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Supervised learning allows broad-scale mapping of variables measured at
discrete points in space and time, e.g., by combining satellite and in situ data.
However, it can fail to make accurate predictions in new locations without
training data. Training and testing data must be sufficiently separated to
detect such failures and select models that make good predictions across the
study region. Spatial block cross-validation, which splits the data into spatial
blocks left out for testing one after the other, is a key tool for this purpose.
However, it requires choices such as the size and shape of spatial blocks. Here, we
ask, how do such choices affect estimates of prediction accuracy? We tested
spatial cross-validation strategies differing in block size, shape, number of folds,
and assignment of blocks to folds with 1,426 synthetic data sets mimicking a
marine remote sensing application (satellite mapping of chlorophyll a in the Baltic
Sea). With synthetic data, prediction errors were known across the study region,
allowing comparisons of how well spatial cross-validation with different blocks
estimated them. The most important methodological choice was the block size.
The block shape, number of folds, and assignment to folds had minor effects on
the estimated errors. Overall, the best blocking strategy was the one that best
reflected the data and application: leaving out whole subbasins of the study
region for testing. Correlograms of the predictors helped choose a good block
size. While all approaches with sufficiently large blocks worked well, none gave
unbiased error estimates in all tests, and large blocks sometimes led to an
overestimation of errors. Furthermore, even the best choice of blocks
reduced but did not eliminate a bias to select too complex models. These
results 1) yield practical lessons for testing spatial predictive models in remote
sensing and other applications, 2) highlight the limitations of model testing by
splitting a single data set, even when following elaborate and theoretically sound
splitting strategies; and 3) help explain contradictions between past studies
evaluating cross-validation methods and model transferability in remote
sensing and other spatial applications of supervised learning.
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1 Introduction

Supervised learning is a critical tool for mapping environmental variables like marine
chlorophyll a, land cover types, and species distributions at broad spatial scales (Elith and
Leathwick, 2009; Kerr and Ostrovsky, 2003; Tuia et al., 2022). In supervised learning,
training a model involves extracting relationships between output (response) and input
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(predictor) variables from example data. In this way, supervised
learning allows the continuous mapping of variables measured at
discrete points in space and time. In marine satellite remote sensing,
which serves as a case study here, common supervised learning
approaches range from simple linear regression (e.g., Darecki et al.,
2005; Kratzer et al., 2003; O’Reilly et al., 1998; O’Reilly and Werdell,
2019) to complicated machine learning methods (e.g., Kattenborn
et al., 2021; Yuan et al., 2020; Zhang et al., 2023).

These models typically rely on in situ observations of the response
variable for training and validation. A sound sampling design is
critical when collecting in situ data for this purpose (Rocha et al.,
2020). However, collecting data at sea over broad spatial scales and
according to a sound sampling design would be extremely expensive.
Therefore, to obtain sufficiently large in situ data sets, many broad-
scale marine studies rely on databases that compile measurements
from individual field campaigns with different objectives and without
an overarching sampling strategy. Such data often have substantial
spatial biases, i.e., some places are well-covered by data, whereas
others have little or no data (Boakes et al., 2010; Bowler et al., 2022;
Stock and Subramaniam, 2020). The spatial biases in such databases
pose a critical statistical challenge in supervised-learning-based
marine remote sensing (Stock, 2022).

A key question about models intended to generate broad-scale
maps is how well they make predictions across the whole region of
interest, including data-poor subregions (Peterson et al., 2007; Qiao
et al., 2019; Stock and Subramaniam, 2020; Yates et al., 2018).
Researchers traditionally evaluate and compare models by randomly
splitting the available data into a training set for fitting the model
and a test (or validation) set for estimating its prediction accuracy
(sometimes, an additional development set is used for model
selection and fine-tuning). This split can be done once or
repeatedly in cross-validation. However, evaluating models based
on random splits produces misleading results in many remote
sensing and other environmental applications that involve spatial
data (Fourcade et al., 2018; Ploton et al., 2020; Roberts et al., 2017).
In particular, environmental variables are often spatially
autocorrelated (Legendre, 1993), making nearby observations
dependent. Dependence between training and testing data
violates a core assumption of many statistical methods (Arlot
and Celisse, 2010; Nikparvar and Thill, 2021), causes the
selection of too complex models that do not generalize well
(Gregr et al., 2019), and is a key driver of data leakage, a
common cause of wrong results in scientific applications of
supervised learning (Kapoor and Narayanan, 2023).

Two factors exacerbate these statistical problems as the
popularity of machine learning as a scientific tool is rising, and
machine learning is claimed to be superior to simpler statistical
approaches (Pichler and Hartig, 2023). First, machine learning
models can easily pick up location-specific relationships that fail
to transfer to new locations (Beery et al., 2018), yet such failures are
missed when training and testing data come from the same locations
(Stock et al., 2023). Second, machine learning methods are rarely
tailored to the limitations of typical environmental data, such as
autocorrelated observations taken near each other. Ideally, models
intended to make predictions for data-poor locations or to yield
generalizable insights should be tested with independent, out-of-
distribution data (Araújo et al., 2005; Geirhos et al., 2020; Gregr
et al., 2019), yet such data are rarely available.

When only a single data set is available for model training and
testing, cross-validation can mimic tests with independent data and
extrapolation to data-poor regions by separating training and testing
data spatially, temporally, or in predictor space (Roberts et al., 2017;
Wenger and Olden, 2012). However, separating training and testing
data does not guarantee sound error estimates for two reasons. First,
if some subregions of the study area have no data, error estimates
calculated for held-out subregions with data are not necessarily valid
for subregions without data (for a method to estimate the area where
a cross-validated error estimate applies, see Meyer and Pebesma,
2021). Second, the data being split might contain non-spatial biases
and shortcuts. A sound data separation strategy is therefore
necessary, but not sufficient, to avoid data leakage and obtain
sound estimates of a spatial model’s prediction accuracy (Kapoor
and Narayanan, 2023; Stock et al., 2023).

Two main approaches exist for separating training and testing
data spatially. First, one can leave out one observation at a time for
testing and withhold all data within a spatial buffer around the test
observation from training (Le Rest et al., 2013; 2014; Pohjankukka
et al., 2017). Second, one can split the data into blocks based
geographical space (block cross-validation; Roberts et al., 2017;
Sweet et al., 2023). Spatial cross-validation strategies yield better
error estimates under spatial dependence and are hence a key tool in
many environmental applications (Bald et al., 2023; Crego et al.,
2022; El-Gabbas et al., 2021; Smith et al., 2021; Stock et al., 2018). An
R package for spatial cross-validation is available (Valavi et al.,
2019). However, spatial cross-validation remains underused in
marine remote sensing and requires methodological choices such
as the size and shape of spatial blocks.

Here, we explore how such choices affect error estimates with
synthetic data that mimic a marine remote sensing application.With
this example, we aim to inform the evaluation of predictive models
in applications that 1) use supervised learning in satellite remote
sensing or to create other broad-scale maps from point data, 2) must
split a single data set for training and testing, and 3) rely on point
data that were collected without an overarching sampling strategy,
e.g., obtained from databases combining measurements from many
individual field campaigns. Specifically, we ask: How do block size,
shape, the number of cross-validation folds, and assignment of
blocks to folds affect prediction error estimates and model
selection? Which of these choices is most important? Might such
choices explain contradictory results between prior studies
comparing spatial cross-validation methods and testing the
spatial transferability of models?

2 Materials and methods

2.1 Overview

To answer our research questions, we exploit synthetic data that
mimic a remote sensing application in marine biology (Stock, 2022).
These data cover the Baltic Sea in northern Europe from 2003 to
2019. They consist of many individual data sets (henceforth, subsets)
with geographic points (measurement locations and dates only)
extracted from an oceanographic database. Each data point contains
a response variable (synthetic chlorophyll a concentration) and
satellite-based predictors (remote sensing reflectance in different
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wavelength bands) for these locations and dates where actual, in situ
chlorophyll measurements existed. With each subset, three models
of different complexity were trained and evaluated with various
cross-validation strategies. Using a synthetic response variable that
was generated with a model instead of values measured in situ
allowed for calculating the models’ “true” prediction error across the
study region and period, which were compared to cross-validated
estimates limited to using the subsets, i.e., locations and dates where
real in situ data existed (Figure 1). Importantly, “true” error here
refers to a model’s prediction error in its intended task (generating
daily maps of synthetic chlorophyll a for the whole Baltic Sea), not
its skill predicting real-world, in situ chlorophyll a concentration.

2.2 Synthetic data

The synthetic data were developed in four steps outlined below
to support the comparison of validation methods in a realistic use
case of supervised learning. Additional details are provided in
Stock (2022).

First, to create synthetic data with realistic distributions in space
and time, we extracted locations and times of in situ chlorophyll a
measurements from an oceanographic database (http://ocean.ices.
dk/HydChem, accessed 31 August 2020). Such data are typically
collected from ships during research cruises over many years.
During cruises, researchers choose measurement locations based
on the cruise’s scientific objectives instead of an overarching
sampling strategy for the database. We excluded in situ
measurement locations within 5 km from the coastline, made at
depths >2 m, and with chlorophyll a concentrations >30 mg m−3.

Second, for predictors, each in situ observation was matched with
satellite measurements of remote sensing reflectance in five
wavelength bands (412 nm, 443 nm, 490 nm, 555 nm and
670 nm: http://globcolour.info, accessed 4 September 2020). The
satellite data came from the GlobColour project, which combines
data from several satellite-borne instruments to improve
spatiotemporal coverage (Fanton d’Andon et al., 2009; Maritorena
et al., 2010). The spatial resolution was 4km, and the temporal
resolution was 1 day. Because clouds often obscure satellite views

of the sea surface, many field observations had no matching satellite
data. This reduces the number of usable observations and can
introduce additional spatiotemporal biases due to uneven cloud
cover (Stock et al., 2020). We matched the in situ and the satellite
data with a same-calendar-day temporal window and bilinear
interpolation from the four surrounding pixels, yielding 2,728 in
situ observations with matching satellite data (henceforth,
matchups: Figure 2A).

Third, to compare how well cross-validated error estimates
approximated “true” prediction errors for the whole study region
and period, the in situ chlorophyll a concentrations were replaced
with synthetic values. These values were the weighted average of two
sources with 4 km spatial and 1-day temporal resolution: 1) a
biogeochemical simulation model of the Baltic Sea with 60%
weight (Baltic Sea Biogeochemical Reanalysis, https://marine.
copernicus.eu, accessed 31 August 2020), and 2) existing satellite-
based maps of chlorophyll a, also from the GlobColour project, with
40% weight (these maps were previously generated with the same
remote sensing reflectance data but another algorithm, and hence
reflected some spatial patterns of the predictors). The averaging was
necessary because simulated chlorophyll a was less correlated with
remote sensing reflectance and with the original in situmeasurements
than in most real applications, whereas the satellite product could
have been too easily reconstructed by flexible machine learning
methods with remote sensing reflectance as predictors. The
weights were chosen manually to correct for these unrealistically
small correlations while keeping the biogeochemical simulation
dominant (correlation of log10-transformed in situ chlorophyll with
simulated values: Pearson correlation coefficient r = 0.16; with satellite
chlorophyll from GlobColour: r = 0.49; with weighted average: r = 0.
46). The Spearman rank correlation of the band ratio R (a common
predictor of chlorophyll a, see section 2.3) with in situ chlorophyll a
was ρ = 0.26, with simulated chlorophyll was ρ = 0.03, and with
merged chlorophyll was ρ = 0.25. The moderate but significant (p < 0.
001) correlations reflect high concentrations of other optical water
constituents that make remote sensing of the Baltic Sea tricky (Darecki
and Stramski, 2004; Siegel and Gerth, 2008; Stock, 2015).
Furthermore, as is typical in real applications, the merged,
synthetic chlorophyll a was roughly log-normally distributed

FIGURE 1
Overview of data sources and study design.
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(Figure 2D). Therefore, while chosen manually, the selected weights
resulted in a synthetic response variable with statistical properties and
relationships similar to the in situ measurements it replaced.
Henceforth, “synthetic concentrations” refer to this weighted average.

Fourth, to create many synthetic yet realistic data sets with different
sizes and spatial biases, 2000 random subsets were sampled from the
2,728 matchups (Figures 2B, C). To mimic oceanographic data
collection, whole cruises were sampled (not individual observations).
However, the automatic generation of spatial blocks with a common R
package (Valavi et al., 2019) included in our test of cross-validation
approaches failed for larger blocks in some small subsets (see Section
2.4). These subsets were excluded from the analyses to allow a
comparison of all tested cross-validation methods. The remaining
1,426 subsets contained between 200 and 1,500 observations and
exhibited different degrees of spatial bias (Figures 2E, F).

2.3 Predictive models

With each subset, we trained and tested three predictive models
common in marine remote sensing. The response was always
synthetic, log10-transformed chlorophyll a, but the models used
different predictors and underlying mathematical structures.

The first model was a simple linear model:

log 10 Chla( ) � a0 + a1R

R � log10 max RRS443, RRS490( )( )/RRS555( )

Here, RRSxxx is the remote sensing reflectance in the respective
wavelength band. Such models are called maximum band ratio

algorithms and are among the longest-established statistical models
for mapping chlorophyll a from satellites (O’Reilly et al., 1998).

The secondmodel was a random forest (RF) using remote sensing
reflectances in different wavelength bands and the band ratio R as
predictors. Random forests are a basic machine-learning approach.
They consist of many regression trees (here: 300) fitted to bootstrap
samples of the training data while using only some predictors when
fitting each tree (Breiman, 2001). Random forests work well for
smaller data sets with correlated predictors and are a common
choice in remote sensing applications (Belgiu and Drăgu, 2016).

The third model was a random forest with projected X and Y
coordinates as additional predictors (RFXY). These spatial
predictors allow the model to harness spatial structures in the
data for predictions (Zhang et al., 2023). However, including
them risks overfitting the model to these structures and limits its
applicability when spatial structures change over time, e.g., because
of climate change. Stock (2022) found that including spatial
coordinates in a random forest caused large prediction errors
that spatial, temporal, and environmental block cross-validation
methods underestimated. Hence, the RFXY model is a “worst case”
illustrating the limits of estimating prediction errors with spatial
block cross-validation.

2.4 Spatial blocks

We tested two kinds of spatial blocks: (1) blocks and folds
automatically generated with the R package blockCV (Figures 3A–F;
Valavi et al., 2019), and (2) blocks manually created for the Baltic Sea
(Figures 3G–I).

FIGURE 2
Map and selected statistics of the synthetic data used to evaluate cross-validationmethods. (A) Locations of in situ observations of chlorophyll awith
matching satellite data (which the subsets were sampled from) and the number of subsets that had observations within 50 km. (B, C) Two example
subsets. (D)Histogram of synthetic chlorophyll a concentration used as response variable for the data fromwhich the subsets were sampled. (E)Number
of observations in the subsets. (F) Percent of the study area with at least one observation within 50 km across the generated subsets.
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FIGURE 3
Examples of spatial blocks used for cross-validation. The blocks were either created automatically with the R package blockCV [examples in (A–F),
with plot headings reflecting key parameters described in the text] or created manually for the Baltic Sea: subbasins (G) and latitudinal blocks reflecting
environmental gradients in the study region (H, I).
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The blockCV package allows the automatic generation of spatial
blocks based on user-provided parameters. Here, we varied the
following parameters: 1) block size (2 km–300 km); 2) block shape
(squares or hexagons), 3) how blocks were assigned to folds
(random, systematically, or in a checkerboard pattern), and 4)
the number of folds (5 or 10 for random and systematic
assignment, 2 for checkerboard assignment).

In addition, we manually created three sets of blocks. The
first set was subbasins of the Baltic Sea, defined by HELCOM
(the intergovernmental organization governing environmental
issues in the Baltic Sea region). The second and third sets
reflected the Baltic Sea’s environmental gradients from its
connection with the Atlantic Ocean in the southwest to its
northernmost bays, with north-south block sizes of 80 km
and 200 km. In these manual designs, each block served as a
fold. In each subset, folds with fewer than 20 observations were
merged with the next-smallest fold until all blocks had at least
20 observations.

2.5 Spatial autocorrelation

To be considered independent, training and testing data must be
farther apart than the autocorrelation range (Trachsel and Telford,
2016). This range is thus critical information for spatial block cross-
validation. It is traditionally estimated for residuals of the fitted
model (Le Rest et al., 2014). However, fitting the model first
precludes model selection, and residuals may be underestimated
for flexible models overfitted to spatial structures (Roberts et al.,
2017). Furthermore, with three models and 1,426 synthetic subsets,
this study involved over 4,000 fitted models. Exploring residual
autocorrelation for all was impractical. Consequently, we followed
Valavi et al. (2019) and examined spatial autocorrelation of the
predictors, assuming that they reflect the spatial structure of relevant
environmental variables. Spatial autocorrelation can be examined,
e.g., through variograms or correlograms, which provide similar
information (Dormann et al., 2007). While variograms are a
fundamental tool of geostatistics, correlograms are common in
other fields like ecology and can be more robust when data are
clustered (Wilde and Deutsch, 2006). Here, some clustering of
available predictor data might have occurred because of
differences in cloud cover across the study region. We hence
calculated variograms as well as correlograms.

Spatiotemporal sample variograms were calculated for each
predictor in two selected years (2005 and 2018) with the R
package gstat (Gräler et al., 2016; Pebesma, 2012; Pebesma,
2004). For computational efficiency, each variogram calculation
used a sample consisting of 5% pixels with data from the
respective year. We calculated and averaged spatial correlograms
with Moran’s I as a measure of spatial dependence for 100 randomly
selected days during the study period with the R package ncf
(Bjornstad, 2022).

2.6 “True” errors vs. cross-validation errors

Predictive models should be tested with data reflecting their
target application (Kapoor and Narayanan, 2023). Because the target

application was to create maps for the whole Baltic Sea, we
compared cross-validated error estimates calculated with the
spatial block options described in Section 2.4 and with standard
10-fold cross-validation to “true” prediction errors calculated for the
whole study region and period. These “true” errors were calculated
in three steps, as described below. Importantly, all prediction errors
were calculated with the synthetic chlorophyll concentrations
(which are known everywhere) as response variable. Hence,
“true” refers to errors that are valid for the whole study region
and period, not errors that reflect the real-world chlorophyll a
concentration (which are only known where in situ data exist).

First, we trained each model (MBR, RF, RFXY) with each
complete subset, i.e., without withholding any data from the
subset (Kuhn and Johnson, 2013). Each subset contained
synthetic chlorophyll a values as the response variable and the
predictor variables as described in Section 2.2. This process
yielded 4,278 trained models (three kinds of models trained on
1,426 subsets). Because the subsets were sampled from a database of
field campaigns (see Section 2.2), training the models relied
exclusively on locations and times where real in situ data existed.

Second, we created validation data covering the whole study
region and period to calculate the “true” errors. Because making
pixel-by-pixel predictions for 18 years of daily satellite data with
over 4,000 models was computationally too expensive, we randomly
sampled 1% of pixels in each daily satellite image. This sample
comprised over 380,000 observations. Each observation contained a
synthetic chlorophyll a value as response and predictor variables as
described in Section 2.2. Hence, the data used to calculate “true”
errors–in contrast to the test sets of the various cross-validation
methods–contained observations from randomly sampled locations
and times and covering the whole study region and period (as far as
cloud cover allowed).

Third, with each of the 4,278 trained models, we made
predictions for this test set covering the whole study region and
period, yielding “true” error estimates in the sense that they reflected
the purpose of broad-scale, satellite-based mapping precisely
(making daily maps for the whole study region and period).

Finally, we applied the various cross-validation methods
(Section 2.4) to each model and subset, resulting in 4,278 error
estimates from each cross-validation method. Comparing these
cross-validation estimates to the “true” errors revealed how well
each method estimated the models’ prediction accuracy in the
intended application.

As error measures, we used the root mean squared error (RMSE)
and the absolute percentage difference (APD), calculated with the
standard equations (like in Stock, 2022).

3 Results

3.1 Error estimates and model selection

Synthetic chlorophyll a concentrations predicted with the MBR
model had smaller “true” errors than those of the random forests
(RF and RFXY) in 99% (RMSE) and 97% (APD) of subsets.
Prediction errors were highest (1) in the Bothnian Bay, where the
fewest training data were available (RMSE and APD) and (2) the
eastern Gulf of Finland, the Gulf of Riga, and some smaller areas

Frontiers in Remote Sensing frontiersin.org06

Stock 10.3389/frsen.2025.1531097

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1531097


with very high synthetic chlorophyll a concentrations (RMSE only)
(Figure 4). The APD’s comparatively small values in these high-
chlorophyll areas might reflect this error measure’s low sensitivity to
differences between larger numbers. Moderate “true” errors also
occurred in large offshore areas where relatively low chlorophyll a
concentrations and sparse data coverage coincided, like the
Bothnian Sea (APD and RMSE).

The tested cross-validation methods often underestimated
errors, especially for the RFXY model (Figure 5; Table 1).
Overall, spatial block cross-validation yielded better error
estimates than 10-fold cross-validation but sometimes
overestimated errors. Error estimates from the blockCV package
depended on the specific options, especially block size (see Section
3.2). They were larger than estimates from 10-fold cross-validation
and smaller than estimates from large, manually created blocks
(subbasins). Blocks generated with the blockCV package and good

options led to a stronger underestimation than large manually
created blocks in some cases but avoided an overestimation
in others.

Depending on the model and error measure, 10-fold cross-
validation underestimated prediction errors by 5% (RMSE of
MBR) to 54% (APD of RFXY). The different block cross-
validation methods yielded more accurate error estimates than
10-fold cross-validation, but the RMSE was sometimes
overestimated. The best RMSE and APD estimates for RFXY
were achieved with subbasins as blocks. The best APD
estimates for MBR and RF were achieved by blocks generated
with blockCV when optimal options were chosen; with solid but
not optimal choice of options, the 80 km north-south blocks
estimated the APD of these models best.

When choosing between the MBR and the RF models, all spatial
cross-validation methods with large block sizes led to correct model

FIGURE 4
Spatial distribution of mean “true” errors (RMSE and APD of the three model types predicting synthetic chlorophyll a) averaged over 300 randomly
sampled, partly cloud-free days across the whole study period. For each of the three model types, each subset yielded a different trained model, and
prediction errors where averaged across subsets for this figure. “True” errors refers to errors when predicting synthetic chlorophyll a concentrations for
the whole study region and period, not real-world concentrations.
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FIGURE 5
Estimated errors generated with different options in the blockCV R package as a function of block size. The solid black lines show themodels’ “true”
errors (mean error predicting synthetic Chl a concentration for the whole study region and period across all subsets). The dashed black line shows errors
estimated with 10-fold cross-validation. The dotted line shows errors estimated using subbasins as spatial blocks.
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selection for >98% of subsets. Ten-fold cross-validation selected the
best model for fewer subsets (APD: 86%, RMSE: 93%). In contrast,
model selection failed even with the best methods when choosing
between all three models (MBR, RF, and RFXY). Ten-fold cross-
validation incorrectly chose RFXY for over 99% of subsets. Spatial
cross-validation with subbasins as blocks worked best, but RFXY
was still incorrectly chosen in over 50% (APD) and 80% (RMSE)
of subsets.

3.2 Options when generating blocks
with blockCV

When creating square or hexagonal blocks automatically,
choosing a large block size was the most important (Table 2).
On average, cross-validation with ten folds yielded slightly
better error estimates than five folds, square blocks yielded
slightly better error estimates than hexagonal blocks, and
systematic or checkerboard assignment of blocks to folds
yielded slightly better error estimates than random

assignment. However, except for the block size, the
differences between the options were small. For example,
averaged over all subsets and block sizes≥200 km, the
random forest’s APD was underestimated by 25% with
hexagonal blocks and 24% with square blocks. Nevertheless,
large square blocks with systematic assignment to folds was
always among the best choices, and often the best, across models
and error measures (Figure 5).

3.3 Spatiotemporal autocorrelation

Spatiotemporal variograms (Figure 6) showed that all
predictors were spatially autocorrelated over several hundred
kilometers, yet none of the variograms reached their sill within
500 km (already beyond a practical block size). Variograms
calculated for 2005 (not shown) were similar to those for 2018.
While correctly suggesting the need for large blocks to achieve
independent training and testing data, the variograms did not
suggest an optimal block size.

TABLE 1 “True” errors and estimated errors with different cross-validation approaches. With the blockCV package’s various settings, there were too many
combinations to show in the table. Instead, the table shows the best estimate obtained with the package (i.e., the one closest to the “true” error,
representing an optimal choice of parameters) and the 25th percentile of absolute difference to the “true” error (P25, representing a good but not optimal
choice of parameters). The estimates closest to the “true” errors are highlighted in bold font.

Model “True” 10-fold Best blockCV P25 blockCV Subbasins Lat. bl. 80km Lat. bl. 300 km

APD

MBR 40% 31% 35% 32% 38% 34% 36%

RF 49% 33% 41% 36% 47% 40% 45%

RFXY 54% 24% 31% 28% 37% 30% 34%

RMSE

MBR 0.18 0.17 0.18 0.18 0.20 0.18 0.19

RF 0.21 0.18 0.21 0.19 0.23 0.20 0.22

RFXY 0.22 0.14 0.17 0.16 0.19 0.16 0.17

TABLE 2 Percentage of subsets for which different options were in the set of parameters yielding the most accurate blockCV-based error estimate. The
highest percentages in each parameter group are shown in bold font.

Blocks to folds Block shape # of
folds

Block sizes

>200 kmModel Random Systematic Checkerb Hexagons Squares 10 5 ≤100 km 100–200 km

APD

MBR 28% 55% 17% 36% 64% 85% 15% 2% 13% 85%

RF 35% 45% 21% 40% 60% 91% 9% 3% 22% 75%

RFXY 35% 29% 36% 43% 57% 91% 9% 2% 15% 82%

RMSE

MBR 32% 46% 22% 48% 52% 59% 41% 26% 43% 31%

RF 25% 34% 40% 34% 66% 61% 39% 15% 41% 44%

RFXY 30% 34% 36% 47% 53% 57% 43% 2% 16% 82%
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Correlograms showed a more apparent autocorrelation range of
the predictors (Figure 7). The spatial correlation dropped sharply
within the first 100 km. It plateaued near 200 km for the 412 nm,

443 nm, and 490 nm wavelength bands and near 300 km for the
555 nm and 670 nm wavelength bands. Hence, the correlograms
suggested a sound range for the block size in this application.

FIGURE 6
Empirical spatiotemporal variograms of the predictors for 2018.

FIGURE 7
Correlograms for the predictors on 100 randomly sampled days (thin gray lines) and their average (thick black lines). On some days, there is no data
for the largest distances shown due to cloud cover.
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4 Discussion

4.1 Block size and spatial distribution of data
explain contradictions between prior studies
evaluating spatial cross-validation methods

Several past studies have evaluated cross-validation methods
with sometimes contradictory results.

On the one hand, several studies found that separating training
and testing data spatially yields higher estimated errors than
random data splits (Bahn and McGill, 2013; Karasiak et al.,
2022; Meyer et al., 2018; 2019; Stock et al., 2018; Stock and
Subramaniam, 2020). For example, Ploton et al. (2020)
evaluated a random forest predicting above-ground forest
biomass with random splits and two spatial cross-validation
approaches. Random splits suggested good predictive skill, but
spatial cross-validation suggested no predictive skill, reflecting the
known effects of data leakage when training and testing data are
insufficiently separated (Kapoor and Narayanan, 2023). Other
tests with synthetic, autocorrelated data also show that error
estimates from spatial block cross-validation are more accurate
than random splits (Roberts et al., 2017; Stock, 2022).
Furthermore, models selected with spatial block cross-validation
can transfer better to new geographic locations (Tziachris et al.,
2023). These prior results are consistent with this study.

On the other hand, several studies found that differences
between spatial and random cross-validation were small and
supported the same conclusions (Lyons et al., 2018; Valavi et al.,
2023; Zhang et al., 2023). For example, Valavi et al. (2023) found that
random and spatial block cross-validation yielded a similar ranking
of models and that flexible models transferred well to new locations -
contrary to, e.g., Gregr et al. (2019), where more flexible models
failed when applied to independent data.

These prima facie contradictory results are explained by two
aspects of the studies’ design. First, the studies used different block
sizes–a critical choice according to our results. For example, Valavi
et al. (2023) used a block size of 75 km to mimic extrapolation over
comparatively short distances. As these authors correctly argue,
results for extrapolation over larger distances might have been
different. Second, spatial cross-validation is most important when
data are unevenly distributed in space and time. For example,
Lyons et al. (2018) compared cross-validation methods in a
terrestrial vegetation mapping case study. They had a small
study area (50 km2) and collected data specifically for their
study with sound spatial sampling methods. Yet, with sound
spatial sampling covering the whole study region, the biases of
random cross-validation demonstrated in this and other studies
become negligible, because randomly held-out test observations
are not systematically farther from training observations than
locations for which predictions are needed (Ramezan et al.,
2019; Stock, 2022; Wadoux et al., 2021). In contrast, with data
resembling the synthetic data here (i.e., databases that compile data
from various sources without an overarching sampling strategy),
cross-validation with random splits or too small blocks yields
wrong error estimates.

Together, the importance of block size highlighted here and the
spatiotemporal distribution of data adequately explain these
contradictions in previously published research.

4.2 How to choose blocks for spatial cross-
validation

The most important parameter when automatically generating
square or hexagonal blocks for spatial cross-validation was the block
size. This choice is implicit but equally important when using
existing regions as blocks (for example, when choosing between
broad biogeographical regions or finer-scale subregions).

The first step in choosing a block size is analyzing spatial
autocorrelation (Le Rest et al., 2014; Roberts et al., 2017). Here,
correlograms showed autocorrelation ranges reflecting a suitable
block size, whereas sample variograms showed that large blocks were
needed but did not allow choosing a specific size. Hence,
determining a good block size can require data exploration with
several analytical tools. In addition, modelers must choose a cross-
validation strategy that reflects the model’s intended application
(Christin et al., 2020; Kapoor and Narayanan, 2023; Stock et al.,
2023) – especially whether predictions beyond locations that are
well-covered by data are needed.

Iterating over a plausible range of block sizes can yield additional
insights, for example, exploring how error estimates change with
increasing separation distance (Pohjankukka et al., 2017; Stock and
Subramaniam, 2022). While a single set of manually crafted blocks is
computationally more efficient and can reflect characteristics of the
study region (such as biogeographical boundaries), an iterative
approach avoids the need to select a block size a priori. Thus, it
helps resolve situations where geostatistical analyses and domain
knowledge do not clearly suggest which block size to use.

The block shape, the number of folds, and the assignment of
blocks to folds were less important here, likely because they did not
directly influence how the model testing reflected the target
application. For example, while the spatial boundaries of
statistical analysis units can affect results (the modifiable areal
unit problem; Openshaw and Taylor, 1979), the shape of the
blocks had minor effects on whether model testing reflected
extrapolation to subregions without data. As another example,
the number of folds influences the size of the training sets and,
thus, the estimated prediction errors. The smallest data sets in this
study had 200 observations. With 10 folds, each training set had
180 observations, and with 5 folds, 160 observations, with minor
effects on the error estimates. While these options were unimportant
here, they can matter in other applications. For example, it can be
best to keep the training set as large as possible for very small data
sets by using many folds or spatial buffers around single, held-out
observations. Without such special considerations, when using a
blocking strategy like those in the blockCV R package, square blocks,
10 folds, and systematic assignment of blocks to folds were good
default choices.

4.3 Limitations and generalizability

This study’s main limitation is that it presents a single
supervised learning application in one study region. Nevertheless,
it can inform other applications because the results are theoretically
plausible and sufficiently broad to explain apparent contradictions
between prior studies (see Section 4.1). This study’s marine remote
sensing example can, therefore, inform other supervised learning
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applications with spatially biased point data. However, like the
conflicting past results discussed above, our recommendations’
relevance must be carefully judged in other applications and
data contexts.

Environmental data might be autocorrelated in space and time,
but this study tested only spatial blocks. Sweet et al. (2023) found
that using clusters in predictor space as blocks worked best in a crop
modeling example with spatiotemporal autocorrelation. In contrast,
for synthetic chlorophyll a data like those used here, spatial blocks
produced better error estimates than blocks in time or predictor
space (Stock, 2022). Exploring the nuances of choosing spatial
blocks was thus most critical for this study’s example application.

Basing the study on synthetic data allowed the evaluation of
error estimates across the whole study region (not only locations
where in situ data existed); such “simulation experiments” are a
common tool to evaluate statistical methods (e.g., Dormann et al.,
2012; Strobl et al., 2007; Roberts et al., 2017). However, simulated
data from the biogeochemical model used to build the synthetic data
was only weakly correlated with chlorophyll-a and a maximum band
ratio, a key predictor in many chlorophyll remote sensing
algorithms. This was alleviated by using a weighted average with
an independent satellite data product, as opposed to the biogeochemical
simulation results alone, as synthetic response variable. The synthetic
data represented “real”marine remote sensing applications realistically
for three reasons, hence allowing relevant insights into the performance
of cross-validation methods. First, remote sensing reflectances and the
band ratio serving as predictors were the same data used inmany ocean
color remote sensing studies. Second, the locations and dates of
observations for model training and testing came from actual field
campaigns, resampled to reflect the campaign-by-campaign growth of
oceanographic databases. Third, the synthetic chlorophyll
concentrations (averaged from biogeochemical simulations and a
different satellite data product) had statistical properties similar to in
situ chlorophyll concentrations. Therefore, the synthetic data were
realistic regarding the predictors and the spatial and temporal
distribution of data.

While focusing on a single study region, the Baltic Sea is typical
for Case 2 waters, where remote sensing often relies on supervised
learning with local to regional-scale data (Hafeez et al., 2019).
Remote sensing reflectance is the foundation of many satellite
algorithms besides mapping chlorophyll a. Therefore, the results
are most relevant for other marine remote sensing applications in
Case 2 waters.
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