minimal, with no significant category
surpassing the uniform intensity. Annual analysis (Supplementary
Figure S9) showed a marked decreasing trend in bare soil gains from
2001 to 2002 (5%) to 2003–2004 (0.49%). Cropland was the
dominant contributor in the earliest years (2001–2003), after
which it disappeared from contributing categories. Non-forest
vegetation exceeded slightly the uniform rate in 2001–2002 and
2003–2004. Regarding cropland losses, bare soil consistently
surpassed the uniform rate (Vtm = 0.19%) in 2001–2002 (1.34%)
and 2002–2003 (0.6%), accompanied by minimal contributions
from non-forest vegetation. Loss intensities remained negligible
post-2004, with urban areas appearing marginally after 2012.

4.5 Correlation with climate variables and
LULC categories

The relationship between land cover changes and hydroclimatic
variables was analyzed separately for the lower-middle and upper
Piura basin, considering bothMODIS and CCI products. The results
presented in Tables 2, 3 show only statistically significant
correlations that passed the 95% confidence threshold.

4.5.1 Lower-middle basin analysis
In the lower-middle basin, both MODIS and CCI consistently

indicated strong relationships between certain land cover types,
particularly Bare Soil, Non-Forest Vegetation, and Cropland. A
strong negative correlation was found between Bare Soil and
Non-Forest Vegetation (−0.83 MODIS; −0.97 CCI) and between
Cropland and Bare Soil (−0.62 MODIS; −0.94 CCI). Cropland and
Water had a positive correlation (0.56 MODIS; 0.55 CCI).

Differences emerged between MODIS and CCI concerning their
detection of hydroclimatic influences. MODIS showed stronger
correlations with ENSO indices (E and ICEN) and precipitation
(PP), while CCI had more significant correlations with maximum
(TX) and minimum (TN) temperatures. Notably, the Forest
category correlated positively with ICEN at a 1-year lead
(0.94 MODIS), and Water correlated positively with E (0.64) and

ICEN (0.54) without lag. Cropland showed a strong positive
correlation with precipitation (0.78, no lag), whereas Bare Soil
had a negative correlation (−0.6, 1-year lag).

Regarding temperature, MODIS showed strong correlations
between Forest and minimum temperature (TN), specifically at 1-
year lead (0.93), 2-year lead (−0.91), and 1-year lag (0.98). CCI
presented lower-magnitude correlations with minimum temperature
around 0.6 forUrban (lead 1), Cropland (lag 1 or 2), and Bare Soil (−0.6,
2-year lag). Urban areas showed a strong correlation with maximum
temperature (TX), particularly in MODIS (0.7).

4.5.2 Upper basin analysis
In the upper basin, correlations between land cover categories

and climate variables showed different patterns compared to the
lower-middle basin. Strong negative correlations existed between
Forest and Non-Forest Vegetation (−0.97 MODIS; −0.99 CCI) and
between Cropland and Forest (−0.95 CCI). Urban expansion
correlated positively with Forest (0.82), and negatively with Non-
Forest Vegetation (−0.8), Cropland (−0.83), and Bare Soil (−0.85).
Cropland and Non-Forest Vegetation correlated positively (0.91).

MODIS had fewer significant correlations with climate variables in
the upper basin compared to CCI. However, Cropland negatively
correlated with maximum temperature (TX)
between −0.47 and −0.57 (lag 0 and +1), and Forest positively
correlated with TX at 1-year lag (0.54).

CCI identified numerous significant correlations: Forest and
minimum temperature (TN) had a positive correlation (0.57), while
Non-Forest Vegetation and Cropland negatively correlated with TN
(−0.57 and −0.52, respectively). Urban areas correlated positively with
TN (0.50, lag 1). For maximum temperature (TX), Forest had a positive
correlation (0.61), whereas Non-Forest Vegetation, Cropland, and Bare
Soil showed negative correlations (−0.6, −0.6, and −0.51, respectively).
Urban areas correlated positively with TX (0.64, lag 1). Precipitation
negatively correlated with Bare Soil during the dry season (−0.47, CCI).
Urban areas negatively correlated with the E index (−0.47, lag 1), and
Bare Soil positively correlated with E (0.47, lag 1) and ICEN (0.44). Most
significant correlations in the upper basin occurred during the
wet season.

5 Discussion

The results highlight substantial differences between theMODIS
and ESA-CCI datasets, primarily due to their classification
methodologies, temporal resolutions, and detection sensitivities.
MODIS exhibits greater sensitivity to interannual spectral
variations, capturing more frequent land cover transitions,
ranging from actual thematic class changes to more likely
conditional changes in land cover that fall short of full
conversion. In contrast, ESA-CCI provides a more stable
representation of longer-term land cover transformations. These
discrepancies align with previous studies emphasizing the impact of
classification algorithms and temporal resolution in land cover
mapping (Song et al., 2018; Friedl and Sulla-Menashe, 2022).
While MODIS detects a higher number of land cover changes,
these transitions may include both thematic class shifts and spectral
condition variations (Wulder et al., 2018). ESA-CCI, by applying a
2-year temporal filter, prioritizes persistent land cover changes,
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reducing short-term fluctuations. This distinction is particularly
relevant when interpreting land cover change percentages, as
MODIS may overestimate short-term changes that do not
necessarily reflect persistent transitions (Hansen et al., 2013).

The results also reveal clear differences in the stability of land cover
changes detected by MODIS and ESA-CCI. MODIS captures more
dynamic transitions, whereas ESA-CCI presents a more stable
representation of land cover trends. This is evident in the magnitude
of changes observed, where 67.2% of the basin remained unchanged in
MODIS, compared to 93.2% stability in ESA-CCI. Additionally,
MODIS identified more frequent transitions, with 29.2% of the
basin undergoing up to five changes, versus only 6.8% in ESA-CCI.
Notably, only MODIS detected areas with more than five transitions
(3.6% of the basin), concentrated in the upper watershed near regions
with complex topography. These differences highlight the impact of
classificationmethodology on change detection, whereMODIS, with its
annual classification, is more sensitive to transient changes, capturing
short-term fluctuations that likely exceed typical seasonal variability,
such as atypical agricultural shifts or unexpected vegetation loss events.
In contrast, ESA-CCI applies a temporal smoothing approach, filtering
out short-term changes and emphasizing longer-term trends.

The quality of the classification approaches can also be affected by
the cloud cover conditions over the study area. Northern Peru is
characterized by the presence of mesoscale convective systems
responsible for a dense cloud cover (Horel and Cornejo-Garrido,
1986; Goldberg et al., 1987; Jaramillo et al., 2017), especially during
the rainy season from January to April (Figure 2A). As bothMODIS and
ESA CCI LULC are derived from multispectral images, the estimate of
land cover classes is strongly affected by the unavailability of valid data
during a large part of the year, increasing the risk of misclassification.

Importantly, the intensity analysis (Aldwaik and Pontius, 2012)
helps discern between systematic and potentially permanent
changes versus transient fluctuations or thematic classification
errors. This analytical approach effectively distinguishes real
thematic transitions from temporary variations in land cover
conditions, particularly relevant in semi-arid regions like the
Piura River Basin, where climatic variability and seasonal cycles
can strongly influence vegetation dynamics.

The spatial heterogeneity of the Piura River Basin also plays a
key role in land cover dynamics. The upper basin, characterized by
steeper slopes, lower temperatures, and more stable vegetation
cover, exhibits fewer detected changes, particularly in forested
and non-forested vegetation categories. In contrast, the lower
basin, where cropland expansion and urban growth are more
prominent, shows greater variability, especially in cropland and
bare soil classes. These patterns align with the distinct precipitation
regimes across the basin, where the upper basin receives orographic
rainfall, whereas the lower basin is more sensitive to ENSO-driven
precipitation variability (Bourrel et al., 2015).

The relationship between ENSO events and land cover change is
particularly relevant given the increased frequency of warm events after
2014 (ENFEN, 2024). The division of the study period into
2001–2011 and 2011–2022 effectively captures this shift, with the
second period including intense El Niño events, such as the
2015–2016 strong El Niño and the 2017 moderate El Niño. During
the 2015–2016 event, there was a notable expansion of bare soil,
particularly in the lower basin, where prolonged dry conditions and
extreme hydroclimatic stress likely led to vegetation loss and soil

degradation (Cai et al., 2020; Rodríguez-Morata et al., 2018).
Similarly, post-2017 recovery phases correspond to increases in
non-forest vegetation, indicating temporary regrowth responses
after extreme precipitation events. Conversely, strong La Niña
events, such as those in 2007, 2013, and 2021–2022, appear to have
contributed to reductions in cropland extent and an increase in
bare soil, reflecting drier conditions and potential land
abandonment (Cai et al., 2020; Salazar Zarzosa, 2018). These
findings align with previous studies highlighting ENSO’s role in
shaping land cover dynamics in northern Peru (Takahashi and
Martínez, 2019).

The comparison between MODIS, ESA-CCI, and the National
Ecosystem Map of Peru reveals systematic differences in the LULC
classes. MODIS’s urban and non-forest vegetation classifications align
more closely with the National Ecosystem Map, while ESA-CCI’s
cropland classification better matches agricultural zones. Yet, only
CCI exhibits a slight increase in urban areas in both the upper
(0.53%) and mid-lower (0.14%) Piura Basin (Figure 8) which can
reflect the demographic growth in urban areas, with an increase of the
people in Piura city of 2.3% between 2013 and 2017 (Zuchetti and
Freundt, 2018). The increase in urban areas might have been missed in
MODIS LULC due to its coarser spatial resolution as Piura city, the
largest city in the Piura Basin has 70% of its urbanized land occupied by
informal or spontaneous constructions (Rivera Saavedra, 2016), which
might be fragmented. However, the most notable discrepancy is in the
extent of bare soil, significantly larger in MODIS and ESA-CCI
compared to the National Ecosystem Map. This difference likely
results from spatial resolution variations, as the 30-m resolution of
the National Ecosystem Map enables finer-scale classification, whereas
the coarser 300-m and 500-m resolutions of ESA-CCI and MODIS,
respectively, may lead to an overgeneralization of barren areas (Hansen
et al., 2013). Additionally, classification methodologies differ, with
MODIS using smoothed time-series reflectance and ESA-CCI
applying a probability-based classification with a 2-year temporal
filter, both of which can overestimate persistent barren landscapes
(Giri et al., 2013). Thematic classification discrepancies also contribute
to these differences, as the coastal desert category in the National
Ecosystem Map includes sparse vegetation patches, which MODIS and
ESA-CCI classify as bare soil, leading to apparent barren area
overestimation. These findings emphasize the importance of
integrating high-resolution regional datasets for land cover
validation, reinforcing previous studies highlighting the limitations of
coarse-resolution global land cover products in heterogeneous
landscapes (Song et al., 2018). Nevertheless, they provide consistent
annual changes for cropland (rapid decrease) in the upper Piura Basin
(Figure 5) and for forest (slow increase), non forest vegetation and
cropland (rapid decrease) in the middle-lower Piura Basin (Figure 6).

Future research should consider combining these products with
higher-resolution sensors such as Sentinel-1 and 2 to improve cropland
expansion and deforestation detection. Additionally, expanding in-situ
validation efforts would most likely enhance classification accuracy,
particularly in highly heterogeneous landscapes like the Piura River
Basin. Integrating multiple datasets would enable a more
comprehensive understanding of land cover change, capturing short-
term fluctuations and long-term transformations. Further research
should also explore the incorporation of climate indices, such as the
Coastal El Niño Index (ICEN), into land cover change models to
quantify ENSO’s direct influence on vegetation dynamics.
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6 Conclusion

This study analyzed land cover changes in the Piura River Basin
from 2001 to 2022 using MODIS, ESA-CCI, and the National
Ecosystem Map of Peru, harmonizing their classifications into six
macroclasses to enable a standardized comparison. The results
highlight significant differences between the global satellite-based
products, which are primarily attributed to their classification
methodologies, temporal resolution, and detection sensitivity.

MODIS exhibits greater sensitivity to interannual changes,
capturing more frequent land cover transitions, which may also
include conditional changes within a specific land cover class. ESA-
CCI presents a more stable representation of longer-term land cover
changes due to its probability-based classification and 2-year
temporal filter. These differences led to notable discrepancies in
certain categories, particularly in the extent of Bare Soil, which is
more extensive in MODIS and ESA-CCI compared to the National
Ecosystem Map. The observed inconsistencies underscore the
importance of integrating high-resolution regional datasets to
refine global land cover assessments.

The division of the study period into 2001–2011 and
2011–2022 reveals an increase in land cover dynamics during the
second period, which coincides with a higher frequency of El Niño
events after 2014. These climatic fluctuations influenced the
expansion of Bare Soil and the reduction of Cropland during
strong warm phases, particularly in the lower basin, highlighting
the sensitivity of land use dynamics to ENSO-driven hydroclimatic
variability. The distinct precipitation regimes and elevatio nal
gradients across the upper and lower basins further contribute to
spatial heterogeneity in land cover transitions.

The findings of this study emphasize the need for multi-
source data integration in land cover change analysis. While
MODIS is valuable for detecting short-term variability, ESA-CCI
provides a long-term, stable baseline for monitoring gradual
transformations. Future research should combine these
products with higher-resolution sensors such as Sentinel-3,
enabling more precise assessments of cropland expansion,
deforestation, and ecosystem degradation. Additionally,
integrating climate indices like the Coastal El Niño Index
(ICEN) could improve understanding of ENSO-driven land
cover changes. Strengthening in-situ validation efforts would
also enhance classification accuracy, ensuring more reliable
assessments for land management and conservation planning
in climate-sensitive regions like the Piura River Basin.
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