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African tropical forests play a crucial role in global carbon dynamics, biodiversity
conservation, and climate regulation, yet monitoring their structure, diversity,
carbon stocks and changes remains challenging. Remote sensing techniques,
including multi-spectral data, lidar-based canopy height and vertical structure
detection, and radar interferometry, have significantly improved our ability tomap
forest composition, estimate height and biomass, and detect degradation and
deforestation features at a finer scale. Machine learning approaches further
enhance these capabilities by integrating multiple data sources to produce
improved maps of forest attributes and track changes over time. Despite
these advancements, uncertainties remain due to limited ground-truth
validation, and the structural complexity and large spatial heterogeneity of
African forests. Future developments in remote sensing should examine how
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multi-sensor integration of high-resolution data from instruments such as Planet,
Tandem-X, SPOT and improved AI methods can refine forest composition, carbon
storage and function maps, enhance large-scale monitoring of tree height and
biomass dynamics, and improve forest degradation and deforestation detection
down to tree level. These advancements will be essential for supporting science-
based decision-making in forest conservation and climate mitigation.

KEYWORDS

remote sensing-, deep learning, Congo basin, carbon, biomass, canopy height, forest
typology, forest degradation

1 Introduction

Forests cover 31% of the Earth’s surface, with tropical regions
accounting for about half of this area (The State of the World’s Forests,
2020). Forests are essential for sustainability and ecosystem services,
such asmitigating greenhouse gas emissions, regulating regional climate
through evaporative cooling, producing biomass, mitigating extreme
surface runoff, and hosting biodiversity (Brockerhoff et al., 2017;
Jenkins and Schaap, 2018; Nunes et al., 2020). African forests fall
into two broad categories: moist tropical forest which cover 2.19 Mkm2

and store approximately 36 PgC of carbon and tropical and subtropical
dry forest, which cover 3.67 Mkm2 and store approximately 21 PgC of
carbon (Xu et al., 2021).

The carbon cycle of tropical forests plays an essential role in
regulating atmospheric CO2 and climate (Mitchard, 2018; Pan
et al., 2024). Intact tropical rainforests act as carbon sinks, with
the South American sink declining (Brienen et al., 2011), while
Africa (Hubau et al., 2020) and East Asia (Qie et al., 2017) show
more stable carbon uptake. In the case of Africa, this is possibly
due to intact African forests’ resistance to drought (Bennett et al.,
2017; Brienen et al., 2011; Hubau et al., 2020). Tropical forests
include various vegetation types, such as swamps, dry forests,
mountain forests, and woodlands such as the Miombo forests in
semi-arid regions (Ahlström et al., 2015). However, the carbon
dynamics of dry forests and woodlands are less well understood
than those of evergreen forests due to limited data (Williams
et al., 2007), and African forests overall are less well studied than
those of South America (White et al., 2021). The African tropical
forest biome is singular compared to Asia and America. It is
characterised by a lower tree species diversity both in terms of
density (Sullivan et al., 2017) and absolute numbers (Slik et al.,
2015) but a higher density in large trees storing more above-
ground biomass per individual (AGB) (Slik et al., 2013). Further,
the structure of African forests seem to have been deeply affected
by elephants while Neotropical and Asian forests do not host
large herbivores (Berzaghi et al., 2019). The reason for the
difference in tree diversity is not clearly explained (Parmentier
et al., 2007; Zhang-Zheng et al., 2024).

Despite their central role in ecological integrity and economic
development, forest resources are affected by disturbances
resulting in negative changes of their structure, function and
spatial extent. Among these disturbances, deforestation and
degradation are the main ones in tropical forests (Bourgoin
et al., 2024; Feng et al., 2024). These disturbances, together
with natural disturbances like fires, drought-induced dieback
and windthrown events lead to habitat fragmentation and

biodiversity loss, threatening the unique diversity of flora and
fauna (Bennett et al., 2017; Giam, 2017). Disturbances are also
causing significant forest carbon emissions (Assede et al., 2023;
Masolele et al., 2024; Shapiro et al., 2023). In particular, fire
disturbance impacting forests is underestimated by medium-
resolution satellites (Khairoun et al., 2024). According to
bookkeeping models, deforestation contributes to net emissions
of about 1 Gt CO2 per year in Africa (Grassi et al., 2022; Tubiello
et al., 2021), with rising deforestation in the Congo basin.
Contrary to bookkeeping models, remote sensing (RS) methods
estimate the forest carbon loss in Africa to approximately 4 Gt
CO2 per year (Feng et al., 2022). Uncertainties in carbon sink
estimates remain high due to discrepancies between national
inventories and atmospheric inversions or modelling
approaches, as well as challenges in estimating emissions from
land use change (Ernst et al., 2023; Grassi et al., 2022; Mostefaoui
et al., 2024).

Effective conservation of tropical forests would be greatly
facilitated by accurate, near real-time monitoring of forest
disturbance, carbon stocks, and biodiversity. The remote sensing
community has struggled to quantify tropical forest degradation and
estimate carbon stocks.

Recent advances in remote sensing, Earth observation, and
artificial intelligence (AI) now enable detailed mapping and
modelling of forest land cover, biomass, and carbon stocks
(Lang et al., 2023; Reiner et al., 2023; Santoro et al., 2021).
These models provide high-resolution multi-temporal data that
revolutionize forest dynamics monitoring (Liu et al., 2021; Zhu
et al., 2022), in particular the production of global canopy height
maps that are now at a 10 or 30 m resolution with a continuous
spatial coverage and potentially reproducible every year (Lang
et al., 2023; Pauls et al., 2024; Potapov et al., 2021; Schwartz et al.,
2024). Various remote sensing techniques, based on optical, radar
and LiDAR (Light Detection and Ranging) observations, offer
detailed and complementary insights into forest structure.
Moreover, recent developments in AI-driven analysis are
helping to process and combine large amounts of data to detect
changes and predict trends in vegetation features (Li et al., 2023).
AI algorithms based on Machine Learning (ML) or Deep Learning
(DL) methods are improving land cover classification and biomass
estimation, enabling more comprehensive and near real-time
forest monitoring (Fayad et al., 2024; Pauls et al., 2024;
Schwartz et al., 2024). This review explores the methods for
forest mapping, biomass monitoring, and carbon stock
quantification using these advanced techniques, with a focus on
African tropical forests.
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2 State of the art of remote sensing
methods and results for monitoring
tropical forests in Africa

A variety of airborne and spaceborne Earth observation sensors are
used, not only for forest land cover mapping, but also for forest biomass
and carbon stocks quantification (Figure 1 illustrates some of the
existing products). A growing body of literature illustrates that both

optical, active sensors and digital elevation models are used to map and
model forest composition and function in West-Central Africa
(Viennois et al., 2013), to monitor tree height globally (Lang et al.,
2022) or at the country level in Democratic Republic of Congo (DRC)
(Waldeland et al., 2022) or Gabon (Carcereri et al., 2024; Takougoum
Sagang et al., 2024), forest biomass in Rwanda (Mugabowindekwe et al.,
2023) and forest land cover over Africa (Reiner et al., 2023). Time series
analysis based on dense satellite images and classic machine learning

FIGURE 1
Differences of resolution between optical sensors ((a) Landsat-8 30 m acquired on 14/12/2020 (c), Sentinel-2 10 m dated 31/08/2020; (e)
PlanetScope monthly mosaic 4.8 m acquired on 08/2020; and (f), Terra-Aqua/MODIS 500 m acquired on 16/12/2020) and SAR sensors ((b)
ALOS/PALSAR-2 30 m acquired on 31/08/2020 and (d), Sentinel-1 10 m acquired on 03/09/2020) over tropical rainforest in Democratic Republic
of Congo (DRC).
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algorithms such as Random Forest (RF) (Karlson et al., 2015), decision
trees (Phiri et al., 2020), regression analysis, and Support Vector
Machine (SVM) (Adugna et al., 2022) were largely used to map
forest cover change through unitemporal and bi-temporal data
analysis, multi-temporal post-classification comparison, and change
detection analysis. In the last decade, the use of advanced deep learning
techniques such as Convolutional Neural Networks (CNNs) have
improved the accuracy of remote sensing based forest detection and
mapping of tree cover, canopy height, biomass or crown segmentation
(see table 2). There is a substantial amount of comprehensive review on
the aboveground forest biomass estimation using remote sensing and
big data processing in cloud computing environments (Abbas et al.,
2020; Brandt et al., 2024a; Hansen et al., 2013; Tian et al., 2023).

Satellite observations offer global coverage and repeated
measurements in time but none of them directly measure
biomass. To estimate biomass density from remote sensing

products, allometric equations relating biomass to the retrieved
vegetation features (e.g., tree height) are required. These
equations are derived from in situ datasets, but unfortunately,
observation sites and plots are particularly scarce in African
forests compared to the Amazon Basin (Cooper et al., 2024)
despite new projects such as GEO-TREES (Chave et al., 2019).
Even though it is negligible in comparison to the noise on deriving
biomass from remote sensing, the conversion of biomass to carbon
stock is not straightforward either as it is a function of the wood
carbon concentration which depends on the type of tree and forest
(Heinrich et al., 2023; Martin et al., 2018). Lastly, the performance of
optical or microwave sensors in monitoring Above-Ground Biomass
(AGB) is affected by saturation effects in moderately or highly dense
tree canopies (Wigneron et al., 2024).

Accurate maps of forest composition and vertical structure,
including canopy height, can be used as proxies to infer biomass

TABLE 2 Existing remote sensing studies using deep learning over African forests/savannas.

References Geographical zone
(countries)

RS inputs Outputs DL method Resolution

Lang et al. (2023) World S2 (L2A product), GEDI Height CNN model 30 m

Fayad et al. (2024) Ghana S1, S2, GEDI Height Vision
Transformer

10 m

Vo Quang et al. (2022) Guinea S2, SPOT-6 Degradation map CNN model 10 m

Waldeland et al. (2022) DRC and Tanzania S2 Height map U-Net architecture
(CNN model)

10 m

Brandt et al. (2020),
Tucker et al. (2023)

West African Sahara, Sahel
and sub-humid zone

DigitalGlobe multispectral images from the
QuickBird-2, GeoEye-1, WorldView-2 and
WorldView-3 satellites

Crown segmentation,
tree count, tree
cover, AGB

U-Net architecture
(CNN model)

0.5 m

Reiner et al. (2023) Africa PlanetScope Tree cover U-Net architecture
(CNN model)

3 m

Mugabowindekwe et al.
(2023)

Rwanda Vexcel UltraCam-X aerial digital
photography camera, Skysat images at
80 cm ground sampling resolution

Tree cover, crown
area, AGB

U-Net architecture
(CNN model)

0.25m
and 0.8 m

Carcereri et al. (2024) Gabon TerraSAR-X and TanDEM-X (SAR
satellites)

Canopy height map CNN model 25 m

TABLE 1 Major biomass and biomass change datasets covering tropical forests.

Dataset
name

Spatial
resolution

Spatial
coverage

Temporal coverage Biomass
change

Link/DOI

Baccini et al. (2012) 500 m global 2000 no 10.1038/nclimate1354

CCI Biomass 100 m global 2010, 2015, 2016, 2017, 2018,
2019, 2020 and 2021

yes https://dx.doi.org/10.5285/
bf535053562141c6bb7ad831f5998d77

CTREES JPL 10 km global 2000–2020 yes 10.1126/sciadv.abe9829

GEDI L4 gridded
biomass

1 km up to 51.6° N 2020 no 10.3334/ORNLDAAC/2017

LVOD 25 km global 2010–2019 yes 10.1038/s41893-022-00854-3

Avitabile et al.
(2016)

1 km pan-tropical 2012 no 10.1111/gcb.13139

NCEO Africa 100 m Africa 2017 no 10.25392/leicester.data.15060270.v1
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volumes. They are therefore important for monitoring forest carbon
stocks and biodiversity. However, current accuracy and spatial and
temporal resolution are insufficient to produce annual estimates of
biomass and calculate carbon fluxes. Improving such features will be
beneficial to estimate yearly carbon budgets at the scale of the Congo
Basin and for mapping tree cover and monitoring deforestation and
degradation.

2.1 Mapping forest composition
and function

Detailed mapping of vegetation types is a fundamental
prerequisite both for biodiversity- and carbon-oriented questions
and applications, this involves distinguishing different vegetation
types such as swamp vegetation (edaphic forests), more or less open

FIGURE 2
Map of forest types in the Congo Basin at 20 m resolution reproduced from (Dalimier et al., 2022) with shared data from UCLouvain-Geomatics -
Observatoire des Forêts d’Afrique centrale.
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forests (e.g., Marantaceae forests), monodominant stands (e.g.,
Gilbertiodendron or Aucoumea-dominated forests), regenerating
forests or more or less degraded vegetation. According to
Dalimier et al. (2022), the term “edaphic forests” encompasses a
variety of forest types, including those that are permanently flooded
(with flooding persisting for more than 9 months), periodically
flooded (with flooding occurring for four to 9 months), and riparian
forests, as in the Cuvette Centrale du Congo, the world’s second
largest wetland area hosting the largest tropical peatland complex
(Betbeder et al., 2014; Bwangoy et al., 2010). The majority of the
Congo basin is covered by dense moist forests with an irregular age
distribution (see Figure 2). This forest type is characterised by a
dense tree layer comprising more than 60% of the biomass, which is
rich in species and markedly deciduous, with a multitude of
emerging trees displaying imposing canopies. In the eastern half
of the Congo basin, dense moist forests with a regular age
distribution, specific to exploitation or regeneration, which
exhibit fewer large crowns than forests with an irregular age
distribution, appear to be expanding (Dalimier et al., 2022). The
landscape is punctuated by groves of monospecific evergreen dense
moist forests, most often of the species Gilbertiodendron.
Additionally, montane and sub-montane forests border the great
lakes region (Dalimier et al., 2022). Open forests are also identified
across the basin, often on the margins of a degradation gradient.

In the Congo Basin, these different types of land cover contain
contrasting floristic and faunistic compositions and functions (Réjou-
Méchain et al., 2021) and thus play a different role in biogeophysical and
chemical fluxes (e.g., C storage in Congo Basin peatlands, soil carbon,
sediment load in watercourses). Existing maps of vegetation types are
based on the extrapolation of plot data (185,665 plots used by Réjou-
Méchain et al. (2021) with a resolution of 10 km by 10 km over the
entire Congo Basin. This map uses 24 climatic predictors, such as many
temperature and precipitation metrics, the mean monthly
evapotranspiration or the maximum climatic water deficit, to
extrapolate vegetation types over the entire region. To achieve
higher resolution at large scales, it is possible to combine field data,
very-high resolution images (Pléiades, Spot6/7, Planet) and
multispectral Sentinel 2 data (Sagang et al., 2022; Viennois et al., 2013).

The use of Sentinel 2 data for the analysis of subtle variations in
forest composition and structure requires a level of pre-processing
very different from that achieved by currently distributed level 2A
products. Efforts are needed to set up a functional processing chain
specific to tropical forests, enabling the correction of intra- and
inter-swath Bidirectional Reflectance Distribution Function (BRDF)
effects. Carefully trained DL models would present a promising
solution, particularly when combined with multidate calibration,
which has the potential to enhance classifier robustness against
inter-image variability. Another lead is the use of Lidar data of
canopy structure to infer the vegetation diversity (Marselis et al.,
2018; Schneider et al., 2020) or the structural density (Li et al., 2023)
with Airborne Laser Scanning (ALS) and Global Ecosystem
Dynamics Investigation (GEDI) (Dubayah et al., 2023). In these
cases, validation using terrestrial laser scanning (TLS) data is
essential (Decuyper et al., 2018). Unfortunately, the relationships
between tree species diversity, climate and canopy structure are not
as straightforward as originally expected (Marselis et al., 2022) and
require further investigation, in particular in Central Africa where
plots are scarce.

2.2 Mapping tree height and forest biomass

The first continuous global maps of forest characteristics like
height and AGB relied on remote sensing forest height
measurements from the ICESat/GLAS mission (from 2003 to
2009) (Lefsky, 2010; Simard et al., 2011). Combining Terra-
Aqua/MODIS reflectance data with ICESat/GLAS enabled the
generation of global 1 km resolution height maps (Lefsky, 2010;
Simard et al., 2011) as well as 500 m resolution AGB maps by
combining these maps with field inventories (Baccini et al., 2012).
Saatchi et al. (2011) built upon these sensors and incorporated field
data from forest inventory plots to derive site-specific allometric
equations, ultimately proposing a carbon stock map for tropical
forests across three continents (Asia, Latin America and Africa).
ICESat/GLAS became a cornerstone for forest characteristics
mapping when it was, used in conjunction with other radar
sensors like ALOS-PALSAR (Mitchard et al., 2012; Santoro et al.,
2021) and Landsat (Hansen et al., 2016; Wang et al., 2018; Zhang
et al., 2014) to achieve wall-to-wall mapping. More recently, thanks
to GEDI L4 data it is possible to produce biomass density mapping at
1 km resolution based on the GEDI waveform and statistical hybrid
inference method (Dubayah et al., 2023; Patterson et al., 2019).

Advancements in remote sensing technologies have yielded higher-
resolution data across the optical (Sentinel-2 launched in 2015,
PlanetScope from 2016), synthetic aperture radar (SAR, Sentinel-1
launched in 2014), and LiDAR (ICESat-2/ATLAS launched in 2018,
GEDI launched in 2018) domains, enabling more accurate AGB and
forest height mapping. Notably, GEDI-based canopy height maps
rapidly emerged after the first LiDAR acquisitions in 2019, paving
the way for high-resolution, large-scale height mapping (Ghosh et al.,
2022; Gupta and Sharma, 2022; Liu et al., 2021; Morin et al., 2022; Qi
et al., 2019; Schneider et al., 2020; Shendryk, 2022; Silva et al., 2021;
Sothe et al., 2022; Wang et al., 2022). For example, 30 m spatial
resolution from Landsat optical reflectance data was combined with
sparse height measurements from GEDI to generate global, 30 m
resolution canopy height maps (Potapov et al., 2021). Recently,
Sentinel-2 reflectances with (Pauls et al., 2024) or without (Lang
et al., 2023) Sentinel-1 backscatter were combined with GEDI data
to achieve global, 10 m resolution wall-to-wall height mapping. Meta
and World Resource Institute (WRI) released a 1 m resolution map by
using very high resolution RGB images from Maxar satellites and ALS
data (Tolan et al., 2024). Figure 3 illustrates height maps over a small
area in Gabon produced by three different methods at high spatial
resolution (30 m and 10 m) showing that the map from Potapov et al.
(2021) saturates at 25 mwhile the maps from Lang et al. (2023) at 10 m
show heights up to 55m, similar to the results of the OFV project
(Kayrros, see annex). However, the production of such maps across the
entire tropical forests may prove challenging due to optical image
distortions caused by clouds, haze or dust. In addition, the directional
effects of the sun’s angle can cause the textural information of optical
images to be distorted. This is the BRDF effect that can be observed
within or between swaths. Although less affected by the presence of
clouds, SAR images are impacted by large hydrometeors in convective
rain cells which interact with the electromagnetic wave emitted by the
sensors. It can cause either brightening or darkening of portions of the
contaminated images, especially at higher frequencies (i.e., C and X
bands) (e.g., Flores et al., 2019). The presence of speckle noise on radar
images and saturation of optical images due to the dense forest can
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hinder the detection of trees. Finally, the low penetration depth of radar
with short wavelength implies a signal saturation that is generally
observed in dense forests (Yu and Saatchi, 2016). A different type of
saturation is observed for LiDAR, with photons that do not necessarily
reach the ground when the canopy is above 40 m. Leads to overcome
this challenge include a more advanced LiDAR waveform analysis to
identify the saturation or crossing LiDAR signals with DEM, although
these are often biased in the presence of canopy. Overall, these
limitations increase the uncertainty associated with canopy height
estimates in tropical forests.

Another spaceborne technique used to map forest height and
AGB is the interferometry based on SAR images (SAR
interferometry or InSAR) acquired from two different angles
(repeat-pass). Forest height mapping from InSAR can be
achieved either removing a Digital Terrain Model (DTM)
representing the bare earth surface from the InSAR Digital
Surface Model (DSM) corresponding to the top of the canopy, or
differentiating two Digital Elevation Models (DEM) obtained by
InSAR at the same or at two different wavelengths, one penetrating
deeper in the vegetation as in P or L bands, the other not as in X or C
bands (Solberg et al., 2017). The resulting canopy height maps have a
spatial resolution of several tens of meters. Such a technique has
been applied to map canopy height at country-scale over Gabon
using TanDEM-X InSAR acquisitions and deep learning with an R2

of 0.77 and RMSE ~5 when compared to LiDAR data (Carcereri
et al., 2024). AGB estimation is derived from canopy height using
regression between the two variables (Berninger et al., 2019). Using
X-band InSAR data, no saturation was found up to an AGB of 600 t/
ha in a dense tropical forest in Tanzania (Solberg et al., 2017). InSAR
coherence (i.e., the degree of correlation between two SAR images
which represents the quality of the interferogram) was also used for
canopy height mapping and AGB estimates. A linear relationship
was found between both the canopy height and AGB. Over tropical
forests, including African equatorial study sites, InSAR volume
coherence derived canopy heights and AGB were retrieved with
RMSE of ~16% and 21% and R2 of 0.72 and 0.59, respectively
(Schlund and Boehm, 2021).

Recent scientific advances have shown that combining ground
inventory data with high-resolution satellite and aerial imagery, as
well as LiDAR observations using AI, improves environmental
monitoring down to the tree level in African drylands (Brandt
et al., 2020; Tucker et al., 2023). These emerging methods are
capable of producing very high-resolution (3 m) maps of tree
cover for Africa (Reiner et al., 2023) and are laying the
groundwork for overcoming the challenges of differentiating
individual trees in tropical dense forests (Mugabowindekwe et al.,
2023). However, current techniques remain strongly limited in their
ability to capture tree-level dynamics in dense tropical forests.

FIGURE 3
Maps of canopy heights in a small area of 6,057 km2 in Gabon. Panel (a) shows the map at 10 m produced by Kayrros (see annex 1). Panel (b). shows
the map at 10 m from (Lang et al., 2022). Panel (c). shows the products at 30 m from the Global land use land cover dataset (Potapov et al., 2021).
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The need to combine different data sets propagates the
uncertainty associated with these maps. This makes annual
monitoring of biomass change challenging. As a result, these
maps provide only a static picture of biomass at a given time,
with large differences between methods, calling into question their
reliability and temporal stability (Dalimier et al., 2022). More
recently, several new satellite remote sensing products based on
AGB have been produced (Abbas et al., 2020) but the spatial
resolution remains limited (100 m to a few km, see Table 1).

2.3 Mapping changes of canopy height and
forest biomass

In the previous section, we described methods providing
maps of canopy height with a spatial resolution of 10 m–30 m
that can be updated annually thanks to the use of AI, potentially
allowing for a yearly map production to monitor height changes.
However, we also highlighted limitationsthat can increase the
uncertainty in canopy height estimates. In tropical forests, the
most precise studies still have a mean absolute error (MAE) of a
few meters. It is difficult to directly compare studies as they don’t
perform uniformly and don’t necessarily use the same validation
data on the same regions. However, recent products give height
maps with a MAE of 4.5 m (Wan et al., in prep) to 6.4 m (Lang
et al., 2023). Therefore these methods make it particularly
difficult to monitor height change in mature, slow-growing
forests, while they can be very effective in detecting more
abrupt changes, such as disturbance and regrowth.

While height can be estimated directly from spaceborne
systems like GEDI, biomass requires in situ plot inventory or
airborne laser scanning (ALS) data to calibrate the relationship
between height and AGB. This reliance on plot data increases the
uncertainty in biomass estimates and makes annual monitoring
more difficult. To date, most of the AGB maps are static and very
few products provide data on the interannual variations in the
forest carbon stocks. These “dynamic” products include the one
developed by Xu et al. (2021) based on machine learning models
which contribute to predicting AGB changes using historical data
and optical and high-frequency microwave measurements as well
as a large set of ALS data. However this product was found to be
limited by saturation issues (Wigneron et al., 2024). In recent
years, monitoring of the interannual variations of AGB has
mainly been done by using the microwave Vegetation Optical
Depth (VOD), which accounts for the microwave extinction
effects due to the vegetation layer (Frappart et al., 2020;
Wigneron et al., 2024). In particular L-VOD (the VOD index
estimated at L-band, a very low frequency band) has been shown
to be related to AGB without clear signs of saturation. L-VOD
estimated from the SMOS (Soil Moisture and Ocean Salinity)
satellite mission, has been used to monitor the interannual
variations in AGB at the country (China, USA, Brazil, etc.),
continental (tropical and boreal areas, Australia, Europe, etc.)
and global scales over the last decade (Yang et al., 2023). For
instance, Zhao et al. (2024) have recently found that
deforestation resulted in significant carbon emissions that
were offset by carbon stock increases due to vegetation growth
and recovery, resulting in a net carbon sink in Central Africa

from 2010 to 2019, with a carbon stock increase mainly occurring
in the northern savannas. These trends have been confirmed by
carbon dynamics estimated from X-VOD products (Wang et al.,
2024) and by a recent analysis of the patterns and drivers of
aboveground carbon changes in the tropics (Feng et al., 2024).
However, the L-VOD and X-VOD derived AGB estimates have a
coarse spatial resolution of about 20 km × 20 km which does not
allow an accurate mapping and attribution of disturbances in
forests but is relevant to estimate fluxes at the country level
(see Figure 4).

Table 1 shows that there is currently no high resolution dataset
available to report yearly biomass changes. Furthermore, existing
products present significant differences making it difficult to define a
reference dataset (see Figure 5). As for forest height monitoring, the
use of new deep learning techniques offers very promising
perspectives to monitor interannual changes in AGB at high
resolution (30 m) (Tucker et al., 2023). However, yearly products
are not available yet. Note that 30 m is the minimum resolution for
which it makes sense to estimate AGB because below this size, the
tree heterogeneities necessary to compute a meaningful biomass
estimate cannot be accounted for.

2.4 Mapping forest degradation

The development of annual monitoring of AGB at high
resolution would provide the opportunity to derive disturbance
maps that distinguish between degradation and deforestation.
While large-scale deforestation is currently well monitored,
small-scale degradation may be harder to detect.

Forest degradation encompasses all activities that alter the
structure and composition of forest while remaining under the
definition of a forest, such as selective logging, fires, droughts,
and more. Unlike deforestation, forest degradation is not
categorised as land-use change because it is less intensive, less
visible and more difficult to detect but may lead to eventual forest
loss. Furthermore, forest degradation is a major concern as it
reduces carbon sequestration potential, often overlooked in
carbon accounting (Silva Junior et al., 2021). Small-scale forest
clearing for agriculture is particularly prevalent in the Congo
Basin forest where it accounted for more than 80% of the total
forest cover loss in the region between 2001 and 2015 (Curtis
et al., 2018; Tyukavina et al., 2018). Another characteristic of the
Congo Basin is that forest exploitation is mainly performed
through selective logging which represents the second most
significant disturbance driver in the region (Tyukavina et al.,
2018). On the contrary, large-scale deforestation was the main
driver of forest loss in the Amazon and Southeast Asia,
accounting for more than 60% (Curtis et al., 2018), even
though a recent study has shown that carbon loss from forest
degradation exceeds that from deforestation in the Brazilian
Amazon over the past decade (Qin et al., 2021).

Deforestation, unlike degradation, has long been monitored
because it is easier to detect using remote sensing (Reiche et al.,
2021; Tyukavina et al., 2018; Zhuravleva et al., 2013). Recently, the
processing of very high resolution (about 3 m) images from the
Planet NICFI mosaics (archives since 2015) has significantly
improved the mapping of deforestation for Mato Grosso
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(Wagner et al., 2023) and the entire Brazilian Amazon (Dalagnol
et al., 2023). The latter approach uses deep learning classification
algorithms, complemented by other high resolution data such as
SPOT, MAXAR, and Terrasar-X. It is based on a manual labelling of
a large set of anthropogenic disturbances such as roads, logging, and
fires, and other factors such as wildfires, and mortality events
from droughts.

Historically, the Landsat-based global or pan-tropical datasets
(Hansen et al., 2013; Vancutsem et al., 2021) provide 30m resolution
maps of forest cover allowing for an assessment of disturbances. This
is the Tropical Moist Forest (TMF) database that provides annual
maps of changes (1990–2023) at a spatial resolution of 30 m,
distinguishing between forest cover degradation and
deforestation. TMF defines a degradation as a temporary
disturbance with a maximum duration of 2.5 years (Vancutsem
et al., 2021). These maps have also been used to assess forest
disturbance dynamics (Tyukavina et al., 2018). If optical images
are too cloudy, radar sensors such as Sentinel-1 can provide
alternative datasets and information, e.g., using statistical
approaches as cumulative sum (CuSum) (Manogaran and Lopez,
2018) or Bayesian approaches (Reiche et al., 2018). These methods
have been successfully applied to monitor deforestation and
degradation in Amazonia and Congo (Reiche et al., 2021; Ygorra
et al., 2023; 2021). When tested in Congo, it allowed to monitor the
construction of roads used for logging and also to identify dates of
forest disturbance. Figure 6 compares these maps produced by three
different methods: RAdar for Detecting Deforestation (RADD)

alerts (Reiche et al., 2021), GLAD alerts, i.e., from the University
of Maryland’s Global Analysis and Discovery (GLAD) lab (Hansen
et al., 2016) and CuSum Cross-Tc (Ygorra et al., 2023) alerts.
Disturbances from deforestation and degradation can also be
estimated using InSAR data. Non-forested areas are characterized
with higher coherence and lower heights than forested areas
(Solberg et al., 2015). These properties were used to detect forest
degradation using C-band COSMO-SkyMed InSAR data with an
accuracy above 75% in two sites in Central Africa (Deutscher et al.,
2013), X-band TanDEM-X InSAR data over hilly areas in Gabon
(Carstairs et al., 2022) or selective logging sing C-bandRADARSAT-
2 InSAR data with an accuracy above 75% in RDC (Antropov
et al., 2021).

Other studies have explored the application of Sentinel-2
satellite imagery in detecting forest degradation. Vo Quang et al.
(2022) focused on the Ziama Massif where selective logging is the
primary degradation process observed. As a result, degraded forests
include smaller trees than intact forests, resulting in discontinuities
in the canopy. Vo Quang et al. improved the photo-interpretation
method for degraded forests in Guinea. The results highlight the
significant contribution of Sentinel-2, thanks to its broad range of
spectral reflectance, including the mid-infrared region, which
considerably improves the separability between dense and
degraded forests.This allowed to train a Convolutional Neural
Network (CNNs) able to detect degraded forests in similar
biogeographic contexts as for the training dataset, as the method
is transferable and applicable across different years and similar forest

FIGURE 4
AGC (PgC) and AGC trends (TgC/yr) summed per African country for the period 2003–2021. Data were obtained thanks to the analysis of L-VOD
products (Wang et al., 2024).
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types. However, the generalization of this CNNmodel to other forest
and climatic contexts needs to be studied. There are various forms of
degradation and degraded forests, and it is unclear whether the
methods can be well suited to monitor them.

3 Perspective for the development of
remote sensing products for forest
attributes in the context of the African
tropical forest

In the above sections, we have briefly reviewed the main remote
sensing methods which have been used to monitor the African
tropical forests and we have presented some key results. We have
shown that the use of machine learning methods, especially those
based on deep learning have led to key advances in the monitoring of
forests both in space (within a range of spatial resolution of about
3–50 m) and time (interannual variations). In the following we will
present a rapid perspective, analysing how these new methods could
be applied in the context of the African continent, and then more
generally across the tropics.

3.1 Improving maps of forest composition
and function

Tests with different pre-processing levels of Sentinel 2 images
and state-of-the-art deep learning models and methods (DINOv2,
see Oquab et al., 2024) indicate that correcting atmospheric and
directional effects remain primordial to attain satisfactory results in
terms of mapping forest types and deciduousness. This might be
because the main signal in the data comes from spectral components
and not from the image texture. Since deep learning approaches are
very data-intensive for the calibration and validation of the network,
it should be based on 1) a self-supervised framework that limits the
need for training data (Ericsson et al., 2021) and 2) then use a
reference dataset based on the existing network of plots, photo-
interpretation of VHR images (Pleiades, GeoEye and Spot7) and
drone orthomosaics (see section 3.5). This would require the help of
local experts in targeted countries to finally train the model in a
supervised way. This two step strategy appears as a promising
approach to reach a high degree of accuracy with a limited
amount of (time-consuming) reference data. The methods could
be developed first on test regions with sufficient ground observations

FIGURE 5
Comparison of spatial distribution above-ground biomass (Mg/ha) in the Congo Basin forests derived from multiple datasets: (a) GlobBiomass
(100 m) (Santoro et al., 2018), (b) NCEO Africa AGB (100 m) (Rodriguez-Veiga and Balzter, 2021), (c) ESACCI AGB (100 m) (Santoro and Cartus, 2023), (d)
pan-tropical AGB (1 km) (Avitabile et al., 2016), (e) GEDI L4B AGB (1 km) (Dubayah et al., 2023), and (f) FORMS OFVI V1 AGB (10 m) (Wan et al., in prep).
FORMS OFVI V1 AGB was generated using Kayrros canopy height maps (see annex) and an allometric equation (AGB = 0.9765×CH1.6353). The
approximate year of AGB mapping is shown in the top-right corner of each panel.
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(typically southern Cameroon, northern Congo or northern Gabon)
and on the well monitored supersites (GEOTREES). Then, an
extrapolation of this approach to a transnational approach would
allow mapping the main forest types of Central African forests and
depending on the availability of cloud-free Sentinel- 2 data.

Once the main forest types are defined, it is important to
quantify the relative abundance of the main functional types first
(Atlantic, semi-deciduous and evergreen forests) and then consider
a broader diversity of classes. The collection of functional traits on
the most abundant species within GEOTREES supersites and
phenological observations derived from repeated drone
measurements would additionally help to calibrate and validate
quantitative phenological maps based on static or temporal series
of Sentinel 2 data, where available. To extrapolate, it would be
necessary to assess the potential of AI approaches to automatically
identify phenophases and functional types from high resolution
drone or satellite data. Such data would also benefit land surface
models to improve simulations of carbon and water fluxes.

3.2 Towards a monitoring of tree height
change over Congo basin

Following the methodology developed in many recent studies
(e.g., Fayad et al., 2024; Schwartz et al., 2024), it is possible to
produce annual height maps over all wet tropical forests in Africa
since 2017. These products can be compared against 1) existing
global height products based on Landsat or on Sentinel-2, 2)
independent GEDI footprints that have not been used in the
model training procedures, 3) airborne LiDAR campaigns (ALS)
acquired over Ghana (Stereńczak et al., 2020), Gabon (AfriSAR
(Rodda et al., 2024)), Congo (Stereńczak et al., 2020) and Cameroon
(Rodda et al., 2024), and 4) forest inventory sites including the
supersites of the GEOTREES program and the existing ForestPlots
local inventories. If tree height taken from inventories are
considered as the ground truth, it is worth noticing that these
measurements can sometimes be heavily biased (Terryn et al., 2024).

At the same time, DL models should be improved to better
account for GEDI geolocation errors by shifting them together
within sub-tracks (footprints from the same orbit and beam)
based on minimizing a user-defined loss function. The fusion of
new data from L-band radar (ALOS/PALSAR) and from the
upcoming NISAR mission products that should be available in
2024 (Kellogg et al., 2020) could also be tested to improve the
height maps over wet tropical forests. The update of the maps for all
years since 2017 (start of the Sentinel 2 times series) would ensure
data and model versioning and traceability, permanent quality
assessment and quality control (QA/QC), and performance
evaluation against independent observations. In the long term,
the annual production of height maps would allow to assess
trends in the forest C stocks.

The potential of radar altimetry could also be explored to
increase the number of available data to estimate forest height
and their changes against. Even if along-track altimetry data were
poorly exploited to estimate forest height due to their very low
coverage of the Earth surface in spite of realistic height estimates
(Berry et al., 2007; Frappart et al., 2021), the wide-swath Surface
Water and Ocean Topography (SWOT) radar altimetry mission (Fu

FIGURE 6
Comparison of different methods used for the detection of forest
degradation. Dates of detected changes between 01/2020 and 12/2021
(color scale) in an IFCO concession (Democratic Republic of Congo)
according to (a) GLAD alerts (Hansen et al., 2016), (b) RADD alerts
(Reiche et al., 2021) and (c) CuSum cross-Tc alerts (Ygorra et al., 2021)
on the Sentinel-2 image acquired on 12/02/2021. Annex: FORMS OFVI
V1 AGB Maps derived from GEDI, Sentinel-1 and Sentinel-2 satellite
observations over the period 2021–2022 over the Congo basin FORMS
OFVI V1mapping of above-ground biomass (AGB) is based on the use of
canopy height (CH) as a proxy of AGB and which can be estimated on a
large-scale using satellite imagery. Then AGB is estimated from CH
using height-to-AGB relationships (Wan et al., in prep).

Frontiers in Remote Sensing frontiersin.org11

Bossy et al. 10.3389/frsen.2025.1532280

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1532280


et al., 2024), that has been mapping surface elevation and coherence
in the inundation mask since December 2022, is likely to provide
complementary information on canopy height and AGB at high
spatial (10–60 m) and temporal resolutions (21-day) for each swath
which can be used for monitoring interannual changes over edaphic
forests and non-flooded forests contained in the SWOT wetland
mask. Early results obtained in the Congo Cuvette Centrale showed
large changes in surface elevation time-series over narrow rivers
surrounded by forests suggesting possible locations of echoes over
rivers and forests from one pass to another (Normandin et al., 2024).

Finally, in 2025, CNES (the French Space Agency) plans to
launch the CO3D (Constellation Optique en 3 Dimensions) mission,
comprising four very high resolution optical satellites. This
constellation will deliver a highly accurate 3D map of Earth’s
surface, enabling the production of accessible 3D digital terrain
models with a resolution of 50 cm, covering the entire world in
5 years. Combined with other Earth observation satellites, CO3D
will be a valuable asset for monitoring tree height.

3.3 Towards a mapping of forest
biomass change

Accurately converting canopy height into biomass remains a
challenge, requiring in situ inventory or airborne LiDAR data from
diverse forest sites, including degraded and low biomass forests to build
allometry models. Large plots are particularly valuable for assessing
empirical relationships between biomass, height, and other vegetation
characteristics such as tree density, crown area, and wood
density—features that can partly be estimated through remote
sensing. The GEOTREES supersites data will offer an opportunity to
work on height-biomass The GEOTREES supersites data will offer an
opportunity to work on height-biomass allometric relationships over
different footprint areas, from 25 to 100 m radius and beyond. Simpler
approaches such as the empirical derivation of height-biomass
relationships at the stand level can also be tested based on modelled
or observed height (see Section 3.1). These methods will support the
development biomass maps for wet tropical forests, incorporating
uncertainty estimates, e.g., based on different allometric approaches
and input data for AI models. Given the spatial heterogeneity of
biomass, accurate maps should be produced at 30- and 100-m
resolutions in order to capture the biomass of a sufficient number of
trees, even if height maps can be available at finer scales. Indeed, there is
a consensus that the final resolution of the product should not be too
high (around 10 m for height or 30 m for biomass). However, it is not
clear what resolution data (up to 1m or 50 cm) is needed to produce the
most accuratemaps fromAImodels. In addition, a trade-off needs to be
made between increasing accuracy and increasing the cost of satellite
data and product calculations.

Once generated, these biomass products must be independently
evaluated using plot data not involved in their calibration. They can
also be compared against existing global datasets including ESA CCI
Biomass, the above-ground biomass map of African savannas and
woodlands from Bouvet et al. (2018), and CTREES maps (https://
ctrees.org). Aggregated at a large scale (about 25 km), the annual
trends in C stocks obtained from these methods could be compared
with coarse resolution estimates of biomass change assessed from
the L-VOD product since 2010 (Wigneron et al., 2024).

The annual production of these maps would enable the detection
and quantification of biomass gains and losses, particularly in
response to degradation or deforestation. A specific focus should
be given to the monitoring of biomass dynamics in shifting
cultivation areas, which are widespread in the Congo Basin.

To further refine biomass mapping methodologies, a next step
would be to incorporate additional height metrics extracted from
GEDI vertical waveforms. These metrics would better capture
parameters related to canopy thickness and vertical structure
which relate to biomass in a less ambiguous way than top or
dominant canopy height alone, which is most commonly used in
current maps. The new generation of biomass maps could be
extended outside wet forest regions to Miombos, woodlands and
dry ecosystems with sparse trees. This extension could lead to the
first high-resolution biomass carbon change budget for over the
African continent based on advanced IA methods.Over the long
term, it will be interesting to assess trends and changes, as well as to
evaluate the accuracy of the products across all GEOTREES sites and
ALS campaigns. These datasets will also support intercomparisons
with biomass estimates derived from ESA BIOMASS mission’s
upcoming P-band SAR images (Quegan et al., 2019). Expected to
be launched in 2024, this mission should enhance the reliability of
large-scale forest canopy height and above-ground biomass maps,
especially in dense forests of the tropics, where P-band is expected to
be much less affected by saturation effects than higher frequency
bands as L-, C- and X-bands.

3.4 Towards improved maps of forest
degradation

To map degradation of African tropical forests caused by
logging, fire, and road construction at a fine resolution, deep
learning methods can be developed and trained on images from
the Planet NICFI mosaics, as developed by Dalagnol et al. (2023) in
the Amazon Basin.

Information on the occurrence and severity of different types of
degradation events could then be crossed with biomass change maps
(Section 3.3) and with forest height change maps (see Section 3.2) to
assess the carbon loss or recovery gain associated with
degradation events.

In the long term, dataset on forest degradation, deforestation
activity and resulting biomass and height change could be produced
annually. It would allow to provide a continuous carbon budget
from degradation and deforestation over all countries covered, with
an attribution to disturbance types and drivers and an analysis of
lagged effects such as forest dieback after a severe drought or non-
sustainable logging activities, and resulting cascading effects such as
forests being logged and cut after degradation, or combined effects
from drought followed by fire.

It is also worth addressing the challenge of the adaptation and
implementation of the CNNmethodology (Vo Quang et al., 2022) in
various tropical forest regions in order to obtain a comprehensive
assessment of the current state and trends of forest degradation,
ultimately contributing to global conservation initiatives and
sustainable forest management. To do so, we could rely on the
same methodology as used in (Vo Quang et al., 2022), starting from
the photo interpretation of Sentinel 2 images in the context of the
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Congo basin, to consider various types of degraded forests, and to
consider the differences in the climatic context. The objective would
be either to build a CNN model able to map the degraded forests
from the West African context to the whole Congo basin context, or
alternatively to build a set of CNN models specifically for
each context.

3.5 Perspectives in deep learning applied to
remote sensing

In the last few years, artificial intelligence models has shifted
towards the use of Transformers (Dosovitskiy et al., 2021; Vaswani
et al., 2017) and Self-Supervised Learning (SSL). Self-Supervised
learning consists of pre-training a model on a pretext task, such as
reconstruction of degraded data for instance (see Shwartz Ziv and
LeCun, 2024 for an overview of commonmethods) before fine tuning it
for a downstream target task (e.g., prediction of forest composition or
tree height). Thus, the model can learn the underlying structure of a
dataset during pre-training and finetuning is less data and resource
demanding (Ericsson et al., 2021). This means that the need for labelled
data is shifted towards a need for raw data, which is particularly relevant
when using remote sensing over regions where ground truth data is
difficult to acquire, such as tropical forests.

Vision Transformers (ViTs, Dosovitskiy et al., 2021) have shown
good synergy with SSL and have thus become the state of the art models
for most computer vision tasks (Caron et al., 2021; He et al., 2022;
Oquab et al., 2024). The attention mechanism built in Transformers
enables them to better handle the structure of an image rather than
focussing mostly on texture like CNN. Current research seems to
suggest that the superiority of ViTs for computer vision tasks on
natural images does not necessarily translate when applied to remote
sensing of forests (see for instance Fogel et al., 2024; Section 3.1).
Overall, CNNs seem to be better suited if the information is mostly
spectral and textural and ViTs if the information is structural.

3.6 Discussion about the resolution and the
need for ground-truth data

We have shown in the previous sections that the application of
AI methods to remote sensing has improved the accuracy of height
maps in regions where they were tested (Liu et al., 2023; Schwartz
et al., 2024) as it paved the way for the first global maps of canopy
height at 10 m convertible into biomass maps at 30 m resolution
(Lang et al., 2023). More recently, the fusion of radar products with
optical imagery has further enhanced accuracy by limiting the
impact of cloud cover. However, these improvements come with
important trade-offs and limitations that must be considered.

While finer spatial resolutions can capture detailed canopy
structures, the assumption that “higher resolution is always better”
does not hold for all applications—especially for biomass estimation in
dense tropical forests. In such environments, trees often have
overlapping crowns and large diameters, meaning that resolutions
below the typical canopy size (about 10 m) may not translate into
meaningful improvements in accuracy. Indeed, increasing resolution
beyond 30 m for AGB mapping is often unwarranted given the
aggregation scale needed to meaningfully quantify biomass

(Duncanson et al., 2025). Moreover, very high resolution (3 m and
below) is very expensive, often not publicly available (PlanetScope and
SPOT data), has a limited temporal repetitiveness, diminishing the
chances to obtain cloud-free optical images in the Africanmoist forests.
Finally, the processing of these data requires intensive and expensive
computing facilities which is a major challenge for their use in
developing countries.

AI methods have significantly improved the estimation of forest
attributes by integrating CH with ancillary datasets (Fatoyinbo et al.,
2021; Liang et al., 2023; Saatchi et al., 2011; Xu et al., 2017). However, it
is critical to emphasize that thesemethods are not a substitute for robust
in situ observations (Ploton et al., 2020). AI-driven models depend on
high-quality training and validation datasets, and without sufficient
ground truth data, even sophisticated algorithms cannot achieve reliable
accuracy. In many parts of the Central African forests, the scarcity of
publicly available field observations—inclu data sovereignty
issues—hinders both model calibration and validation. Addressing
these challenges requires strengthening in situ observation networks,
which are essential not only for training AI models but also for
validating their outputs. Unfortunately, publicly available field
observations in the Congo Basin remain scarce, despite the well-
recognized need for them. Some initiatives, such as GEOTREES
(Chave et al., 2019), aim to bridge this gap by deploying a network
of supersites, prioritizing data quality over quantity to enhance the
reliability of remote sensing-based CH and AGB estimates.

In summary, although the recent availability in high-resolution
remote sensing and AI models has pushed forward the capabilities
for monitoring forest biomass, it is crucial to adopt a balanced
perspective. For dense tropical forests, resolutions in the range of
30–100 m may be optimal for capturing biomass dynamics, while
higher resolutions do not necessarily lead to proportionate gains in
accuracy and often entail prohibitive costs. However, very high
resolution (e.g., meter scale data) are very powerful to detect
mortality at tree level (Brandt et al., 2024b). Ultimately, the
accuracy of remote sensing products depends on the availability
and quality of ground-truth data, in particular for biomass and tree
species/forest types maps, making it imperative to invest in more
accessible and extensive in situ observation networks, in particular
plots larger than 1 Ha that match the resolution of biomass datasets,
and revisits of airborne Lidar campaigns to verify changes.

4 Conclusion

In this paper, we reviewed recent advancements in remote
sensing methods for monitoring African tropical forests.
Specifically:

• We assessed existing products for forest typology, canopy
height, and biomass mapping.

• We identified limitations and best practice requirements to
assess these products, particularly regarding data availability
and validation.

• We discussed the opportunities offered by the increasing
availability of remote sensing data and the development of
innovative AI models to retrieve maps of new forest
attributes such as forest composition, phenology, and
vertical structure.
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• We emphasized the critical role of ground-truth
observations, as their scarcity remains a major obstacle to
improving the reliability of forest monitoring products.

The availability of diverse satellite constellations has created new
opportunities for large-scale forest mapping and carbon dynamics
monitoring. Advances in Earth observation techniques and AI have
demonstrated the potential to develop forest monitoring systems
that provide detailed and accurate spatial information on biomass,
carbon balance, canopy structure, and forest biodiversity. However,
this research progress varies considerably between Amazonian,
African, and Asian forests. For example, research in the Amazon
basin is more advanced than in African forests, because of a more
comprehensive understanding of the carbon cycle, productivity, and
response to environmental change. Unfortunately, the complexity of
tropical forest ecosystems and the type and scale of forest
disturbance and degradation make it difficult to directly
reproduce the existing methods and studies in Africa. The
limitations of existing data, such as observation plots, highlight
the need for continuous refinement of these methods to improve the
reliability of African-based research on disturbance, recovery, and
carbon dynamics in tropical forests. In particular, there is no point in
developing the analysis of remote sensing products if the results
cannot be compared to the reality of the ground. That is why, it is
necessary to expand the plot network and to develop sampling
methods at the regional scale to make all ground observations
comparable.

Recent initiatives are promising such as co-creation and
networking with local researchers to identify the needs and
priority to improve our understanding of the Congo Basin
Forest. For example, the Congo Basin Science Initiative (CBSI)
will focus on capacity building for observation and data
collection in the central African tropical forest. The One
Forest Vision initiative (OFVi) aims to provide scientific
support for the development of IT platforms for continuous
monitoring of carbon and biodiversity reservoirs in the Congo
forest basins. Although not fully confirmed, NASA’s PANGEA
project has a broader scope as it aims to better understand the
combined effects of climate and land-use change in tropical
forests within and between continents by combining in situ
field data with remotely sensed airborne and spaceborne data.
Overall, what should be aimed is a synergy among researchers
and stakeholders with interest in the forest sector that will likely
contribute in improving the design of sampling frame and
ground truthing process that are prerequisite for improved
forest related research with a cost effective approach.
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Appendix: FORMS OFVI V1 AGB Maps
derived from GEDI, Sentinel-1 and
Sentinel-2 satellite observations over
the period 2021-2022 over the
Congo basin

FORMS OFVI V1 mapping of above-ground biomass (AGB) is
based on the use of canopy height (CH) as a proxy of AGB and
which can be estimated on a large-scale using satellite imagery. Then
AGB is estimated fromCH using height-to-AGB relationships (Wan
et al., in prep).

The Kayrros CHM maps (i.e maximum height of the canopy)
and cover (percentage of soil covered by the forest in each pixel) are
provided at 10 m resolution and are updated annually from
2019 onward. The methodology to produce regional canopy
height maps at high resolution has been developed in
collaboration with the LSCE and has been described in several
studies (Fayad et al., 2024; Schwartz et al., 2024; Schwartz et al.,
2023). The main technical choices can be summarized as follows:

1) Data sources: most layers are produced based on data from
ESA’s Sentinel-1 SAR and Sentinel-2 multispectral missions,
which offer a good tradeoff between costs on one side (as the
images are publicly available) and accuracy (10 m resolution)
and scalability (global coverage with high revisit capacity) on
the other side.

2) Training dataset: The canopy height used to train the Machine
learningmodel are based onGEDI data (Dubayah et al., 2021) over
600 tiles of 20 x 20 km in tropical and subtropical Africa. The tiles
are evenly spread over the study zone and selected tomaximize the
number of GEDI orbits crossing the tile. We randomly selected
480 tiles (80%) to train the model, 60 tiles (10%) for validation
during the training process, and 60 tiles (10%) to test the model.
The total number ofGEDI footprints afterfiltering available for the
training dataset is 8,5 million. Due to the high cloud cover and the
density of tropical African forests, more than 80% of the total
available GEDI footprints were filtered.

3) The canopy height estimates are generated using a
supervised deep learning model, which is trained with a
set of input data and corresponding output data. For this
project, the input data consists of mid-resolution multi-
spectral (Sentinel 2) and radar (Sentinel 1) images, while the
output data consists of GEDI measurements of canopy
height, which are available only for certain points and
dates. As done by (Schwartz et al., 2024), a U-net model,
which is a Fully Convolutional Neural Network adapted
from (Ronneberger et al., 2015), is used to perform a
pixel-wise regression to predict canopy height. It is
implemented using Python’s PyTorch library.

4) The model training process consists of iteratively modifying
the weights of the U-NET model in order to minimize a target
function, called the loss function defined as the difference
between the estimated canopy height and the “ground truth”
height (GEDI RH100 measurement). Here, we chose to use a
weighted version of the MAE (Mean Absolute Error), inspired
by (Lang et al., 2023), in order to balance the weight of each
height class and more properly handle the tails of the height
distributions (low and high trees).

In a last step, the height-to-AGB relationships are used to
transform canopy height to above-ground biomass. These
relationships require careful model calibration using an extensive
set of field measurements that are geographically representative and
span a wide range of AGB values. Note that, however, such
comprehensive datasets remain scarce, particularly in remote
regions such as the Congo Basin. In addition, most existing
forest inventories are conducted at the individual tree scale,
rather than over continuous land areas, which limits their
applicability in linking height to AGB for satellite-derived
biomass maps. In a first step (Version 1) these relationships were
calibrated using footprint-level AGB estimates (GEDI Level 4) and
relative height metrics (GEDI Level 2) for the ecoregions EBT Af
(Evergreen Broadleaf Trees of Africa) and DBT Af (Deciduous
Broadleaf Trees of Africa).
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