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Detecting and locating emitted fluids in the water column is necessary for
studying margins, identifying natural resources, and preventing geohazards.
Fluids can be detected in the water column using multibeam echosounder
data. However, manually analyzing the huge volume of this data for
geoscientists is a very time-consuming task. Our study investigated the use of
a YOLO-based deep learning supervised approach to automate the detection of
fluids emitted from cold seeps (gaseous methane) and volcanic sites (liquid
carbon dioxide). Several thousand annotated echograms collected from three
different seas and oceans during distinct surveys were used to train and test the
deep learning model. The results demonstrate first that this method surpasses
currentmachine learning techniques, such asHaar-Local Binary Pattern Cascade.
Additionally, we thoroughly analyzed the composition of the training dataset and
evaluated the detection performance based on various training configurations.
The tests were conducted on a dataset comprising hundreds of thousands of
echograms i) acquired with three different multibeam echosounders (Kongsberg
EM302 and EM122 and Reson Seabat 7150) and ii) characterized by variable water
column noise conditions related to sounder artefacts and the presence of
biomass (fishes, dolphins). Incorporating untargeted echoes (acoustic
artefacts) in the training set (through hard negative mining) along with adding
images without fluid-related echoes are the most efficient way to improve the
performance of the model and reduce the false positives. Our fluid detector
opens the door for near-real time acquisition and post-acquisition detection with
efficiency, reliability and rapidity.
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1 Introduction

The issues associated with seabed fluid emissions concern both the biosphere and the
geosphere and in particular, marine geohazards such as earthquakes, sedimentary instabilities,
volcanic eruptions and massive methane releases (Talukder, 2012; Feuillet et al., 2021). It is,
therefore, essential to detect and localize fluid emissions. Methane seeps are observed worldwide
in various geological settings, whether methane is thermogenic or biogenic in origin (Judd and
Hovland, 2007). These fluids escape from the seafloor into the water column and potentially rise
up to the ocean-atmosphere interface (McGinnis et al., 2006). The gas is dissolved or free in the
form of isolated bubbles or associated with “megaplumes” (Leifer et al., 2006).
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Detecting fluids and estimating their characteristics (e.g., bubble
size and flow rate) can be achieved using active underwater acoustics
(Veloso et al., 2015; Urban et al., 2023). Echograms, created using
echosounder data, display the intensity of the backscattered echo in
the water column (Figure 1). Gas bubbles form so-called “acoustic
plumes” in sounder echograms due to the impedance contrast
between gas and seawater. A gas bubble reflects a very large part
of the energy received by reflection as the density of gaseous

methane is very low (38.4 kg/m3 at 10°C and 50 bar) compared
to that of seawater at the same temperature and pressure conditions
(1029.2 kg/m3 for a 35 PSU salinity), leading to a very different
acoustic impedance. The gases exhibit a high backscatter index,
i.e., return a large part of the energy emitted by the sounder,
especially around the bubble resonant frequencies (Clay et al., 1978).

MultiBeam EchoSounders (MBESs) record acoustic backscatter
from targets located in the water column (e.g., Mayer et al., 2002).

FIGURE 1
Geometry of the acoustic image of the water column from multibeam echosounder data (A) Kongsberg EM302 (GAZCOGNE1), (B) Seabat 7150
(GHASS2) and (C) Kongsberg EM122 (MAYOBS23). The sidelobe interference is visible as a circle arc with a radius equal to theMinimum Slant Range (MSR).
These images correspond to the main acquisition configuration used for each survey (i.e., ‘shallow’ and ‘medium’ mode the GAZCOGNE1 and
MAYOBS23 surveys, respectively).
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Each recorded ping cycle provides an image of the acoustic
backscatter from the water column. MBESs are active sonars with
two antennas, one for transmitting and one for receiving (Lurton
and Augustin, 2010). These sounders are usually mounted on the
ship hull and can have up to several hundred very narrow beams of
the order of a degree (Table 1) (e.g., 288 and 880 beams for the
EM302 and EM122 Kongsberg and the Reson 7150 MBES,
respectively) distributed in the across-ship direction over an
angular sector (swath). Thanks to their large swath (generally set
between 120° and 170°), MBESs can cover a large area of the seabed
(i.e., up to 5.5 times the water depth for an aperture of 140°) and a
large volume in the water column. Since 2009, the use of acoustic
water column data to detect fluids has been gaining momentum
(Dupré et al., 2014; Sahling et al., 2014; Weber et al., 2014) but the
amount of data recorded makes human interpretation very time-
consuming. Moreover, discriminating fluid echoes from other
natural echoes (e.g., fish shoals, acoustic artefacts associated with
very backscattering seabed, noisy soundscapes) and MBES-related
artefacts (e.g., beamforming, specular reflection) is a task that is
currently mainly performed manually by specially trained experts.
Therefore, human experts have to scrutinise Water Column Images
(WCIs) ping by ping to detect a fluid emission. Various processing

techniques (signal echo-integration, Dupré et al., 2014; Dupré et al.,
2015; 3D dB threshold filtering; Schneider von Deimling et al., 2015)
help the interpretation but are still of limited use, especially faced
with large datasets. Also, this expertise must be updated when the
sounder parameters or the sounder itself changes, and the time
required for analysis limits its scalability and reproducibility.

Few automatic detection methods have been implemented to
address this issue. Urban et al. (2017) proposed using median filters
in successive WCIs. Only one multibeam echosounder, the
Kongsberg EM302, was used, with a frequency of 30 kHz, to
survey an area in the North Sea, offshore Netherlands. The
extraction threshold was set based on their survey. This method
allowed for the identification of seep areas but was often hindered by
side-lobe distortions and unwanted targets that can obscure or
disrupt gas-plume information, resulting in a reduced analysis
area in the water column. Therefore, only data from inside the
minimum slant range can be processed with their method. The same
multibeam echosounder, an EM302 from Kongsberg (30 kHz) was
used byWeber (2021) for a survey in the Gulf of Mexico to locate gas
seeps. Their Constant False Alarm Rate detector successfully
removed 99.1% of the MBES raw data while preserving the
targets of interest corresponding to 51 WCIs. Their method relies

TABLE 1 Multibeam echosounder and acquisition parameters for the three investigated datasets with indications of the acoustic and environmental
conditions. Tx and Rx refer to Transmission and Reception antennas, respectively. The number of water column images, manually picked fluid emission
points and bounding boxes around detected fluids are indicated for each of the three studied datasets.

Dataset

Key information

GAZCOGNE1 GHASS2 (LEG1) MAYOBS23

Area Aquitaine Basin (Bay of Biscay) offshore Romania (Black Sea) offshore Mayotte (Indian Ocean)

Survey date July-August
2013

August-September
2021

July
2022

Multibeam echosounder Kongsberg EM302 Reson Seabat 7150 Kongsberg EM122

Frequency range (kHz) [28.25–29.50] [22.50–24.50] [11.75, 11.875]

Number of beams 288 880 288

Total pulse length (ms) [1.1–7.5] [2–10] [2.7–6.8]

Water column sampling frequency (Hz) 203–1623 100–500 202–505

Beam aperture 1°(Tx) x 2°(Rx) 0.5°(Tx) x 0.5°(Rx) 1°(Tx) x 1°(Rx)

Across-track angular range/value (°) [118–140] [100–120] 80

Number of Tx sectors 4 or 8 1 1 or 2

Mean depth and std (m) 532 ± 354 1,022 ± 452 1,479 ± 410

Nadir along-track bathymetry resolution
(m) for mean water depth

9.3 8.9 25.8

Nadir across-track bathymetry resolution
(m) for mean water depth

18.6 8.9 25.8

Type of fluid emissions
Fluid nature

Cold seeps
Gaseous CH4

Cold seeps
Gaseous CH4

Volcanic emissions
Liquid CO2

Acoustic and environmental conditions multiple transmission sectors, presence
of biomass

presence of dolphins, strong
backscattering seabed

multiple transmission sectors, strong noise
level under MSR

Number of water column images 845,622 851,991 46,044

Number of manually picked fluid feet 2,768 2,315 Not available

Number of detected fluid-bounding boxes 7,814 27,415 2,002
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on the background noise being locally stationary in time, which is
not always the case throughout the image. As a result, their method
may underperform when there is a change in topography and/or
seafloor substrate type.

The application of machine learning to water column images
dedicated to the detection of emitted gas bubbles was first proposed
by Zhao et al. (2020). Their method consists of a Haar-Local Binary
Pattern cascade to combine information. Grey-level variations (e.g.,
edges, lines and center-surround features) are extracted by the Haar
filters, while local texture information is provided by the Local
Binary Pattern algorithm. A supervised Adaboost classifier is then
learned based on these hand-crafted features. Their dataset was
composed of a limited number of WCIs (1,444) acquired by a
Kongsberg EM710 MBES (73–97 kHz transmission frequency) in
the South China Sea. This method produced excellent results on
their datasets with 95.8% accuracy. Nevertheless, it is worth noting
that their database is characterized by its cleanliness, exhibiting
minimal noise in the water column, which is not the case for most
MBES surveys. This observation implies that their approachmay not
be fully tested to its limits.

There is a clear need to improve fluid detection as automatic
methods developed so far (Urban et al., 2017; Weber, 2021; Zhao et al.,
2020) are unreliable in the region under the top specular sidelobe in
WCIs, i.e., below the so-calledMinimum Slant Range (MSR) (Figure 1).
Additionally, adapting to other WCIs from different multibeam
sounders with varying acoustic configurations (e.g., frequency,
aperture, and number of sectors), often changing during the same
survey, has to be addressed. Exploring the potential of learning features
and filters offers the prospect of greater sophistication, making the
detection algorithm more finely adjustable and adaptable.

Deep learning algorithms, particularly convolutional neural
networks, are increasingly being used for object detection in images
due to their ability to learn features and classifiers from large datasets.
A study on WCIs with hydrothermal fluid emissions using the You
Only Look Once (YOLO) (version 5) algorithm (Jocher, 2021) was
conducted byMimura et al. (2023) who demonstrated the effectiveness
of this algorithm in detecting hydrothermal fluids. The data were
acquired during a survey conducted north of Okinawa Island (Japan)
with a Kongsberg EM122 MBES (12 kHz). Their model achieved
impressive results on the test set with a precision of 0.928, a recall of
0.881, and an F1 score of 0.904. However, these positive results have to
be moderated because of the limited number of images (280) in the test
set and the fact that there are no other sources of acoustic echoeswithin
the dataset (e.g., fishes, cetaceans).

The present study investigates the use of the YOLOv5 convolutional
neural network for detecting fluids in water column images from
MBESs. Our study aimed to find an adaptable and generalisable
method to address this issue. To achieve this, MBES data from three
marine expeditions were then used. The composition of the training
dataset was analyzed under various conditions, including data acquired
with several sounders (e.g., manufacturer, frequency), with additionally
different acquisition settings (e.g., aperture, sector number), and diverse
environmental conditions (e.g., noise level, biomass, fluid nature). The
out-performance of our multi-MBES fluid detectors is discussed along
with the most efficient way to reduce false positives. Recommendations
on acquisition, processing and training set composition are given to
successfully and rapidly detect emitted fluids in the water column
from MBES data.

2 Materials and methods

2.1 Water column data from multibeam
echosounder

AMBES sends an acoustic pulse from its transmit array towards
the seafloor through the water column. The transmission geometry
of the MBES enables coverage of a large area on the seafloor due to a
wide emitted beam across-track and a good resolution capability due
to a narrow-emitted beam along-track (Table 1). At reception, the
MBES processes and digitizes the signal (amplification, filtering,
base banding, sampling) on each element (transducer) before
forming a series of directive beams covering a wide range of
receiving angles, from starboard to port (Lurton et al., 2015). The
digitized time series associated with each beam, displayed in polar
geometry are the so-called Water Column Images (Figure 1). The
MBES also includes algorithms for processing recorded raw data
specifically for detecting the sea bottom, which is used as a reference
to lower bound the WCI.

For the present study, we used data from three marine
expeditions, the key facts of which are summarized in Table 1.
The GAZCOGNE1 (Dupré et al., 2020; Loubrieu, 2013; Ruffine et al.,
2017) expedition includes an exhaustive acoustic mapping of
methane seeps in the Aquitaine Basin (Bay of Biscay). A 30 kHz
Kongsberg EM302 MBES was operated (Figure 1A) and its
acquisition parameters were modified during the survey
according to the water depth change. The GHASS2 expedition
(Riboulot et al., 2018; Riboulot et al., 2021) aimed at studying the
dynamics of methane emissions, particularly their relationship with
gas hydrates, sedimentary deformations, and submarine instabilities
offshore Romania (Black Sea). A 24 kHz Reson Seabat 7150 was used
(Figure 1B). The MAYOBS21 and MAYOBS23 expeditions (Feuillet
et al., 2021; Rinnert et al., 2021; Jorry et al., 2022) surveyed the Fani
Maoré volcano area, east of Mayotte Island, with a 12 kHz
Kongsberg EM122 MBES (Figure 1C).

The first two datasets were labeled, i.e., an expert manually
picked the foot of the fluid for at least one ping from the set of pings
where the fluid is visible, and constitute our training datasets. These
datasets were used to study the ability of our algorithm to learn to
detect emitted fluids and to generalize to new data according to the
composition of the training dataset. The most recent marine
expedition, MAYOBS23, provided an opportunity to evaluate our
algorithm operationally and was solely used for this purpose. Each
dataset has different acoustic and environmental characteristics
(Table 1), modifying slightly or deeply the perception of a fluid.
This variability in characteristics is the reason why it is still difficult
to learn a machine-learning detection model that can be used
regardless of the sounders, their acquisition settings and the
environmental conditions.

The acoustic characteristics concern both the specifications of
each sounder and the acquisition parameters (Table 1). MBESs are
different and have for instance a different operating frequency and
beam aperture (Figure 2). Additionally, MBES acquisition
parameters change during a mission. Kongsberg multibeam real-
time software proposes to adjust EM302 acquisition parameters,
including the number of transmission sectors, aperture angle and
pulse length, according to water depth. The acoustic acquisition
modes are classified as “deep” (Figure 2C), “medium” (Figure 2B),
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and “shallow” (Figures 1A, 2A), corresponding to 4, 7% and 89% of
the GAZCOGNE1 dataset, respectively. It is worth noting that the
EM302 MBES compensates for pitch and roll by creating steered
emission sectors to optimize the geographical coverage (Tonchia
and Parthiot, 1994). For instance, in deep mode, the EM302 utilizes
up to eight sectors with slightly different frequencies, implying
changes in sector transmit gains which can be observed in WCI
(Figures 2A–C). During the GHASS2 expedition, the Seabat
7150 was operated in ‘auto’ mode, which resulted in significant
and frequent changes in acoustic parameters throughout the entire
survey (Figures 2D–F). In the MAYOBS23 dataset, obtained with an
EM122 MBES, there are two acquisition modes, ‘shallow’ and
“medium” corresponding to 5% and 95% (Figure 1C) of the
dataset, respectively. As for the EM302, these two EM122 modes
result in different pulse lengths, sampling frequencies and number of
transmission sectors. However, these changes are limited for the
MAYOBS23 dataset, due to the angular range reduced to 80°

resulting in only two sectors in medium acquisition mode that
represents the majority of this dataset (Figure 1C). It is worth noting
that the antenna sidelobe levels were quite high for this survey. This
resulted in very noisy WCIs below the Minimum Slant Range
(Figure 1C). The MBES performs sea-bottom detection from raw
data, which is then used as a reference to bound theWCIs. Failure to
accurately detect the sea bottom may result in loss of information in
WCIs as in the GHASS2 dataset (Figure 2E). This failure is not
present in the GAZCOGNE1 and MAYOBS23 datasets.
Additionally, for the GHASS2 dataset, WCIs may exhibit acoustic
artefacts (under the minimum slant range) which can be confused
with the signatures of fluids (Figure 2F). Regarding the

environmental conditions, the biomass visible in the WCI is very
dense in the GAZCOGNE1 dataset, due to the abundance of fishes in
the Bay of Biscay (SIH, 2017; ICES, 2023) (Figure 2A). The presence of
a high density of biomass may mask the fluids visible in the WCIs, as
the texture of this biomass may be similar to that of the fluids. In
contrast, in the GHASS2 dataset, little biomass is observed in the
surveyed slope domain due to water anoxia in the Black Sea beyond
120 m below the sea level as observed during the GHASS2 marine
expedition. There is no biomass clearly visible in the part of the studied
MAYOBS23 dataset. Additionally, the GHASS2 dataset presents a
challenge due to the presence of dolphins visually observed around the
ship and for which typical echolocation signatures are displayed in
WCIs (Figure 2E). Furthermore, the acoustic backscatter of the Black
Sea seafloor is very high revealing a very reflective sea-bottom interface
and causing artefacts at the nadir (Figure 2D).

2.2 Deep learning-based object detection
with YOLOv5

Deep learning algorithms are increasingly being used to detect
objects in images, provided that labeled training datasets are
available (Zou et al., 2023). This increasing attention is due to
remarkable breakthroughs in supervised deep learning, particularly
in object detection. Object detection is a computer vision task that is
concerned with the detection and localization of objects of interest in
digital images. This task requires extracting information to describe
objects in an image at different scales and ratios, identifying regions
of interest for these objects, and classifying them as either a known

FIGURE 2
Geometry of water column images in the multibeam echosounder Kongsberg EM302 (GAZCOGNE1) (A,B and C) and Reson Seabat 7150 (GHASS2)
(D–F)with different acquisition parameters. Frequency: (A) 29.5 kHz, (B) 29.25 kHz (C) 28.25 kHz, and (D–F) 22.5 kHz. Pulse length: (A) 1.125m, (B) 3m, (C)
7.5 m, (D) 2 m, (E) 3 m, and (F) 5 m. Angular range: (A, B) 140°, (C) 130°, and (D,E, F) 120°.
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class or a background class. One of the challenges is to complete the
task within a reasonable computational time. Two families of object
detection algorithms were proposed in recent years (Zou et al.,
2023). The first family uses a two-stage approach, where the regions
that may contain an object are identified first, followed by object
classification. Examples of this family include Faster R-CNN (Ren
et al., 2015) and Mask R-CNN (He et al., 2018). The second family
uses a single approach to solve both tasks simultaneously.
Algorithms include YOLO (Redmon et al., 2015) and SSD (Liu
et al., 2016). The two-stage algorithms aremore accurate in detecting
and localizing objects while one-stage algorithms have a better
trade-off between performance and speed. It is worth noting that
the performance of one-stage algorithms lowers noticeably when
detecting dense and small objects.

In the present study, we investigated version five of the YOLO
algorithm (YOLOv5, small (S) version) (Supplementary Text S1)
developed by Ultralytics and released in June 2020 (Jocher, 2021) as
we need a computationally efficient algorithm (Supplementary Text
S2). The YOLO algorithm was one of the first algorithm to propose
the one-stage approach, and many improvements were made
leading to the fifth version. The architecture of YOLO is based
on a feature extractor and a head dedicated to detection and
localization. The feature extractor of YOLOv5, called
CSPDarknet53 (Bochkovskiy et al., 2020), is based on a
convolutional neural network which allows the spatial
information contained in images to be hierarchically decomposed
into features (LeCun et al., 2015; Goodfellow et al., 2016).
Combining these multiscale features, the head is dedicated to
answering the three following questions at three scales: Are there
objects present in the image? If so, which class do they belong to?
Where are these objects located in the image?

One of the peculiarities of a YOLO network is that it performs
object detection in one step using anchor boxes (Supplementary
Figure S1 given in the Supplemental Information). An image is
divided into a grid of cells at three different scales. For each cell,
three anchor boxes of different dimensions are considered as
candidates for detecting an object at the scale and center of the
cell (Supplementary Figure S1A). Thus, the trained detection model
infers thousands of candidate bounding boxes (depending on image
resolution and the number of anchors) from an input image
(Supplementary Figure S1A). The model predicts the class of the
object and locates it by predicting bounding boxes through offsets
from the anchor boxes (Redmon et al., 2015). Candidate bounding
boxes are retained if the probability of the presence of an object is
significant. In our case, the threshold for inference is set to 0.3
(Supplementary Figure S1B). Finally, a non-max suppression
algorithm (Neubeck and Van Gool, 2006) is applied because
several bounding boxes for the same object may still be
candidates (Supplementary Figure S1C).

2.3 Creation of the water column
image datasets

This article presents a supervised machine learning approach
that requires datasets associating WCIs and labels. Labels for object
detection typically include the object’s class (i.e., fluid in our case)
and bounding boxes.

For the acoustic data, we used Sonarscope software (Augustin,
2023) to convert MBES data stored in Kongsberg and Reson files to
WCIs (Figure 3). For water column imaging, we applied a standard
sonar correction as described in Urban (2017), during acquisition,
using a Time-Varying Gain (TVG) defined as TVG= 30log10(R)+2·a·R
+C, withR the range, a absorption coefficient in dB/m andC a constant
gain. This correction accounts for propagation losses and is tailored for
observing surface scattering at oblique angles, a regime where
30·log10(R) compensation is standard for multibeam echosounders
(Lurton et al., 2015). A geometry transformation is then performed to
convert the time-amplitude beam signals into polar spatial geometry
(depth versus across distance representation of the amplitude). Finally,
theWCIs are sea-bottom clipped based on theMBES bottom detection
algorithm and digitized to 8 bits (Figure 3), a quantization level that at
least matches the minimum quantification used for the water column
data (8-bit in this case). The YOLOv5 (Jocher, 2021) model requires
square images with dimensions of multiples of 32. This is achieved by
resizing the longest side of non-square images (here the width) to the
input size and padding with a grey background to maintain the aspect
ratio. A width multiple of 32 was chosen, which is close to the average
width for each dataset. The width represents 992, 960 and 760 pixels for
GAZCOGNE1 GHASS2 and MAYOBS23, respectively.

The WCIs are labeled by an expert who visually identifies a fluid
emission with GLOBE software (Poncelet et al., 2023), typically
visible in a series of successiveWCIs, and then pinpoints its foot on a
single selected WCI. As a result of this protocol, only one WCI
corresponding to the fluid emission point at the seafloor is labeled
while the remaining WCIs are not labeled. Consequently, both
datasets were manually re-labeled to match the labeling format
for object detection, namely, a rectangular bounding box including
the fluid instead of a point at the fluid foot.

Furthermore, each WCI underwent re-examination using
detections made by a YOLOv5 model trained with expert foot
points to identify fluid emissions. If a fluid emission was
detected, a bounding box was assigned to the WCI, resulting in
an increase in the number of annotated WCIs with a fluid label
(Table 1). The GHASS2 cruise showed a significant increase in the
number of bounding boxes compared to the expert points. This is
mainly due to the high resolution of the Reson Seabat 7150 sounder
and the numerous side lobes of the transmission antenna. Fluid-
related echoes may appear in several consecutive pings, typically up
to a maximum of 10, depending on vessel motion, backscattering
intensity, and antenna used. The number of fluid feet for the
MAYOBS23 is not given, but bounding box labeling was carried
out, resulting in 2,002 bounding boxes among 46,044 WCIs.

2.4 Training and evaluating the
YOLOv5 model

Training an object detection model is a complex process that
usually requires a large labeled dataset as the model has 7.2 million
parameters. Transfer learning can be used when only a small amount
of data is available for training (Pan and Yang, 2010). Transfer
learning is the idea of reusing the previously learned algorithm from
other tasks. In the case of YOLOv5, the base weights of a network
already trained on the Common Objects in COntext (COCO)
dataset (80 optical classes) (Lin et al., 2014) are provided by the
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YOLOv5 authors (Jocher, 2021). It is possible to retrain a part of this
network with other data (e.g., images with fluid-related echoes). This
allows the network to reuse certain common features between the
old classes and the new ones, for more efficient training.

For the training phase of YOLOv5, the expression of the loss
function (which measures the errors made by the network compared
to the ground truth) is composed of three weighted terms (Equation
1): i) class loss Lcls (high value if it is not the correct object class in the
box predicted by YOLOv5), ii) objectness loss Lobj (high value if
there is no object in the box), and iii) box loss Lbox (high value if the
box is not where the actual box is).

Loss � λ1Lcls + λ2Lobj + λ3Lbox (1)
The first two terms are computed using a cross-entropy loss,

which measures the closeness between the distributions of the truth
and the predictions. The last one is calculated using a complete
intersection over union loss which measures the difference in
overlap, ratio, and distance between the predicted boxes and the
true boxes.

The main hyperparameters are given in the Supplemental
Information (Supplementary Table S1) (Freund and Schapire,
1995; Jocher, 2021). The maximum number of epochs for
YOLOv5 is fixed at 50. Early stopping is employed when there is

no improvement on the validation data after 10 consecutive epochs,
leading to the cessation of training.

Evaluating a model necessitates at least two datasets. A training
set allows assessment of the capacity to learn from data, and a testing set
evaluates the ability to generalize to data not seen during the training.
Our tests were carried out under a cross-validation scheme. Cross-
validation is used to assess model performance, prevent overfitting, and
maximize data use (especially important when data including target of
interest is scarce) (Figure 3). To limit computational time, only five folds
(subsets) were defined from both GAZCOGNE1 and GHASS2 WCI
datasets (Supplementary Table S2). Data were not shuffled. We
maintained the chronological order of acquisition to avoid data
leakage (Yagis et al., 2021), and we tried to balance the number of
fluids in each fold. As a result, each fold contains an average number of
169,124 WCIs (1 563 fluid bounding boxes) for GAZCOGNE1 and
126,323 WCIs (5,483 fluid bounding boxes) for GHASS2 (Tables 1;
Supplementary Table S2). MAYOBS23 was solely used for inference so
no cross-validation was performed on this dataset.

There are four possible cases when we compare object detection
predictions with ground truths, through the so-called confusionmatrix
(Figure 4). A detection is considered to be a True Positive (TP) if an
expert identified a fluid foot (a point in the WCI) that lies between the
minimum x coordinate and the maximum x coordinate of the

FIGURE 3
Methodology flowchart for water column records from multibeam acquisition to average performance evaluation. Raw datagram are pre-
processed using for instance Sonarscope software to generate images used for expert fluid annotations. Then datasets for cross-validation are prepared
in order to train and test YOLO performance.
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predicted box by the YOLOv5 learned model. If not, the detection
corresponds to a False Positive (FP). Undetected echoes may either
concerns actual fluid-related echoes (False Negative, FN) or unwanted
targets (True Negative, TN). We used classical features computed from
the confusion matrix: accuracy (Equation 2), precision (Equation 3),
recall (Equation 4), and Matthew’s Correlation Coefficient (MCC)
(Equation 5) with True Positives (TPs), True Negatives (TNs), False
Positives (FPs); False Negatives (FNs).

accuracy � TPs + TNs

TPs + TNs + FPs + FNs
(2)

precision � TPs

TPs + FPs
(3)

recall � TPs

TPs + FNs
(4)

MCC � TNs*TPs − FPs*FNs
�������������������������������������������
TNs + FNs( ) FPs + TPs( ) TNs + FPs( ) FNs + TPs( )√

(5)
Accuracy corresponds to the rate of correct predictions. Precision

indicates the proportion of true positives made by the algorithm
among all positive predictions. The higher the precision, the fewer false
positives. Recall indicates the proportion of actual positives correctly
identified by the algorithm. The higher the recall, the fewer false
negatives. In the case of unbalanced data sets, the MCC is a more
reliable statistical indicator than the accuracy (Chicco et al., 2021)
because it gives equal weight to each class. For example, if a dataset
contains many images without fluid (and only few images with fluid)
and the networks detect nothing, it would have a high accuracy
(because of many true negatives) but a low MCC (which is more
representative of the network performance).

Finally, it is worth noting that we did not evaluate the accuracy
of the localization of the predicted bounding boxes since the expert
annotation is a fluid foot point. In the present study, we only focus
on detection performance.

2.5 Training, evaluating and optimizing a
YOLOv5 model

In deep learning, training an efficient model means composing a
dataset, defining the network architecture and choosing
hyperparameters of the model, the cost function used to learn a

task and the optimizer in charge of solving the problem. While
choices are classical for object detection, the present study focuses on
the composition of the dataset and its influence on the performance
of detection. Datasets must be representative of the variability of the
data world. As previously mentioned, the world of WCIs is based on
sounder parameters and processing, environmental conditions,
soundscapes and geographic areas. In this study, three datasets
were used; created from a long effort made by geoscience experts
to labelWCIs. The resulting datasets are very precious, but not ready
to use for learning an accurate model. The datasets suffer from
imprecision due to the annotation process, as only one fluid foot is
pointed within a row of several pings where the same fluid is
observable. These three datasets are an interesting playground to
analyze the way to optimize the training process to increase the
performance of fluid detection and obtain a fluid detection model
which can be used for different sounders. The composition of the
training and testing sets for each of the seven conducted experiments
(Figure 5) is detailed in the following paragraphs. Before training

FIGURE 4
Examples of True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) water column detections from GAZCOGNE1 data.

FIGURE 5
Experiments used for the assessments, according to the
composition of the training set. LBP, WCI, MBES stand for Local Binary
Pattern, Water Column Image and MultiBeam EchoSounder,
respectively.
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and inference, all input data were normalized, effectively mitigating
relative amplitude differences between sonar types (Kongsberg and
Reson). Neural networks perform better when input data are
normalized as this stabilizes computations within the network
layers, reduces unstable gradients, and accelerates the
convergence of the learning process.

Before all, we studied the efficiency of the YOLOv5 model as a
deep learning approach to surpass the traditional machine learning
approach (Experiment #1 in Figure 5). We implemented the
handcrafted features and classifier used by Zhao et al. (2020) based
on the information provided in their article. As previously mentioned,
we trained and evaluated the YOLOv5 model with the five-fold cross-
validation procedure separately for GAZCOGNE1 and GHASS2
(Supplementary Table S2). To fairly compare both approaches, we
adopted the same balance used by Zhao et al. (2020) between WCIs
with and without fluid in the testing set. The resulting testing set has
thus 70% WCIs with fluid and 30% without (Table 2).

Then we strove to optimize the YOLO training dataset
composition in four ways (Experiments #2 to 5, Figure 5). The
second experiment (#2) concerns the addition of re-labeled WCIs
containing fluid. The initial datasets were useful for obtaining the
first detection models. To optimize the annotation process, models
learned in the first experiment served to pseudo-label respective
datasets. Not all fluid emissions were indeed annotated in the first
datasets because experts only pointed the fluid outlet. For example, if
an echo from the same fluid emission is seen in 10 successive pings,
it is only pointed once at the assumed outlet. To find other fluid
labels, a neural network trained with the initial configuration set on
all GHASS2 and GAZCOGNE1 pings (Table 1) was used to enrich
our annotated database. This method called pseudo-labeling (Lee,
2013; Wu and Prasad, 2017; Stanchev et al., 2020) is a simple and
efficient solution that allows for labeling large unlabeled datasets
with a network trained with a little labeled dataset. A similar CNN-
assisted annotation method was successfully proposed for
underwater optical images (Zurowietz et al., 2018). The
detections we obtained were then manually classified into False
and True Positives before adding them to our training sets to prevent
any incorrectly labeledWCIs from being included in the training set.
Good detections (WCIs with “fluid” labels) were thus added to the
previously “fluid” class (Table 2). Ambiguous cases, such as echoes

for which it was unclear whether they represent fish or fluid (e.g.,
GAZCOGNE1 cruise), were omitted to avoid introducing incorrect
information into the neural network training. Consequently, only
unambiguous cases were included in the training datasets to ensure
data quality and model reliability. The GAZCOGNE1 campaign
having a limited number of fluid-related echoes, we decided to add a
maximum of 2,000 fluid labels in 500 steps. We followed the same
methodology for GHASS2.

To ensure a fair comparison of the results, experiments #2, 3, 4 and
6 use the testing set from the entire validation folds of the concerned
cruise(s), including WCIs with and without fluid (Tables 2–4).

We conducted a third experiment (#3) by adding WCIs without
fluid to the model. Our datasets contain a large number of files
without any fluid corresponding to 56% and 55% of the total WCIs
for GAZCOGNE1 and GHASS2, respectively (Table 2). We
investigated the adding value of increasing the number of WCIs
without fluid. Adding “background” WCIs could help the model to
learn either artefacts caused by the characteristics of the MBES and
other acoustic systems and echoes related to the environmental
conditions (e.g., fish shoals).WCIs without fluid could thus show the

TABLE 2 Examples of the compositions of the training datasets and the datasets used for testing (inference) for Experiment #1 (initial configuration training),
Experiment #2 with addition of relabeled water column images with fluid-related echoes, and Experiment #3 with addition of water column images
without fluid-related echoes. An example of a cross-validation dataset (one fold) is given each time, representing themean configuration used. WCI stands
for Water Column Image.

Dataset composition

GAZCOGNE1 GHASS2

Experiment Training/testing
dataset

WCIs with
fluid

WCIs without
fluid

WCIs with
fluid

WCIs without
fluid

#1 Initial configuration Training (four folds)
Testing (fifth fold)

2,214
554

0
237

1,852
463

0
198

#2 Adding relabeled WCIs with
fluid

Training (four folds)
Testing (fifth fold)

[2,714–4,214]
1,563

0
167,561

[2,352–3,852]
5,483

0
164,915

#3 Adding WCIs without fluid Training (four folds)
Training (four folds%)
Testing (fifth fold)

2,214

1,563

[117–949]
[5%–30%]

167,561

1,852

5,483

[97–794]
[5%–30%]

164,915

TABLE 3 Performance metrics on GHASS2 and GAZCOGNE1 data sets with
Haar Local Binary Pattern and YOLOv5 (Experiment #1). MCC stands for
Matthews Correlation Coefficient.

Dataset composition

Detection
algorithm

Metrics GAZCOGNE1 GHASS2

Haar-LBP Accuracy 0.774 ± 0.116 0.797 ± 0.032

MCC 0.587 ± 0.125 0.387 ± 0.128

Precision 0.506 ± 0.133 0.742 ± 0.141

Recall 0.978 ± 0.042 0.314 ± 0.127

YOLOv5 Accuracy 0.932 ± 0.037 0.980 ± 0.012

MCC 0.845 ± 0.080 0.955 ± 0.026

Precision 0.927 ± 0.038 0.972 ± 0.027

Recall 0.976 ± 0.021 0.968 ± 0.024
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network negative samples that the network must not detect and
therefore the network could successfully manage scenarios with a lot
of noise. In the present study, the number of WCIs without fluid
varies in the training set for each fold, from 5% to 30% of the total
number of WCIs (Table 2).

A fourth performance study (Experiment #4) was then carried
out following the large number of acoustic artefacts detected as fluids
by the initial model for the GHASS2 dataset (used in Experiments
#1–3) (Supplementary Figure S2). These WCIs were subsequently
relabeled in a second class “acoustic artefacts/environmental
phenomena” and integrated into our training sets (Table 4).
Consequently, a database of 22,377 second-class labels was
created. This technique is known as hard negative mining and
enables the network to concentrate on identifying non-fluid
objects (Parkhi et al., 2015; Schroff et al., 2015; Shrivastava et al.,
2016). To determine the percentage balance between the two classes,
“fluids” and “acoustic artefacts/environmental phenomena”, we
created training sets that contain a maximum of 50% of “acoustic
artefacts/environmental phenomena” labels. Hard negative mining
was not relevant to be conducted for the GAZCOGNE1 dataset
because of the too limited numbers of “acoustic artefacts/
environmental phenomena” labels. In numerous WCIs, it is
indeed impossible to distinguish with certitude biomass-related
echoes from fluid-related echoes due to their spatial overlay.

A fifth experiment (Experiment #5) was conducted to explore
the possible influence of the different acquisition modes from the
Kongsberg EM302 multibeam echosounder (Figures 2A–C;
Table 5). Four combinations of acquisition modes were thus used
in training sets, with WCIs acquired in i) shallow, ii) shallow and
medium, iii) shallow and deep and iv) shallow, medium and deep
modes. We did not explore other configurations (e.g., deep and

medium or medium) because there were not enough fluid points in
these configurations to train the network. Within the fluids
manually pointed by the experts, there are 2,730 in shallow
mode, 38 in medium mode and 0 in deep mode. For GHASS2,
as there are too many acquisition parameter combinations, effects of
acoustic modes on model performance were not explored.

We finally implemented a strategy to learn a general model usable
for different sounders (Kongsberg EM302 and EM122, Reson Seabat
7150), different locations (Atlantic Ocean, Indian Ocean, Black Sea),
and different nature and phase of fluid (gaseous methane and liquid
carbon dioxide) (Table 1). The strategies (#1–5) were thus combined to
obtain an optimized model with enhanced training set (Table 6) used
subsequently for experiment #6. First, to evaluate the complementarity
of different sounders and geographical areas but with the same emitted
fluid (i.e., gaseous methane), we explored the possibility of learning
from GAZCOGNE1 and applying to GHASS2 and vice versa and the
possibility of learning from both (Experiment #6). To complement the
study, the MAYOBS23 dataset was investigated in near-real time of
acquisition with another MBES (i.e., Kongsberg EM122), another
nature of fluid (i.e., liquid CO2 instead of gaseous CH4) and another
location and environmental context (Experiment #7).

3 Results

3.1 Initial learning with experiment #1: Deep
learning (YOLOv5) versus shallow learning
(Haar-LBP)

The first experiment consists of comparing the performance of a
traditional shallow learning method with a YOLOv5 model by

TABLE 4 Examples of the compositions of the training datasets and the datasets used for testing (inference) for Experiment #4 dedicated to the Seabat
Reson 7150 acoustic artefacts. An example of a cross-validation dataset (one fold) is given each time, representing themean configuration used.WCI stands
for Water Column Image.

Experiment #4 adding relabeledWCIs with acoustic artefact Dataset composition: only GHASS2

Training/testing dataset WCIs with fluid WCIs without fluid WCIs with artefact

Training (four folds) [1,852–1,852] 0 [206–1,852]

Training (four folds%) [90%–50%] 0 [10%–50%]

Testing (fifth fold) 5,483 164,915 5,180

TABLE 5 Examples of the compositions of the training datasets and the datasets used for testing (inference) for Experiment #5 relative to the Kongsberg
EM302 acquisitionmodes. An example of a cross-validation dataset (one fold) is given each time, representing themean configuration used. WCI stands for
Water Column Image.

Experiment #5 adding WCIs with different acquisition
mode (Kongsberg EM302)

Dataset composition: only GAZCOGNE1

Training/testing dataset WCIs with fluid (shallow,
medium, deep)

WCIs without fluid (shallow,
medium, deep)

Training (shallow only) (2,184, 0, 0) (936, 0, 0)

Training (shallow, medium) (2,184, 30, 0) (474, 474, 0)

Training (shallow, deep) (2,184, 0, 0) (468, 0, 468)

Training (shallow, medium, deep) (2,184, 30, 0) (316, 316, 316)

Testing (shallow only) (1,555, 0, 0) (161,894, 0, 0)
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reproducing the method from Zhao et al. (2020) on both
GAZCOGNE1 and GHASS2 datasets. Details on training and
testing sets are exposed in Table 2 with performances of both
Haar-LBP and YOLOv5 using a five-fold cross-validation
reported in Table 3. The results are presented as a mean and a
margin of error at a 95% confidence level.

As the data sets are unbalanced with 70% WCIs with fluid and
30% without fluid to fit with Zhao et al. (2020), MCC is a more
reliable metric for result analysis than accuracy. For instance, the
GHASS2 Haar-BLP inference reaches a relatively high accuracy of
0.797 but the MCC is only 0.387 indicating low recall (0.314) and
high precision (0.742) (Table 3).

Performance of the Haar-LBP method varies significantly
between the two datasets. For example, Haar-LBP achieves an
average MCC of 0.587 for GAZCOGNE1 and a lower value of
0.387 for GHASS2. The margins of error of the performance metrics
for both datasets are large, mainly over 0.1, indicating a high degree
of dispersion between the cross-validation folds. For the
GHASS2 dataset, precision of Haar-LBP is much higher (0.742)
than recall (0.314), which suggests a notable number of undetected
actual fluids. In contrast, the GAZCOGNE1 model results in a
precision of 0.506 and an elevated recall of 0.978 which indicates a
high number of false fluid detections.

YOLOv5 demonstrated a stronger performance on both datasets
than the Haar-LBP model, suggesting its proficiency in extracting and
utilizing features for fluid detection and location. The different
metrics, including MCC, range from 0.845 to 0.980 (Table 3). The
high precision and recall values for YOLOv5 (0.927–0.976) suggest a
low number of false detections and a high number of good detections
for both datasets. The performance of the GHASS2 dataset surpasses
even the GAZCOGNE1 dataset with a significantly higher MCC of
0.955 compared to 0.845. The margins of error at a 95% level of the
MCC of GAZCOGNE1 are three to four times larger than those of
GHASS2 for an equivalent volume of data. Therefore, a model trained
on the GAZCOGNE1 dataset is slightly less stable than a model
trained on GHASS2. Examples of detections achieved using neural
networks trained in this experiment are available in Supplementary
Videos S1, S3. It is noteworthy that the neural network demonstrates
the capacity to detect non sub-vertical fluid-related echoes caused by
current (Supplementary Figure S3).

3.2 Optimizing YOLOv5 deep learningmodel

3.2.1 Experiment #2: Adding relabeled WCIs with
fluid-related echoes

The initial trained model (Experiment #1) was then used on all
datasets and allows fluid detection labels increasing to 7,814 and
27,415 the number of fluid labels for GAZCOGNE1 and
GHASS2 dataset, respectively (Table 1). The second experiment
aims to evaluate the effect of including these new true positive
detections as relabeled WCIs in the training set on the performance
of YOLOv5. The composition of the training set consists of WCIs
from four out of five possible folds, with a maximum of 2,000 WCIs
with fluid added in training sets (Table 2). The test set corresponds
to the fifth fold. The performance metrics are plotted against the
number of added WCIs with fluid-related echoes (Figures 6A,B).

Whereas recall is highwith a significant value of 0.9 almost constant
whether or not WCIs with fluid are added, other performance metrics
(MCC and precision) differ in value and trend between the two studied
datasets. For GAZCOGNE1, we observe a +18% maximum increase in
MCC from 0.468 (noWCIs with fluid) to 0.553 (1500 addedWCIs with
fluid) (Figures 6A,B). However, after the addition of only 500WCIs, the
MCC already reaches a value of 0.536, plateauing at around 0.54.
Moreover, precision for GAZCOGNE1 significantly improves with the
addition of only 500 WCIs with fluid (from 0.260 to 0.346 or +33%).
This indicates a decrease in false positives as more information is
provided to YOLOv5, from 14,164 to 7,634 or −46%. The percentage of
images with detection (FPs +TPs) shows a steep decrease of 37.7% from
11.2% to 7.0%. Meanwhile, the MCC for GHASS2 remains stable
whether or not images with fluid are added to the training set (from
0.635 to, e.g., 0.638 with 500 addedWCIs with fluid). Other metrics for
GHASS2 follow the same trend and remain unchangedwhile increasing
the number of added WCIs with fluid (e.g., precision around 0.5).

Additionally, the performance of the network on the
GAZCOGNE1 dataset is dependent on the amount of biomass
present in the inference data fold. As each fold may not contain
the same amount of biomass, which can be falsely detected as a
positive by the network, there is some variability in the number of
false positives. Therefore, the margins of error of precision andMCC
metrics are larger for GAZCOGNE1 than for GHASS2. The margin
of error for precision with 500 added WCIs with fluid reaches

TABLE 6Maximum YOLOv5 performance depending on training set composition (Experiments #2–5) for both GAZCOGNE1 and GHASS2 datasets. WCI and
MCC stand for Water Column Image and Matthews Correlation Coefficient, respectively.

Dataset
performance

GAZCOGNE1 GHASS2

Major improvement Addition of WCIs without fluid (+25%)
(+25% MCC)

Addition of WCIs with artefact
(50%)

(+25% MCC)

Moderate improvement Addition of WCIs with fluid (+1500)
(+18% MCC)

Addition of WCIs without fluid
(+30%)

(+11% MCC)

Moderate improvement Training using only WCIs from the same mode as in the testing set; e.g., Shallow training instead of SMD
(all modes) on Shallow test set

(+10% MCC)

No improvement Addition of WCIs with fluid
(+500)

(+0.5% MCC)
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0.131 and 0.077, respectively (Figures 6A,B). In particular, when
there is a significant amount of biomass (e.g., GAZCOGNE1 part 4,
Supplementary Table S2), there is a noteworthy improvement for
MCC and FPs. MCC increases by 49% (0.348 and 0.517 for 0 and
2 000 addedWCIs with fluid, respectively) and FPs strongly decrease
by 63% (from 11,712 to 4,290 for 0 and 2 000 addedWCIs with fluid,
respectively). However, when the water column contains

significantly less biomass (e.g., GAZCOGNE1 part 2,
Supplementary Table S2), the MCC only increases by 18.5%
(from 0.676 to 0.801 for 0 and 2,000 added WCIs with fluid,
respectively) and FPs decrease from 4,293 to 1,507 (−65%) for
0 and 2,000 added WCIs with fluid, respectively.

It is important to note that despite higher MCC values for
Experiment #1 than for Experiment #2, the first experiment does not

FIGURE 6
Performance metrics and their margin of error at a 95% confidence level as a function of the number of Water Column Images (WCIs) with fluid
added in the training set (Experiment #2) (A) GAZCOGNE1, (B) GHASS2; the percentage of WCIs without fluid-related echoes in the training set
(Experiment #3), (C) GAZCOGNE1, (D) GHASS2; (E) the percentage of “acoustic and environmental artefact” labels added to the training set (Experiment
#4); and (F) acquisition mode configurations used in the training set (Experiment #5) based on WCIs acquired in shallow mode (GAZCOGNE1).
Shallow (S), Shallow-Medium (SM), Shallow-Deep (SD), Shallow-Medium-Deep (SMD). MCC stands for Matthews Correlation Coefficient.
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outperform the second experiment. The evaluation protocol of
Experiment #1 is indeed based on a testing set with 70% of
WCIs with fluid and 30% without fluid to be able to fairly
compare our results with those of Zhao et al. (2020), resulting in
fewer false positives. In contrast, the second experiment adopted the
natural dataset distribution: ~0.1% with fluid and ~99.9% without
fluid for GAZCOGNE1 (~5% vs. ~95% for GHASS2). The change in
the testing dataset protocol results in false positives due to the high
number of WCIs without fluid as demonstrated by the precision
curve of both datasets (Figures 6A,B).

In summary, the inclusion of WCIs with fluid has a varying
effect on both datasets. While the GHASS2 dataset does not show an
improvement, the addition of only 500 WCIs with fluid leads to an
improvement in the performance of GAZCOGNE1; performances
are enhanced for datasets containing copious biomass.

3.2.2 Experiment #3: Adding WCIs without fluid-
related echoes

The objective of this third experiment is to evaluate the influence
of adding WCIs without fluid-related echoes to the training set on
network performance. It is important to note that the training
dataset for this third experiment does not include the relabeled
WCIs with fluid-related echoes used in experiment #2 (Table 2).
Furthermore, the number of WCIs without fluid-related echoes is
gradually combined with WCIs that have fluid-related echoes,
starting from 5% of the entire training set and increasing up to 30%.

For both datasets, addingWCIs without fluid effectively increases
MCC (Figures 6C,D). This has a greater effect on improvingMCC for
GAZCOGNE1 compared to GHASS2. Specifically, adding 25% of
WCIs without fluid (i.e., 738) to the training set results in a maximum
increase in MCC for GAZCOGNE1 by 25%, from 0.468 to 0.583.
Similarly, adding 30% of WCIs without fluid (i.e., 794) to the
GHASS2 training set leads to an 11% increase in MCC, from
0.635 to the maximum reached value of 0.705. For both datasets,
thisMCC improvement is mainly due to an increase in precision and is
moderated by a slight decrease in recall (Figures 6C,D). For
GAZCOGNE1, precision rises by +54% from 0.260 (no added
WCIs without fluid) to 0.400 (25% of added WCIs without fluid)
with recall decreasing by −3% from 0.965 to 0.934. For GHASS2,
precision rises from 0.472 (no added WCIs without fluid) to 0.585
(30% added WCIs without fluid) (+24%) and recall slightly decreases
from 0.910 to 0.887 (−3%). Detections of actual fluid for the initial
model (no WCIs without fluid) are 3,921 and 5,322 for
GAZCOGNE1 and GHASS2 datasets, respectively. TPs are more
or less stable along with the addition of WCIs without fluid, with
minor variations for both datasets (e.g., −5.5% with 25% of added
WCIs without fluid for GAZCOGNE1 and -1.1% with 30% of added
WCIs without fluid for GHASS2).

The results indicate a notable decrease in FPs for both datasets,
by −57% for GAZCOGNE1 (from 14,164 to 6,033 for 0% and 25% of
added WCIs without fluid, respectively) and by −39% for GHASS2
(from 6,315 to 3,870 for 0% and 30% of added WCIs without fluid,
respectively). Adding WCIs without fluid can be particularly
relevant in areas highly populated by biomass (e.g.,
GAZCOGNE1) because it enhances the performance (e.g., MCC)
of the model. MCC improvement is more significant for a dataset
with significant amounts of biomass (e.g., GAZCOGNE1 part 4,
Supplementary Table S2) than for a dataset with considerably less

biomass (e.g., GAZCOGNE1 part 2, Supplementary Table S2).MCC
increases for GAZCOGNE1 part 4 by 47% (from 0.348 to 0.510 for
0% and 25% of added WCIs without fluid, respectively), but only by
17% for GAZCOGNE1 part 2 (from 0.677 to 0.793 for 0% and 25%
of added WCIs without fluid, respectively). The variability in MCC
increase between the two parts and the similar FPs reduction for
both parts (−55%) indicate that FNs increase less in part 4 (+161%)
where there is a significant amount of biomass, than in part 2
(+242%) characterized bymuch less biomass. There is a variability in
FPs decrease among the different GHASS2 folds, with, e.g., a 46%
reduction for the first validation fold and a 19% reduction for the
second validation fold. However, it would be too complex to provide
a comprehensive explanation for GHASS2, given the inherent
variability in the Reson 7150 acoustic configurations and the
different imbalances between the validation folds.

Adding WCIs without fluid-related echoes (+25 and +30% for
GAZCOGNE1 and GHASS2, respectively) results in an increase in
undetected actual fluids (FNs) by 105% for GAZCOGNE 1 (from
146 to 299) and by 24% for GHASS2 (from 530 to 655).

3.2.3 Experiment #4: Adding relabeled WCIs with
acoustic artefact

The fourth experiment aims to evaluate the consequence of
addingWCIs labeled as “acoustic and environmental artefact” labels
to the training set on YOLOv5 performance to detect fluid. In
addition toWCIs with fluid andWCIs without fluid, a third class (or
second “labeled class”) “WCIs with artefacts” is introduced into the
training data set. Table 4 provides the distribution of GHASS2WCIs
in the training set (fours fold) and the testing set (one-fold).

The addition of “acoustic and environmental artifact” labels
leads to a significant increase inMCC from 0.635 (0%) to 0.794 (50%
or equal number of labels for ‘fluid’ and ‘artefact’ class) (+25%)
(Figure 6E). The precision clearly shows the same trend with an
increase of 60% (from 0.472 to 0.755 for 0% and 50% of addedWCIs
with artefacts, respectively) indicating a substantial decrease in FPs.
The decrease in false positives is particularly noteworthy, with a
reduction of 74% from 6,315 to 1,638 (for 0% and 50% of added
WCIs with artefacts, respectively) while the true positives are
relatively stable with a minor decrease of 8% (from 5,322 to
4,889 for 0% and 50% of added WCIs with artefacts, respectively).

As the percentage of WCIs with artefacts increases, recall
decreases slightly by 6% from 0.910 to 0.857 (for 0% and 50% of
added WCIs with artefacts, respectively) indicating a loss in
detection of actual fluids. These false negatives increase by 49%
from 530 to 792 (for 0% and 50% of added WCIs with artefacts,
respectively). This is however negligible compared to the number of
detected-fluid bounding boxes which is 27,415 (i.e., 5,483 on average
in each of the five folds) (Table 1).

Adding an extra class of acoustic artefacts clearly improves
YOLOv5’s ability to differentiate between fluids and artefacts.
This is the most effective method for the GHASS2 dataset to
reduce detections and in particular false positives, despite a slight
increase in undetected actual fluids.

3.2.4 Experiment #5: adding WCIs with different
acquisition modes

The fifth experiment aimed to assess the effect on network
performance when not all EM302 sonar acquisition configurations
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(deep, medium, shallow) are provided to the network. For this
purpose, different acoustic modes (i.e., corresponding to varying
frequencies, apertures, and numbers of sectors, Figures 2A–C;
Table 1) were combined in the same training set (Table 5). The
training set is thus composed of i)WCIs with fluid in Shallow and/or
Medium modes and ii) WCIs without fluid in Shallow and/or
Medium and/or Deep modes (corresponding to 30% of WCIs).
One testing set with only WCIs in shallow mode was used (Table 5).
Testing sets using medium and deep modes were not used as there
are only a few fluid-related echoes and none in both of these modes,
respectively.

Training using only WCIs from the same mode as in the testing
set; e.g., in our case from the shallow mode (instead of combining all
modes, i.e., SMD); provides the best results with a MCC increase of
10% (from 0.551 to 0.608). The addition of combined WCIs from
different acquisition modes (S Shallow; SM Shallow and Medium;
SD Shallow and Deep and SMD Shallow, Medium and Deep) in the
training set leads to a gradual decrease inMCC from S, SM, SD and
to SMD combinations with −9% from 0.608 (S) to 0.551 (SMD)
(Figure 6F). Similarly, precision decreases from S, SM to SD
combinations with the worst performance for the SMD
combination with an overall decrease of −18% from 0.437 (S) to
0.357 (SMD) (Figure 6F). Recall is stable with low variations
(+0.1–1.6%) from 0.920 (S), 0.921 (SM), 0.930 (SD) to 0.935
(SMD). The greater the difference in acoustic configuration (e.g.,
four transmission sectors in shallow and medium mode versus eight
in deep mode), the more significant the decrease in MCC and
precision. The data show an increase in false positives by + 25%
from 5,076 with S training to 6,338 with SMD training and a minor
decrease in false negatives by −8% from 305 with S training to
281 with SMD training. Larger differences in acquisition
configuration leads to more significant decreases in false
negatives and increases in false positives.

AddingWCIs in the training set from acquisition modes that are
different from the one characterizing the testing set affects
YOLOv5’s ability to extract reliable information on fluid in a
contrasted way: i) negatively by increasing FPs and ii) positively
by reducing the number of undetected actual fluid (FNs).

3.2.5 YOLOv5-model performance from varying
training set composition

In previous experiments (#2–5), we employed various strategies
to enhance the model’s performance by modifying the training set
composition (for each of the two cruises separately) (Table 6). The
addition of WCIs without fluid-related echoes helped to decrease
false positives during inference for both datasets (Experiment #3).

Furthermore, including examples of echoes that should not be
detected (namely, acoustic and environmental artefacts) in a
separate class reduces furthermore the number of false positives
(Experiment #4 for GHASS2 dataset). Inclusion of additional WCIs
with fluid can either enhance network performance, with a plateau
being reached fairly quickly with only 500 additional WCIs
(GAZCOGNE1 dataset case, Experiment #2) or have no effect at
all (GHASS2 dataset case, Experiment #2). Additionally, providing
all examples of the sounder’s acquisition configuration for
Kongsberg MBES (the case of the EM302, GAZCOGNE1 dataset,
Experiment #5) can increase the number of false detections when
actual fluids are predominantly located in water depth ranges
surveyed with a single acquisition mode. It is crucial to note that
the most effective strategy for one dataset may not be effective for
another. For instance, the addition of artefact labels and the
inclusion of WCIs without fluid are the most effective in terms
of MCC enhancement for GHASS2 and GAZCOGNE1,
respectively (Table 6).

3.3 Towards a multi-MBES fluid detector

3.3.1 Experiment #6: optimizing the model by
using enhanced training sets and combining
datasets from different MBES
3.3.1.1 Enhanced training sets (same campaign)

The sixth experiment evaluates the effectiveness of a model
trained with data either from a single campaign (GAZCOGNE1 or
GHASS2) or from both campaigns (Table 7) with acquisition
conducted with two different MBES (Kongsberg EM202 and
Reson Seabat 7150, Table 1). To achieve this, we first selected the
best YOLOv5MCC performance training datasets for GHASS2 and
GAZCOGNE1 from previous experiments (#2–4) with regard to the
number of added WCIs with fluid, percentage of added WCIs
without fluid, and the percentage of added WCIs with acoustic
and environmental artefacts (Table 6). Then, we combined these
enhanced training sets (Table 7). The evaluation is made whether the
testing set contains WCIs for GAZCOGNE1 or GHASS2.

3.3.1.2 Combining datasets from different MBES
When examining the performance of the network trained with

both marine expedition data (Tr (combined), Table 7, last two
columns), we obtained contrasting results for both datasets.
GAZCOGNE1 model demonstrates slightly better performance
with an increase of 9% in MCC (from 0.578 to 0.631) and 17%
in precision (0.469 versus 0.401) indicating less false detections while

TABLE 7 Performancemetrics and their margins of error at a 95% confidence level for Experiment #6 conductedwith enhanced and combined training sets.
Tr, Te andMCC stand for Training, Testing, and Matthews Correlation Coefficient, respectively. For example, Tr (combined) Te (GHASS2) refers to a model
trained on both GAZCOGNE1 and GHASS2 data and tested only on GHASS2 data.

Datasets
Metrics

Tr (GAZCOGNE1) Te
(GAZCOGNE1)

Tr (GHASS2) Te
(GHASS2)

Tr (combined) Te
(GAZCOGNE1)

Tr (combined) Te
(GHASS2)

Accuracy 0.960 ± 0.053 0.986 ± 0.021 0.974 ± 0.016 0.975 ± 0.047

MCC 0.578 ± 0.241 0.843 ± 0.090 0.631 ± 0.226 0.719 ± 0.336

Precision 0.401 ± 0.322 0.817 ± 0.173 0.469 ± 0.332 0.614 ± 0.493

Recall 0.908 ± 0.154 0.889 ± 0.107 0.902 ± 0.148 0.907 ± 0.109
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recall remains stable (0.902). In contrast, the addition of
GAZCOGNE1 WCIs to the GHASS2 training set results in a
decrease in GHASS2’s performance, by −15% for MCC (from
0.843 to 0.719) and by −25% for precision (from 0.817 to 0.614).
However, recall slightly increases from 0.889 to 0.907 (+2%).

3.3.2 Experiment #7: evaluating an optimized
YOLOv5 model in near real-time acquisition

During the MAYOBS23 monitoring mission (Jorry et al., 2022),
we operationally tested an optimized YOLOv5 model for real-time
fluid detection. The challenge was fourfold: i) the network had not
yet been trained on theWCIs produced by Kongsberg EM122MBES
(Table 1), ii) the nature and phase of the emitted fluids were different
from those studied during the GHASS2 and GAZCOGNE1 marine
expeditions (liquid carbon dioxide versus gaseous methane), iii) the
environmental acquisition conditions were different, and iv) the
model had not yet been deployed in near real-time acquisition
during a marine expedition.

Two different training configurations (Table 8) were used based on
results from Experiment #6 (Table 7, last two columns). The first
training set in Table 8 combines two previously studied
GAZCOGNE1 and GHASS2 data sets (Table 7). The second training
set includes in addition WCIs acquired in identical conditions (vessel,
MBES) during a past marine expedition in the same area (MAYOBS21,
Rinnert et al., 2021). The MAYOBS21 training set concerns
1,384 Kongsberg EM122 WCIs corresponding to 1,176 WCIs with
fluid and 208 without fluid. The MAYOBS23 testing set consists of
1,468 WCIs with fluid and 46,044 without.

The model trained, including MAYOBS21 data, performed
better than the model only trained with GAZCOGNE1 and
GHASS2 (Table 9). While accuracy and recall for both models
have relatively the same level (from 0.973 to 0.986 or +1% and
from 0.850 to 0.826 or −3%, respectively), MCC and precision

significantly increase. MCC increases by +14%, (from 0.698 to
0.797) and precision by +32% (from 0.595 to 0.783). These results
suggest that both models have a similar number of FNs whereas
addingMAYOBS21 data to the second training set drastically reduced
FPs. Specifically, 85% and 83% of actual fluid-related echoes were
detected with both models, with 262 and 287 undetected fluid-related
echoes for the first and second training sets including
MAYOBS21 data, respectively. There were 1,011 FPs for the first
model and only 377 (a decrease of 63%) for the second training set
(GAZCOGNE1, GHASS2 and MAYOBS21 data).

The addition of MAYOBS21 data to the training set
(i.e., EM122 Kongsberg WCIs not previously seen by the network)
is not a pre-requirement for the network’s ability to detect fluids.
However, the addition of MAYOBS21 significantly reduces the
number of false positives. During the MAYOBS23 marine
expedition, the GAZCOGNE1-GHASS2-MAYOBS21 model
detected at least once 100% of the fluid emission sites that were
independently identified by two operators. This number is higher than
the recall (Table 9) due to the fact that each active site was surveyed at
least twice. This test demonstrated that YOLOv5 performs effectively,
consistently, and dependably in a monitoring mission when detecting
all fluid-emission sites is crucial.

The MAYOBS23 marine expedition was an opportunity to
deploy this model in near-real time acquisition. Onboard, access
to raw data is possible once the acquisition file is closed. The first
stage in MBES processing is the conversion from raw data to water
column images (polar echograms) using Sonarscope software. This
processing took approximately 1 min 28 s for a 42 Mo. all file on an
11th Gen Intel(R) Core (TM) i7-11850H processor. The second
stage concerned the YOLOv5 processing whose speed was faster
than the acquisition ping rate in the case of MAYOBS23. We
approximated the acquisition rate by the delay between two
pings of the sounder ΔTping by the equation (Equation 6) with c

TABLE 8 Composition of the training and testing datasets used for the near-real time acquisition mission MAYOBS23 (Experiment #7). For the training set,
values are given in the following format (Number of WCIs from GAZCOGNE1, GHASS2, and MAYOBS21 dataset). WCI stands for Water Column Image.

Experiment #7 evaluating an optimized
model

Dataset composition

GAZCOGNE1 + GHASS2 GAZCOGNE1 + GHASS2 +
MAYOBS21

Training/testing dataset WCIs with
fluid

WCIs without
fluid

WCIs with
fluid

WCIs without
fluid

Training (2,214, 1,852, 0) (0, 0, 0) (2,214, 1,852, 1,176) (0, 0, 208)

Testing (MAYOBS23) 1,468 46,044 1,468 46,044

TABLE 9 Performancemetrics of a YOLOv5model (based on basic training set, Experiment #1) adapted to the MAYOBS23 data. Twomodels were used with
different dataset combinations (Experiment #7). MCC stands for Matthews Correlation Coefficient.

Modal

Metrics

Model trained with GAZCOGNE1 +
GHASS2

Model trained with GAZCOGNE1 +
GHASS2+MAYOBS21

Accuracy 0.973 0.986

MCC 0.698 0.797

Precision 0.595 0.783

Recall 0.850 0.826
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the speed of sound in water (1500 m·s-1) and Dslant the maximum
oblique distance between the MBES and seabed along
extreme beams.

ΔTping � 2Dslant

c
(6)

The acquisition ping rate during MAYOBS23 given the water-
depth range during MAYOBS23 and angular aperture (Table 1)
ranges from 0.2 to 2.2 Image Per Second (IPS). The processing speed
of YOLOv5 being faster (3.8 IPS in our case) than the maximum
acquisition rate, YOLOv5 is suitable for online deployment. More
details on the execution time of this method are given
Supplementary Text S2.

4 Discussion

4.1Major contributions of this new approach

The method developed in this study for fluid detection in
multibeam-acquired images is based on the YOLOv5 model
using enhanced training sets. This method overcomes some of
the technological limitations encountered by previous methods.
The method is scalable and reproducible on inference datasets, in
contrast to single or multi-operator analysis, even if assisted by
signal echo-integration (Dupré et al., 2014; Dupré et al., 2015) or 3D
dB threshold filtering (Schneider von Deimling et al., 2015).
Additionally, it enables detection under the Minimum Slant
Range without relying on information from previous WCIs in
the acquisition process (Urban et al., 2017; Weber, 2021). Finally,
our method is adaptable to different seafloor morphologies (Table 1)
and robust to non-stationary noise (and sidelobes) in comparison to
Weber (2021). This method is also robust to other noise sources
(e.g., dolphin echolocation, Supplementary Video S3).

Methodologically, the large databases, combined with the high
variability and heterogeneity of water-column targets, acquisition
parameters, MBES and environmental conditions, guarantee the
robustness of results and provide a more comprehensive analysis of
the method’s performance compared to previous studies performed
by Zhao et al. (2020) and Mimura et al. (2023).

YOLOv5’s fast execution speed allowed for quick inference and
processing on board. With a commonly used aperture of 120°, real-
time YOLOv5 processing at shallow (150 m) and deeper water
depths (1,500 m) is possible if we achieve a 2.5 and 0.3 IPS
processing rate, respectively. This is possible with both the
Central Processing Unit and the Graphical Processing Unit
(3.8 and 41.7 IPS in our case, respectively) (Supplementary Text S2).

4.2 Out-performance of YOLOv5 compared
to Haar-LBP

Based on the tested datasets, YOLOv5 clearly outperforms Haar-
LBP in terms of robustness and reliability. Haar-LBP generates a
significant number of false positives and a small number of false
negatives on the very noisy GAZCOGNE1 dataset. It is hypothesized
that this method is not very robust to noise. On the other hand, it
produced a large number of false negatives and a few false positives

on the high-resolution MBES dataset GHASS2, which suggests that
the Haar-LBP model may not be suitable for narrow fluid-related
echoes in the WCIs.

The superior performance of YOLOv5 on the GHASS2 dataset
in comparison to GAZCOGNE1 can be attributed to the differences
between the five GAZCOGNE1 folds used for cross-validation,
which may have varying biomass contents (as detailed in
Supplementary Table S2).

The metrics presented in Zhao et al. (2020) are impressive, likely
due to i) their less noisy data, ii) larger fluid echoes compared to
those from the GHASS2 dataset and iii) their evaluation protocol
(e.g., balance between WCIs with and without fluid).

All the arguments support the use of the deep-learning based
method (YOLOv5) over the shallow learning Haar-LBP;
YOLOv5 being able to extract more relevant features for
fluid detection.

4.3 Efficiently reducing false positives

Performance is primarily enhanced by adding WCIs, that
contain non-fluid-related echoes through hard negative mining.
This consists of adding a second labeled class of acoustic and
environmental artefacts to the training set. Acoustic artefacts
related to the MBES and other acoustic systems, environmental
and background echoes (e.g., in our case, dolphin-echolocation
echoes) are thus efficiently learnt by the YOLOv5 model by
significantly reducing the number of false detections. To ensure
accurate learning, it is secondly important to addWCIs without fluid
with a diversity representative of the environmental variations that
could be seen in the test set. The downside of adding WCIs without
fluid is the increase in undetected actual fluids but this is negligible
when considering the small number of WCIs concerned.

Performance can be thirdly enhanced by adding WCIs, that
contain fluid-related echoes through pseudo-labeling, to the training
set. However, there is only an improvement in the overall
performance for the complex WCI dataset where fluid-related
echoes are close or overlaid by other echoes that may exhibit
similar acoustic signature (amplitude, shape) such as those
produced by fish shoals. Adding WCIs with fluid to the training
set is unnecessary in the case where the initial configuration
dataset already contains a diverse range of fluid emissions that
are suitable for accurate learning and generalization.

4.4 Learning from multiple
acquisition modes

Including all the acquisition modes from the MBES in the
training may result in a loss of performance (increase of FPs) in
the case of fluid emissions restricted to water depth ranges
predominantly surveyed with a single mode (as demonstrated for
the “shallow”mode for the EM302 Kongsberg echosounder). In our
studied case, we only used a testing set comprisingWCIs acquired in
shallow mode due to the restricted number of WCIs with fluid from
medium and deep modes, which corresponds to 6% and 0% of all
WCIs with fluid, respectively. In this case, learning from all acoustic
modes may not be mandatory. However, as the distribution of
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potential fluid emissions is unknown for some exploratory
expeditions, incorporating all acquisition modes in the training
set (WCIs with fluid and without fluid) could enhance
generalization.

In their 2024 study, Perret et al. did not specifically address the
Kongsberg mode influence. However, they did utilize a training set
comprisingWCIs from two KongsbergMBESs. This training set was
composed of the following proportions: 36% shallow (only WCIs
with fluid), 3%medium (less than 1%WCIs with fluid), 3% deep (no
WCIs with fluid) for Kongsberg EM302, and 0% shallow, 8%
medium, 18% deep for Kongsberg EM122 (WCIs with no fluid).
The model trained is then able to detect 97% of fluid-related echoes
on the Kongsberg EM122 PAMELA-MOZ1 dataset, whereas the
corresponding WCIs were mainly acquired (99%) in the medium
mode. This further supports the previous hypothesis, as the addition
of different acoustic configurations to the training set enables the
model to generalize, i.e., detect fluids fromWCIs acquired in modes
not previously seen.

Further investigations need to be conducted on the Kongsberg
dataset including medium and deep mode acquisitions (e.g., EM302,
EM122) to test and confirm this generalization hypothesis.

4.5 A multi-MBES fluid detector

4.5.1 Learning from combined-MBES dataset
Deep learning models are prone to overfitting, affecting

generalization and predictive accuracy. To address this, we
evaluated used cross-validation, and ensured strict training-test
dataset separation. However, if a neural network is trained
exclusively on data from a single MBES, it may struggle to
generalize to other MBES systems, as demonstrated in
Experiment #6, which involved cross-validation between the
GHASS2 and GAZCOGNE1 datasets. These performance results
suggest the model’s generalization is limited when applied to
datasets with novel or significantly different characteristics (e.g.,
new echosounders or survey areas). Thus, the combination of several
training datasets (GAZCOGNE1, GHASS2, MAYOBS21) from
different MBES (Kongsberg EM302, Reson Seabat 7150,
Kongsberg EM122) may significantly improve YOLOv5’s
generalization capacity. For the GAZCOGNE1 inference, it is
hypothesized that adding GHASS2 WCIs to the
GAZCOGNE1 training set provides additional information for
extracting and exploiting fluid features independently of the
environment and sounder characteristics, even if the WCIs from
the EM302 (GAZCOGNE1) and Seabat 7150 (GHASS2) are
physically very different. Regarding the MAYOBS23 inference, we
demonstrated that an accurate three-MBES-data-based model
(GAZCOGNE1, GHASS2, MAYOBS21) can be trained with only
a small number of WCIs from the EM122 (1,176 and 208 with and
without fluid, respectively), efficiently resulting in minimal false
negatives. This is crucial during exploration as it guarantees that
fluid emissions do not go undetected. It is important to highlight
that training with MAYOBS21 data primarily and drastically
reduced the number of false positives identified by the network,
which was already capable of detecting fluids on the EM122. This
implies that incorporating these images primarily enables the
network to learn the acoustic characteristics associated with the

sounder as suggested by Perret et al. (2024). This demonstrates
YOLOv5’s strong ability to learn from different MBES WCIs and to
accurately generalize, eliminating the need for a dedicated MBES
model. On the contrary, combining different training datasets may
produce a higher number of FPs induced by precision reduction. In
such a case (e.g., GHASS2 inference), it is likely due to the added
GAZCOGNE1 information such as biomass or transmission sectors
in the dataset which do not contribute to the network’s ability to
learn fluid features on GHASS2 WCIs.

4.5.2 Retrain a network to detect fluid on a MBES
using fluid features from the sameor anotherMBES

In the present study, we constrained our approach to train the
network with WCIs containing fluids from various multibeam
echosounders, and subsequently perform inference on data
derived from a MBES system included in the training set.

To delve further into this topic, Perret et al. (2024) explored
training a YOLOv5 model without requiring fluid-labeled data from
the specific MBES used for inference. To achieve this, a two-phase
inference process was implemented. Initially, a network was trained
with WCIs containing fluid-related echoes from the GHASS2 and
GAZCOGNE1 datasets. This network was then used for inference
on WCIs acquired during the first day of the PAMELA-MOZ1
campaign, which did not contain fluid-related echoes. This sub
dataset included challenging data due to water-column echoes
produced during coring operations and un-synchronized acoustic
system surveys (i.e., subbottom profiler). Secondly, the WCIs
incorrectly identified as containing fluids by the network were
then incorporated into the training set (hard negative mining)
(similarly to Experiment #4 of the present study conducted on
Reson 7150 acoustic artefacts), also with other WCIs without fluid
from the EM122 (similarly to Experiment #3). The network, trained
with this training set, demonstrated the capacity to successfully learn
features of fluid-related echoes from one MBES to another (97% of
actual fluid emissions were detected), while simultaneously
minimizing false detections (less than 1% of the entire cruise),
even on a complex dataset (namely, with lots of acoustic
artefacts). This means that the network was able to learn the
characteristics of fluid echoes without relying on the sounder.
This two-step learning methodology therefore exemplifies
significant versatility across a variety of multibeam echosounder
systems. Future studies could quantify the minimum number of
WCI required to effectively adapt the model to new artefact types,
which could, for example, facilitate rapid retraining during
campaigns by leveraging outbound transit data.

4.6 Limitations

While this study achieves promising results, three key
limitations present opportunities for future improvements.

This study highlights the need to enrich WCI datasets with
diverse fluid information, environmental noise, and acoustic
artifacts for improved underwater fluid emission detection.
However, this analysis can always be expanded across specific
new scenarios. Varying sonar operating modes (e.g., the medium
and deep modes for Kongsberg acquisition), studying different
natures of fluids (e.g., hydrothermal vents), or very shallow water
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depth environments (<100 m water depth) represent important
areas for future exploration. Such investigations could provide more
critical insights into the model’s adaptability to a wider range of
marine environments.

The second limitation pertains to using uncalibrated data due to
the paucity of information of the MBESs employed. Addressing the
challenge of ensuring that the neural network remains invariant to
these variations while maintaining accurate seep detection, was a key
focus in Experiments #6 and #7. This raises an important question:
should calibrated or standardized data be used in such analyses?
Investigating the impact of calibration and standardization on
model performance represents a promising avenue for
future research.

The third limitation pertains to the elements of our algorithm
that seek to address the detection of fluid in ping after ping WCIs.
Our study focused on detection versus non-detection, as pinpoint-
only annotations prevent evaluating YOLOv5’s localization or
bounding box linkage. Bottom currents can tilt fluid flows
affecting their spatial characteristics. Transverse currents allow
reliable detection while those aligned with the vessel’s trajectory
may cause repeated detections of the same seep. This arises from the
network’s independent processing of pings without spatial or
temporal context. Future work could address the linking of
detections across pings to improve seep localization and prevent
models from confusing fluids with acoustical artefacts (e.g., ghost
echoes due to beam pattern).

5 Conclusion

Based on our research findings, we propose several key
recommendations to improve the acquisition and processing of
WCI data, as well as to enhance the robustness of YOLOv5 training.

To conduct a water-column survey, it is crucial to ensure a
sufficient ping rate to detect at least once fluids in overlaps of the
main along-track beam at the depth where they are located (Urban
et al., 2023). Our fluid detector must use the same format as the
WCIs used to train the model, including whether to cut the WCI
after seabed detection, using polar or Cartesian projection, and the
same pre-processing steps. In our case, Sonarscope software was
used to convert the WCIs before applying the neural network.
According to the present study and Perret et al. (2024), an
operational proposal would be to commence a survey campaign
with labeled fluid datasets (previously acquired) from the same or
another MBES. A second step would consist of including in the
training newly-acquired acoustic data relative to the acoustic MBES
configuration and representative of the acoustic landscape (related
to biomass and external noise) as far as possible. This could
correspond to 1 day of acquisition (e.g., the first day, Perret et al.
(2024)) or a different duration depending on the variability of the
acoustic context. Subsequently, a neural network would be trained
on board using previously labeled fluid-data and a subdataset from
the current MBES survey. This network would then be used and
adapted to the acoustic context of the area, to attempt to robustly
detect fluids present in the survey area of the mission.

The authors of YOLOv5 provide advice on GitHub for effective
YOLOv5 training (Jocher, 2021). Regardless of the field of study, it is
important to include varied images that accurately reflect the

environment, including WCIs and acoustic settings. It is essential
to label all classes of images to ensure successful training. The
present study provides additional guidance to enhance the model’s
performance. One of the best strategies used in this study is hard
negative mining. Caution should be exercised however when adding
a second “acoustic and environmental artefacts” class. If labels are
not correctly assigned to their respective classes, such as fluids being
placed in the “acoustic and environmental artefact” class, the
training process will face significant challenges in converging. If
the signals are sufficiently different and not mixed in the WCIs,
using 50% of these images with the second class in the training set
can significantly enhance network performance. In addition, it is
recommended to include at least 5%–10% of WCIs without fluid-
related echoes in the training set and at maximum 25%–30%,
percentages for which the performance is maximized and
plateauing. These images without fluid are usually abundant and
easy to obtain, and their inclusion will significantly help the network
to better understand the environmental information not related to
fluids. These images without fluid can also be used to decrease the
number of detections made by the network; the more images
without fluid-related echoes, the fewer false or accurate
detections. The selection of the percentage of images without
fluid echoes should be considered in light of the user’s needs. For
the number of fluid-related echoes to train the network, we
recommend using (with expert labeling and pseudo-labeling done
with YOLOv5) approximately 2,700 labels for each type of
echosounder data as we did see a significant improvement with
the addition of 500 WCIs with fluid for GAZCOGNE1 (to the
training set with already 2,214 WCIs with fluid-related echoes). The
requisite number of WCIs with fluid may be less than previously
assumed, as evidenced by GHASS2, where the metrics exhibit a
plateau after the initial configuration (2,352 WCIs with fluid). This
training dataset already contains a diverse range of fluid emissions
that are suitable for accurate learning and generalization. The
authors of YOLOv5 suggest using at least 10,000 items per
category, which is significantly more than what was used in our
study. This discrepancy can be attributed to the restricted number of
classes and the relative simplicity of the objects present in WCIs in
comparison to optical images. If one needs to use a specific sounder
and only has a few WCIs with fluid-related echoes, it may not be
possible to train a network solely with this data. It is however feasible
to incorporate WCIs from various multibeam echosounders into a
training set. Therefore, it is possible to include WCIs with fluid-
related echoes from another sounder in larger quantities and WCIs
without fluid-related echoes from the sounder of interest (Perret
et al., 2024). This will enable the network to identify more general
features from the WCIs and to use fluid features from another
MBES. This will result in a network that is not perfect, but can still
help the user by significantly reducing the number of WCIs
requiring human inspection.

The present study focused on the use and performance of a
supervised deep learning algorithm that can automatically detect
and locate fluid emissions in WCIs. To date, automatic detection of
these fluid emissions was indeed not very robust, even with existing
methods. We demonstrated that using a deep learning-based
method such as YOLOv5 is a more reliable algorithm for fluid
detection than a shallow learning method like Haar-LBP. The
network’s performance is greatly enhanced by modifying the

Frontiers in Remote Sensing frontiersin.org18

Perret et al. 10.3389/frsen.2025.1532714

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1532714


acoustic composition of the YOLOv5 training sets. Thus, prioritizing
examples of echoes that should not be detected (acoustic and
environmental artefacts; e.g., data loss, multiple seafloor echoes
and sounder artefacts) by creating a distinct class and using hard
negative mining contribute to significantly decrease the number of
false positives. Adding WCIs without fluid-related echoes also
reduces false positives during inference. The addition of only a
relatively small amount of WCIs with fluid (e.g., 500) through
pseudo-labeling may improve the model’s performance but no
longer beyond a certain threshold, which varies depending on the
complexity of the data.

The present study demonstrated the feasibility of obtaining an
efficient multi-MBES fluid detector able to detect different targets,
namely, gaseous methane and carbon dioxide liquid. This detector
can be adapted to different contexts with minimal effort, ensuring
reliability. This detector can be used either in near-real-time
acquisition aboard vessels (at a higher speed than the acquisition
rate) or in post-acquisition conditions. The model weights and
accompanying code for inference on raw multibeam echosounder
data are publicly available in the Perret et al. (2025a), Perret et al.
(2025b) repositories, providing a resource for reproducibility and
further research.
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