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Land use/land cover (LULC) mapping in fragmented landscapes, characterized by
multiple and small land uses, is still a challenge. This study aims to evaluate the
effectiveness of Synthetic Aperture Radar (SAR) and multispectral optical data in
land cover mapping using Google Earth Engine (GEE), a cloud computing
platform allowing big geospatial data analysis. The proposed approach
combines multi-source satellite imagery for accurate land cover classification
in a fragmented municipal territory in Southern Italy over a 5-month vegetative
period.Within theGEE platform, a set of Sentinel-1, Sentinel-2, and Landsat 8 data
was acquired and processed to generate a land covermap for the 2021 greenness
period. A supervised pixel-based classification was performed, using a Random
Forest (RF) machine learning algorithm, to classify the imagery and derived
spectral indices into eight land cover classes. Classification accuracy was
assessed using Overall Accuracy (OA), Producer’s and User’s accuracies (PA,
UA), and F-score. McNemar’s test was applied to assess the significance of
difference between classification results. The optical integrated datasets in
combination with SAR data and derivate indices (NDVI, GNDVI, NDBI, VHVV)
produce the most accurate LULC map among those produced (OA: 89.64%),
while SAR-only datasets performed the lowest accuracy (OA: 61.30%). The
classification process offers several advantages, including widespread spectral
information, SAR’s ability to capture almost all-weather, day-and-night imagery,
and the computation of vegetation indices in the near infrared spectrum interval,
in a short revisit time. The proposed digital techniques for processing multi-
temporal satellite data provide useful tools for understanding territorial and
environmental dynamics, supporting decision-making in land use planning,
agricultural expansion, and environmental management in fragmented
landscapes.
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1 Introduction

Accurate land monitoring and assessment of emergencies,
security and climate changes are essential inputs for setting up
integrated territorial management strategies (Forkuor et al., 2018;
Phan et al., 2020; Tassi et al., 2021) and locating the current or recent
human footprint on the planet that may cause a loss of biodiversity
and land degradation (Sidhu et al., 2018; Zurqani et al., 2018;
Vizzari, 2022). Land use/land cover (LULC) information plays a
very important role in the scientific, economic and political aspects
of human life. Studies on natural resources, forest disturbance,
urban planning, land consumption, hydrological modeling and
precision agriculture, significantly benefit from information on
land surface (Strollo et al., 2020; Gebru et al., 2019; Clerici et al.,
2017; Fritz et al., 2015).

The digital processing of remote sensing data and the
normalized spectral indices (NDVI, GNDVI, NDBI, VHVV)
that derive from it can concretely help in understanding the
current landscape dynamics (Rawat and Kumar, 2015; Sousa da
Silva et al., 2020) or the land cover changes over the last decades
(Romano et al., 2018). Monitoring of built-up, forest fires and
many land cover areas can be easily documented and visualized
using geospatial techniques. However, LULC classification in
heterogeneous landscapes, such as urbanized environmental
areas or complex agricultural areas, i.e., fragmented fields,
plastic films (covers used in viticulture to modify the ripening
period), photovoltaic, agricultural buildings and greenhouses, still
represent a challenge as it leads to misclassification error (Zhang
and Yang, 2020; Novelli et al., 2016), because the diffuse presence
of mixed pixels. To overcome this issue, recent studies used multi-
temporal radar or optical data sources for land cover classification
obtaining results deemed satisfactory by the authors (Vizzari,
2022; Clerici et al., 2017; Rawat and Kumar, 2015). Vizzari
(2022) assessed the advantages of optical (PlanetScope, Sentinel-
2) and radar (Sentinel-1) data integration for LC classification of a
complex agro-natural area in central Brazil. In contrast, the dataset
integration achieved an OA of 82% for pixel-based classification.
Clerici et al. (2017) followed a similar approach aimed to aggregate
Sentinel-1A and Sentinel-2A for a case study in the Magdalena
region, Colombia, with an OA of 88.75%. Rawat and Kumar (2015)
used multi-temporal satellite imagery and GIS techniques to
monitor LULC changes in the district of Almora, India. The
combination of different multispectral sources of remote
datasets can be an effective methodology that could further
improve the accuracy of LULC mapping (Ye et al., 2014; Quan
et al., 2020). The use of remote sensing data allows territorial data
collection at global, large and local scales, with the advantage of
repeatability and being cost-effective, even in inaccessible areas
(Kuemmerle et al., 2013; Dong et al., 2020). Forkuor et al. (2018)
examined the added value of the Sentinel-2 red-edge bands in
LULC mapping in West Africa using a multi-sensor approach.
Sentinel-2’s red-edge bands resulted in a 4% improvement in
accuracy over Landsat 8. Lasaponara et al. (2018); Argentiero
et al. (2021), using Sentinel-2 data, drew standardized burn
severity maps with the aim of evaluating forest fire effects and
addressing post-fire management activities. Dong et al. (2020)
mapped two vegetal species, mangroves and Spartina alterniflora,
integrating Sentinel-1 and Sentinel-2 image time series.

The satellite images provided by Landsat sensors (MSS, TM, ETM,
ETM+, OLI) have been extensively used for mapping and monitoring
the Earth’s surface since the start of the Landsat program in 1972
(Kahya et al., 2010; Sexton et al., 2013; Lanorte et al., 2017). The open
data policy regarding the free availability of the entire Landsat archive,
announced by the U.S. Geological Survey (USGS) in 2008, led to
increasingly widespread use of Landsat images over the years (Forkuor
et al., 2018), thanks in part to the sensor improvements that took place
across 7–8 missions. In recent years, the Copernicus Program of the
European Commission has supported the European Space Agency
(ESA) to launch a constellation of satellites providing remote sensing
images at high spatial resolution. Sentinel-1, 2 and 3A carry sensors
providing free data in the microwave and optical electromagnetic
spectrum range (ESA, Sentinel-2 User Handbook, 2015).

Different classification algorithms (K-Nearest Neighbor,
Maximum Likelihood, Support Vector Machine, Decision Tree,
Random Forest) can be used to transform pixel signature values of
satellite imagery into different LULC classes present in a monitored
area. In recent years, several machine learning algorithms were
increasingly used for remote sensing applications, particularly
Random Forest (RF) (Breiman, 2001), due to classification results
and processing speed in performing the results (Castro Gómez, 2017).
Several researchers used RF to classify land cover (Ghimire et al., 2010;
Rodríguez-Galiano et al., 2012; Chen et al., 2017; Talukdar et al.,
2020), tomap landslide risk (Stumpf and Kerle, 2011; Sun et al., 2020),
for forest fire forecasting (Michael et al., 2021) or to analyze urban
areas (Wu et al., 2021).

The massive volumes of data collected for decades by satellite
constellations and the use of specific approaches (pixel or object-
based) and processes (supervised or unsupervised) require intensive
computing resources on high-powered computers (Shetty, 2019;
Scheip and Wegmann, 2021).

These large datasets are more effectively managed by cloud
computing platforms, such as Google Earth Engine (GEE)
(Gorelick et al., 2017), than with common desktop computing
resources and software packages (Amani et al., 2020). GEE
represents new challenges and significant improvements for big
geospatial data analysis since the recent large repository of Landsat
and Sentinel remotely sensed data and the availability of parallel
computing platforms. GEE has already been employed in different
applications for big data processing, such as burned severity mapping,
land cover classification, flood mapping, forest degradation, and
wetland detection. One environmental application that benefits
from satellite data time series and GEE computation of big
geodata over large areas, is the identification, mapping, and
analysis of LULC types over time (Vuolo et al., 2018; Ghorbanian
et al., 2020). In particular, Chen et al. (2017); Dong et al. (2020); Quan
et al. (2020) mapped LULC changes using a time series combination
of SAR and optical images supported by the GEE cloud platform.

In this framework, the study offers an experimental contribution
on the effectiveness of combining multisource radar and optical data
for land cover analysis in underexplored territorial areas of
Mediterranean basin, such as Southern Italy.

Furthermore, the selected study area, considered as a pilot site
representative of many Italian agricultural territories, addresses the
specific issues of the research work related to mapping
heterogeneous and fragmented landscapes. The complexities arise
from intensive agriculture, diffuse urbanization, transportation
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infrastructure expansions, conversion of forests into agricultural
lands, peri-urban and smallholder farming systems.

The study’s specific objectives were to explore a supervised LULC
classification approach and assess the potential efficacy in combining
multispectral (visible, near infrared, shortwave infrared, and radar
bands), multisource (S-1, S-2, L8) data, and normalized spectral
indices (NI(s)) to improve land cover detection in fragmented
agricultural areas, as stated in scientific literature (Carrasco et al., 2019).

2 Materials and methods

Our methodological approach involved the identification of a
representative area within the agricultural territory of the Puglia
region, characterized by high heterogeneity (Section 2.1).
Subsequently, we created a reference data collection (2.2.1),
accessed and processed remote sensing data using GEE
(2.2.2 and 2.2.3). We extracted several normalized spectral
indices, combining them with optical and radar data (2.2.4) to
form the dataset for land cover classification (2.2.5). The
processing method (2.3) encompassed imagery pre-processing
(2.3.1), composite image creation (2.3.2), and Random Forest
classification (2.3.3). Finally, the classification accuracy was
evaluated (2.4). The workflow of the methodological approach
adopted in this study for LULC classification is reported in Figure 1.

2.1 Study area

The study area is the Municipal territory of Acquaviva delle
Fonti (40°53′N, 16°50′E). It is located in the province of Bari
(Northern Puglia, Southeastern Italy) (Figure 2) and covers
approximately 117 km2.

The terrain is flat and lies in the hilly life zone with an elevation
between 189 and 441 m above sea level. The climate is typically
Mediterranean with warm, dry summers and mild, moist winters.
The average annual temperature is 15.3°C and the average rainfall is
645 mm year−1.

Eight land cover classes were identified after site inspections
during spring of 2021. Cereals, mainly winter wheat, and vineyard
under plastic films, constitute, respectively, the winter wheat and
plastic films LULC classes. Other crops (crops in the rest of the
article) was the class with the greatest extension and fragmentation.
It mainly hosts legume and vegetable cultivations, olive and
orchards. To a lesser degree, strips of oak (Quercus pubescens
Willd. and Q. trojana Webb) and coniferous woods (Pinus
halepensis Mill.) are found as forest. The municipality of
Acquaviva delle Fonti and its industrial site fall within the
investigated area as built-up. The mining activity (bare soil as
land cover class) is limited to a site close to the urban center. A
highway road also crosses the territory, as well as numerous
photovoltaic fields.

FIGURE 1
The workflow adopted for the land cover classification.
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2.2 Reference data collection

After identification of the land cover types which dominate the
territory (Table 1, first column), a reference data collection (ground
truth or training samples and validation samples) was created. The
choice of reference dataset is an important step addressed at the best

classification accuracy. The training dataset allows the selected
classifier algorithm to learn the relationship between the pixel
values of the various bands of composite/normalized indices/
radar images and the land cover classes, with the aim of
attaining optimal accuracy. The validation dataset allows to test
the accuracy of the classifier.

For these purposes, the training and validation dataset was
designed combining imagery observation and field
investigation. The reference dataset was determined using a
random sampling approach, selecting the number of samples
proportional to land cover classes surface (Table 1, second
column), and taking into account the purity of samples
(without mixed pixels).

To select the most homogenous pixel representative of every
class and to reduce the effect of spatial autocorrelation, the reference
samples were uploaded via GEE. Furthermore, data balancing
technique, such as the augmentation of minority classes, was
used to minimize class imbalance in the training dataset.
Accurate visual analysis of Sentinel-2 RGB (2021) and Google
Earth high-resolution (2018) images were employed to create
reference samples. The assigned labeled classes were cross-
checked by visually inspecting Google Earth imagery. The Google
Earth images were used as a georeferenced base map to collect

FIGURE 2
Study area (Open Street Map, 2023; Sentinel-2 RGB image, 2021).

TABLE 1 Land cover classes and number of samples.

Land cover Samples

Built-up 469

Winter wheat 265

(Other) crops 614

Bare soils 577

Forest 162

Highway 92

Plastic films 226

Photovoltaic fields 87

Total 2,492
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reference samples and to address field inspections, in case of
inconsistencies between the visual information provided by the
different images. In instances of uncertainty, class assignment
was confirmed by checking normalized index values derived from
optical images or visually inspecting ESA WorlCover maps (GEE
image collection: ESA WorldCover v100 and v200; 2020, 2021).
Moreover, samples with persistent high uncertainty underwent
removal or were subject to field verification carried out in late
spring 2021.

A total of 2492 reference samples were iteratively delineated for
the period under consideration (Table 1). 80% of the randomly
selected reference samples were used as training data, and the
remaining 20% were used as validation data. Different data
splitting approaches can be used to ensure a separation between
the training and test data, including the holdout, the bootstrapping,
and the cross-validation procedures. To avoid differences in
accuracies, the same samples and split process were used to train
and validate each dataset.

2.3 Cloud computing platform

Using multispectral/multi-source remote sensing data over
large areas requires considerable technical expertise and high
computational complexity (Shaharum et al., 2019). Those
challenges can be effectively addressed by Google Earth Engine
(http://earthengine.google.com), a cloud-based platform
providing access to a multi-petabyte catalogue of Earth
observation data, analysis algorithms and many other digital
products (Padarian et al., 2015) that are ready-to-use with an
explorer web app. It was designed to take advantage of Google’s
computational infrastructure for planetary-scale access, storage,
monitoring, analysis and visualization of geospatial data. An
Application Programming Interface (API) enables users to
create custom JavaScript and Python algorithms, while an
associated web-based Interactive Development Environment
(IDE), the Earth Engine Code Editor, provides high-speed
parallel processing for prototyping, analysis and visualization
of large-scale geospatial data (Gorelick et al., 2017; Tamiminia
et al., 2020).

The GEE public data repository includes scientific datasets and
several decades of historical images from multiple satellites. For this
work, we used remote sensing data for which cloud computing and
archived processed data in GEE had advantages for long time-series
mapping, such as monitoring land type changes and detecting the
extent of human settlement (Johansen et al., 2015). Moreover,
machine-learning algorithms integrated into the GEE API allow
short-time information extraction from satellite data, avoiding local
memory consumption and intensive data transfers (Huang
et al., 2017).

2.4 Remote sensing data

The remote sensing dataset consisted of 63 radar images and
16 optical images (Table 2) selected over the study area for the
vegetative period 01/01/2021–31/05/2021. We used data from two
optical sensors (Sentinel-2 MSI and Landsat 8 OLI) both to increase

the number of optical images and to exploit the different bands
resolution.

The GEE cloud platform provides online access to a centralized
catalogue of georeferenced and atmospherically corrected satellite
multispectral images (Bunting et al., 2019), like the USGS and
Copernicus archives that include Landsat 8 OLI/TIRS and
Sentinel-2 (level 2A) data, respectively. We chose the
atmospherically corrected surface reflectance scenes with the aim
of minimizing the effects arising from the differences between
satellite sensors (Landsat 8 and Sentinel-2) or the different
acquisition dates. In addition, from the Copernicus collection, we
selected the Sentinel-1 Synthetic Aperture Radar (SAR) (Table 2).

2.4.1 USGS Landsat 8
Landsat 8 acquires multispectral data from two sensor payloads,

the Operational Land Imager (OLI) and the Thermal Infrared
Sensor (TIRS), with a spatial resolution of 30 and 100 m,
respectively. The OLI sensor collects nine narrower reflective
wavelength bands in the visible (RGB), near-infrared (NIR), and
shortwave infrared (SWIR) portions of the electromagnetic
spectrum. Furthermore, the OLI sensor has two new spectral
bands, a shorter wavelength blue band (B1 - Coastal Aerosol)
and a shortwave infrared cirrus band (B9 - Cirrus). The TIRS
detects land surface temperature and emissivity in two thermal
bands (B10, B11).

2.4.2 Copernicus Sentinel-2
The Copernicus Sentinel-2 mission of the European Space

Agency (ESA) comprises two polar-orbiting satellites (Sentinel-
2A and Sentinel-2B), phased at 180° to each other, carrying an
innovative high-resolution, multispectral imager (MSI), which
provide a set of 13 spectral bands images from the visible to the
shortwave infrared at 10–60 m spatial resolution (Romano et al.,
2020), and a global absolute geolocation accuracy better than 6 m
(ESA, Sentinel-2 User Handbook, 2015). The combination of a low
revisit time (Table 2), wide swath coverage of 290 km, high-
resolution spectral bands and novel spectral capabilities, make
the Sentinel mission useful for a wide range of environmental
applications (Immitzer et al., 2016). The Level-2A product,
derived from the associated Level-1C and providing Bottom Of
Atmosphere (BOA) surface reflectance images in cartographic
geometry (ESA, Sentinel-2 User Handbook, 2015), was used in
this study.

2.4.3 Copernicus Sentinel-1
Sentinel-1 is a remote imaging radar mission providing

continuous day-and-night imagery, under almost all-weather
conditions, with the C-band active sensor with an incidence
angle between 20° and 45°. Data are acquired by the Synthetic
Aperture Radar (SAR) in four imaging modes: Strip Map (SM),
Interferometric Wide-swath (IW), Extra Wide-swath (EW) and
Wave (WV) mode (ESA, SNAP - ESA Sentinel Application
Platform, 2018). Following literature suggestion (Vizzari, 2022),
the systematically distributed Ground Range Detected (GRD)
Level 1 product was used in the Interferometric Wide-swath
(IW) mode for the dual polarization VV + VH, depending on
whether the radar signal transmitted in vertical polarization was
received in vertical (VV) or horizontal (VH) polarization. The IW
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mode was selected since it is the operational mode over land. The
dual polarization VV was chosen due to the stronger interaction of
the vertically polarized electromagnetic field of the SAR with the
vertical structures on the earth’s surface. The VH polarization was
added to the first to intercept the changing orientation of territorial
structures such as branches, roofs, plastic film covers, and streets.

We chose only scenes taken during the descending orbit so they
were comparable in terms of backscatter intensity. The spatial
resolution of Sentinel-1 was 10 m and is already available in GEE
as an image collection. The final pixel size for the maps presented in
this article was 10 m.

2.5 Normalized spectral indices

Several normalized spectral indices (NI(s)) have been proposed
in the literature to extract the land cover types from remote sensing
imagery. Data normalization has the advantage of reducing image
noise when multi-sensor and multi-temporal images are used
(Yang and Lo, 2002; Zurqani et al., 2018). Furthermore, these
spectral indices could improve image classification accuracy,
thereby emphasizing the detection of vegetation reflectance
signatures or reducing hill shade and building shadows.
Supplementary Figure S1 shows a Sentinel-2 derived NDVI
time series for the eight land cover classes detected in the study
area. Winter wheat had one NDVI peak in 2021 indicating one
harvest per year. Deciduous oaks (Quercus trojana Webb. and Q.
pubescens Willd.) have a growing stage in spring after the new
foliage. Coniferous trees (Pinus halepensis Mill. and P. pinea L.)
show a somewhat varying index, such as the urban dwelling. This
illustrated the importance of using seasonal information to
discriminate vegetation covers from infrastructures.

Some of the standardized indices are sensitive to different factors
related to seasonality, study area location, and image resolution.

However, given their simplicity and easy formulation, such methods
have been widely used for LULC monitoring and mapping.

In this study, the normalized indices calculated from the
composite bands of Sentinel-2 and Landsat 8 imagery, and
Sentinel-1 imagery are reported in Table 3:

The Normalized Difference Vegetation Index (NDVI) (Rouse
et al., 1974) is an index of the vegetation greenness that derives from
measurements of the optical reflectance of sunlight in the red and
near-infrared wavelengths. It is not a physical property of the
biome’s cover, but its very simple implementation makes it
widely used for ecosystem monitoring (https://land.copernicus.eu/
global/products/ndvi). NDVI is suitable for estimating leaves’ vigor
during the early vegetative stages.

The Green Normalized Difference Vegetation Index (GNDVI)
(Gitelson et al., 1996) is more sensitive than NDVI to the proportion
of chlorophyll absorbed radiation since the Red band is replaced in
the calculation by the Green band. It is used to assess photosynthetic
activity, water content, and nitrogen concentration in more
advanced development stages of dense plant canopies
(Vizzari, 2022).

Most of the normalized vegetation indices confuse built-up with
bare soil surfaces (Valdiviezo et al., 2018); to reduce such limitations,
a built-up index was used in this work.

The Normalized Difference Built-up Index (NDBI) (Zha et al.,
2003) uses increased reflectance values from SWIR and NIR bands
to highlight manufactured built-up areas. In thermal infrared bands,
the higher emissivity and albedo of built-up structures, compared to
bare soil, waterbodies, and vegetation, is best detected by this index
(Ali and Nayyar, 2021). It is based on separating the built-up area
from the background and mitigating the effects of terrain
illumination as well as atmospheric effects. According to this
index, the greater the value of a pixel in the derived image, the
higher the possibility of the pixel being a built-up surface (He
et al., 2010).

TABLE 2 Data source and descriptions.

GEE – imageCollection Source Nominal revisit time (days) Images (total)

(“LANDSAT/LC08/C01/T1_SR”) U.S. Geological Survey (USGS) 16 5

(“COPERNICUS/S2_SR”) European Union/ESA/Copernicus 5 16

(“COPERNICUS/S1_GRD”) European Union/ESA/Copernicus 12a 49

aAfter the stop of Sentinel-1B.

TABLE 3 Formulation of the satellite-derived standardized indices.

Index Full name Formulation S-2 bands L 8 bands Reference

NDVI Normalized difference vegetation index NIR − Red
NIR + Red

B8, B4 B5, B4 Rouse et al. (1974)

GNDVI Green normalized difference vegetation index NIR − Green
NIR + green

B8, B3 B5, B3 Gitelson et al. (1996)

NDBI Normalized difference built-up index SWIR − NIR
SWIR + NIR

B11, B8 B6, B5 Zha et al. (2003)

VHVV Normalized VH-VV index VH − VV

VH + VV
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2.6 Datasets for land cover classification

To analyze the multispectral data combinations on the land
cover classification process, we aggregated optical data, radar data
and spectral normalized indices into five different input data and
combined these data in thirteen different datasets, seven without
NI(s) and six with NI(s) (Table 4).

2.7 Processing method

The workflow of the methodological approach adopted in this
study for land cover classification is reported in the Graphical
abstract. First, the Copernicus (i.e., Sentinel-2 and Sentinel-1)
and Landsat 8 image collections comprising the Region of
Interest (ROI) were selected via GEE. The winter-spring
period of 2021 was chosen to distinguish winter wheat from
bare soil land cover. The selected collection data were then
processed with GEE to manually detect the main land types in
the study area and generate training and testing data. The
Random Forest (RF) classifier was then used to generate the
LULC map. Lastly, a validation step and an accuracy assessment
were performed before the digital restitution of the final land
cover map for the study period. The detailed methodology is
described in the following paragraphs.

2.7.1 Imagery pre-processing
The land cover detection technique requires image pre-

processing and normalization. In this step, we used the GEE API
to develop a time series of calibrated remote sensing images from
January toMay 2021. A double process of filtering the satellite image
collections by the period and intersecting the boundaries of the study
area was performed, using a specific script in GEE, to develop the
time series. Additional filtering was applied to radar images to refine
the selection based on Instrument Mode, Polarization, and Orbit

properties. Since it was not possible to get a continuous, cloud-free
time series for optical data, a five-monthly composite image was
composed to ensure a cloud-free time series for the whole
investigated area. A cloud filter was preliminarily applied to
remove the image pixels with >10% cloud contamination. All the
images selected were then processed and analyzed for masking out
the remain pixels containing various types of clouds, snow, ice, haze,
and quality disturbance. A custom cloud-masking and compositing
JavaScript were used to produce a per-pixel, cloud-free,
multispectral image of the study area. The script uses a quality
flag band, QA for Landsat 8, and QA60 for Sentinel-2, to identify
and mask out flagged cloud and cloud shadow pixels. For Sentinel-2,
the remaining cloud and aerosols were identified and masked using
the scene classification (SLC) band provided in the Sentinel-2 Level
2A product to mask out cirrus and aerosol bands. A scaling function
was implemented to switch from Landsat Collection 1 to
Collection 2 data.

The pre-processing steps for the SAR images (apply orbit file,
backscatter mosaics, border noise removal, thermal noise removal,
terrain correction, and radiometric calibration), as implemented in
the Sentinel Application Platform (SNAP) Toolbox (ESA, SNAP -
ESA Sentinel Application Platform, 2018), were already performed
by GEE after S-1 data ingestion. Speckle filtering was applied to
reduce speckle effects (Mullissa et al., 2021).

All the preprocessing script used in this study are available in
the GEE API Reference (https://developers.google.com/earth-
engine/apidocs).

2.7.2 Composite image
The optical images, making up the seasonal time series, were

taken during the growing season with themost abundant leafage and
correspond to the vegetation greenness peak driven by the warm and
moist season conditions. This selection aligns with the observation
requirements necessary for detecting natural and human-induced
land cover (Table 2).

TABLE 4 Data source, descriptions and datasets.

Data Bands/polarization

S-1 polarization VV, VH, VHVV NI

S-2 bands Blue, green, red, red-edge 1, red-edge 2, red-edge 3, NIR, NIR-A, SWIR 1, SWIR 2

S-2 NI(s) NDVI, GNDVI, NDBI

L 8 bands Blue, green, red, NIR, SWIR 1, SWIR 2

L 8 NI(s) NDVI, GNDVI, NDBI

Data Datasets (without NI(s)) With NI(s)

S-1 S-1 polarization

S-2 S-2 bands + S-2 NI(s)

L 8 L 8 bands + L 8 NI(s)

S-1/S-2 S-1 polarization, S-2 bands + S-2 NI(s)

S-1/L8 S-1 polarization, L 8 bands + L 8 NI(s)

S-2/L8 S-2 bands, L 8 bands + S-2 NI(s) and L 8 NI(s)

S-1/S-2/L8 S-1 polarization, S-2 bands, L 8 bands + S-2 NI(s) and L 8 NI(s)
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A median composite approach was performed to generate a
representative seasonal image. Specifically, the median value was
computed for each spectral band to minimize the influence of
outliers and residual noise. The method follows the best-available
pixel compositing approach introduced by White et al. (2014), which
is widely used in remote sensing to reduce the amount of invalid pixels
after pre-processing and to ensure consistency in the final composite
(Bey et al., 2020). Although multiple statistical methods could be
executable for compositing, themedian index was chosen as the best
response for this analysis. The median composite approach is
frequently applied in geospatial analyses involving multi-temporal
datasets, as it reduces the impact of atmospheric variability and sensor
noise more effectively than the mean (Bunting et al., 2019).

2.7.3 Random forest (RF) classifier
In this study, the classifications were performed using a pixel-

based supervised RF classifier consisting of an ensemble of decision
trees (Zurqani et al., 2018; Ghorbanian et al., 2020). RF is widely
regarded as one of the most robust machine learning algorithms for
land cover classification and is increasingly used in classifying
remote sensing data (Teluguntla et al., 2018). In particular, RF
was chosen because of the high accuracy with multi-source datasets
and ability to handle diverse input datasets (Phan et al., 2020). An RF
algorithm requires the setting of several parameters, with the most
critical being: 1) the number of decision trees (ntree), which
determines the ensemble size in the run and influences the
classification stability; 2) the number of randomly sampled
variables as candidates at each split (mtry), controlling the
diversity of trees in the ensemble and preventing overfitting
(Immitzer et al., 2016). Based on the recommendations from
several studies, reported by Phan et al. (2020), we used the
default model parameters, which also proved to be the best
performing in this work. Specifically, the model was trained with
500 trees, while the number of the variables per split was set to the
square root of the total number of samples in each class.

For the training step of the RF machine-learning algorithm, an
iterative sample selection procedure (Teluguntla et al., 2018) was
implemented o refine the training dataset and improve classification
accuracy. The RF classifier was built using an initial training sample
dataset within the GEE platform. Then, both the training and
validation datasets were iteratively adjusted until an optimal
classification and accuracy outcome were achieved. To ensure
reliability, the classification results were visually compared to
high-resolution images from Google Earth. Furthermore, ground-
truth samples or visual assessments of historical satellite imagery
were performed for cases of hard interpretation. Having acquired a
high level of accuracy, the validation step was performed using the
independent validation dataset, ensuring that test samples were not
used in training. The classification was accepted after the Overall
Accuracy indices derived from the confusion matrix were, for
validation dataset, adequately high (80%), confirming a high
level of classification reliability.

2.8 Accuracy evaluation

The RF algorithm performance in correctly classifying a
random set of features (sample points) was measured by the

accuracy of the fourteen classification maps produced.
Therefore, once a classification was run, the accuracy of the
process was determined. As explained in Section 2.2, each of
the land cover map produced was then validated using a dataset
obtained from 20% of the total reference locations, via GEE. To
ensure the separation between train and test data, we used the
cross-validation procedure, in which each sample is included
exactly once in the test set and each sample in the test is not
used to train the classifier. The optimal tuning parameters percent
distribution was determined based on multiple percent
distribution of training data to evaluate the effects of different
parameter configurations on the performance of the classifier. The
definitive classification dataset created for this purpose includes
samples randomly selected for each land cover type. The cross-
validation comparison produces a table, the confusion matrix,
which contains the number of pixels classified correctly or
incorrectly in each class. The matrix allows the computation of
several accuracy metrics: Overall Accuracy (OA), measuring the
proportion of correctly classified pixels; Producer’s accuracy (PA),
evaluating how well reference (ground-truth) samples were
classified; User’s accuracy (UA), assessessing classification
reliability from a user perspective. The goal is to obtain not just
the higher OA, but also a good balance of PA and UA, ensuring
that classification performance was not biased toward dominant
land cover types. To depict the balance of PA and UA, the F-score
was calculated as a harmonic mean of PA and UA (Sokolova
et al., 2006).

The McNemar’s statistical test (McNemar, 1947) was applied as
an additional measure to compare the significance of difference
between classification results, with p-values lower than
0.05 regarded as significant.

The kappa coefficient (K) was deliberately excluded because its
use was recently discouraged in assessing land cover classification
accuracy (Foody, 2020).

Lastly a variable importance analysis was performed for all
spectral bands and indices, providing insights into which features
contributed most to the classification model. The result paragraph
are reported in Section 3.3.

3 Results

The land cover classification maps were produced from
remote sensing images using the Random Forest supervised
classifier, in a total of eight land cover classes. Besides the
single sensor RF-classification, using Sentinel-2, Landsat 8,
SAR satellite images and their combination, additional
variables such as normalized Indices were used both to map
land cover then to assess how they increase or decrease the
accuracy of the results.

An aggregated sample of the land cover classes surface is shown
in Figure 3. It illustrates that the majority of variations in the land
cover surface occurred after SAR processing, with the exception of
the classes characterized by the highest NDVI values such as winter
wheat, crops, and forest. The predominant land cover class was
crops, encompassing an average area of 73.38 km2, which
constituted 62.29% of the total study area. The data without
NI(s) were very similar in area for each dataset.
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3.1 Accuracy

Based on a dataset collection of 1,980 training samples and
512 validation samples, for 2,492 reference samples (Table 1), the
accuracy of classifications was characterized by the Overall
Accuracy (OA) always above 0.7773, except for S-1 data where
the accuracy score was 0.613 (Figure 4; Table 5). The numeric
values of Overall Accuracies index reported in Table 5, whose bar
chart is displayed in Figure 4, provide a significant insight into the
overall contribution of multi-sensor imagery to the LULC
classification quality. Also, Figure 4 shows the F-score
graphic bars.

OA increases from radar to optical images and with the
decreasing of the image pixel size (from Landsat OLI to
Sentinel-2). For classifications obtained using spectral
indices, the combination of the satellite imagery slightly
increases the statistical metrics, with the exception of S-2,
which shows an inverse trend, decreasing OA with NI(s)
(Table 5; Figure 4). The dataset that combined the complete
satellite imagery (S-1/S-2/L8) and NI(s) computation, achieved
the highest accuracy with OA = 0.8964 (Table 5a) and F-score =
0.7806, followed by the dataset combining the Copernicus
sensor data with NI(s), where OA = 0.8828 (Table 5a) and
F-score = 0.7768. In the investigated period, the cumulative

FIGURE 3
Acquaviva delle Fonti Municipal territory. Land cover classes surface derived from classification of satellite images and NI(s).

FIGURE 4
Classification accuracy (OA, Overall Accuracy; F-score = harmonic mean of PA and UA, NI(s), normalized spectral indices).
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number of images used demonstrated that a combination of
Landsat OLI, Sentinel-1, and Sentinel-2 performed better than a
single sensor. The accuracy increases with the increasing
number of bands used. The results illustrated in Figure 4 and
Tables 5a, b show that Sentinel-2 always had better accuracy
than Landsat 8.

Graphic and numeric reports of accuracy metrics do not hold
information on the classification of individual land cover classes.
Exhaustive details on LULC classes accuracies can be seen in Table 5,
reporting the Producer’s accuracy (PA), a percent index that
synthesizes the probability that a certain land cover on the
ground has been correctly classified on the map produced, and

TABLE 5 Class Producer’s and User’s accuracies of the different classification schemes with Normalized indices (a) and without Normalized indices (b).

(a) Producer’s accuracy (PA) User’s accuracy (UA)

Class 1 2 8 1/2 1/8 2/8 1/2/8 1 2 8 1/2 1/8 2/8 1/2/8

Built-up 0.73 0.85 0.92 0.90 0.92 0.92 0.96 0.84 0.68 0.80 0.86 0.86 0.80 0.90

Wheat 0.68 0.78 0.76 0.96 0.94 0.83 0.92 0.74 0.78 0.78 0.92 0.94 0.88 0.94

Forest 0.33 0.70 0.68 0.88 0.70 0.79 0.83 0.30 0.52 0.63 0.56 0.70 0.70 0.70

Bare soil 0.67 0.80 0.75 0.87 0.79 0.86 0.89 0.61 0.91 0.86 0.92 0.89 0.95 0.95

Crops 0.68 0.74 0.81 0.83 0.85 0.83 0.87 0.58 0.79 0.80 0.90 0.85 0.85 0.90

Highway 0.13 0.87 0.61 0.92 0.95 0.79 0.78 0.33 0.87 0.74 0.96 0.87 0.83 0.91

Plastic films 0.42 0.95 0.74 0.98 0.81 0.93 0.95 0.53 0.84 0.64 0.91 0.67 0.84 0.84

Photovoltaic 0.36 0.69 0.89 0.82 0.73 0.89 1 0.29 1 0.73 0.82 0.73 0.73 0.73

OA 0.613 0.797 0.7871 0.8828 0.846 0.8595 0.8964

McNemar test

S-1 S-2 L8 S-1/S-2 S-1/L8 S-2/L8 S-1/S-2/L8

S-1 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

S-2 39.71 0.49 <0.05 0.922 <0.05 <0.05

L8 4.79 0.48 <0.05 0.343 <0.05 <0.05

S-1/S-2 71.36 7.9 13.64 <0.05 0.87 <0.05

S-1/L8 46.87 0.01 0.9 10.29 <0.05 <0.05

S-2/L8 69.87 7.2 22.35 0.03 12.76 <0.05

S-1/S-2/L8 124.4 36.45 50.58 19.69 49 23.44

(b) Producer’s accuracy (PA) User’s accuracy (UA)

Class 1 2 8 1/2 1/8 2/8 1/2/8 1 2 8 1/2 1/8 2/8 1/2/8

Built-up 0.73 0.86 0.86 0.92 0.93 0.93 0.94 0.84 0.76 0.81 0.87 0.86 0.80 0.86

Wheat 0.68 0.78 0.78 0.94 0.94 0.84 0.92 0.74 0.80 0.76 0.90 0.96 0.86 0.94

Forest 0.33 0.78 0.63 0.87 0.76 0.70 0.79 0.30 0.52 0.63 0.48 0.70 0.70 0.70

Bare soil 0.67 0.82 0.74 0.86 0.78 0.80 0.79 0.61 0.91 0.83 0.95 0.88 0.89 0.94

Crops 0.68 0.74 0.82 0.83 0.83 0.81 0.89 0.58 0.77 0.81 0.88 0.87 0.85 0.90

Highway 0.13 0.83 0.69 0.92 1 0.74 1 0.33 0.83 0.78 0.96 0.74 0.74 0.91

Plastic films 0.42 0.95 0.72 0.98 0.76 0.86 0.89 0.53 0.84 0.58 0.89 0.64 0.69 0.69

Photovoltaic 0.36 0.73 0.78 0.83 0.80 0.89 0.89 0.29 1 0.64 0.91 0.73 0.73 0.73

OA 0.613 0.809 0.7773 0.8808 0.842 0.8242 0.873

Overall Accuracy (OA) of the different classification schemes is also reported. The most accurate values for each class are highlighted in bold and blue.

McNemar test for classification performed with Ni(s). Statistical values are on the left side of the diagonal, p-values on the right side. Significant differences with p-value < 0.05 are reported in

bold.

(1 = S-1, 2 = S-2, 3 = L8, 1/2 = S-1/S-2, 1/8 = S-1/L8, 2/8 = S-2/L8, 1/2/8 = S-1/S-2/L8).
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the User’s accuracy (UA), the ratio between the correctly classified
sites and the total number of classified sites.

PA and UA accuracies, with the exception of S-1, range between
0.61–1 and 0.48–1, respectively. The lowest Producer’s accuracy was
observed for highway class (0.61), after L8 classification with NI(s),
and the lowest User’s accuracy for forest (0.48), after S-1/S-
2 classifications without NI(s).

Table 5 shows that the highway class was mapped with the
highest PA (1) when the classification was based on S-1/L 8 and S-1/
S-2/L 8 scenes without Ni(s). The highest PA and UA (1) were
performed for the photovoltaic class using, respectively, S-1/S-2/
L8 with NI(s) and S-2. High values of PA (0.98) was calculated for
the plastic film class with Copernicus data combinations.

Although the use of normalized indices slightly increases the
Overall Accuracy of classification, except for S-2 (Table 5; Figure 4),
some deviations can be observed for the individual land cover types.
The crops type, which was the predominant class, took advantage
from using the complete set of optical and radar data when producer
and user accuracies, for that class, were 87% and 90%, respectively.
Built-up was better detected by the combination of radar and optical
data (with NI(s)), both for PA and UA perspective. Forest and bare
soil classes show the highest UA for classification performed
combining all sensors dataset and normalized indices. Winter
wheat PA best results were performed after the combination of
Copernicus (S-1/S-2) datasets and NI(s). Photovoltaic class reaches
the highest UA scores (1) for S-2 dataset, both with or without
adding NI(s). The highest PA score of bare soil class (0.89) was
achieved for S-1/S-2/L8 combination with NI(s), while the highest
UA (0.95) was performed several times: combining both optical data
(S-2/L 8) or radar and optical data (S-1/S-2/L 8) with NI(s),
combining Copernicus data without NI(s).

The statistical significance of the difference in OA between the
classifications performed with NI(s) was assessed using the
McNemar test, with p < 0.05 (Table 5).

Matrix of McNemar test showing the statistical significance of
differences between every classification pairs. The McNemar test
revealed that the difference between the classification using the S-1/
S-2/L8 and S-1 datasets were always statistically significant
(p-value <0.05) in every comparison. Lesser values of significance
were assessed for S-2/L8 when compared with S-1/S-2. Moreover,

the higher value of significance was detected between S-2 and S-1/
L8 classification (p-value = 0.922).

For the most accurate classifications (S-1/S-2/L8 and S-1/S-2),
the accuracy of each land cover class was compared, both
considering NI(s) (Figure 5). Differences in the producer’s
accuracies between the quoted datasets were less than 6.25 for all
classes, except for the photovoltaic and highway class, whose PA
differences were 18% and −17.95%, respectively. Differences in the
User’s accuracies were less than 8.35% for all classes, except for the
photovoltaic and forest classes, whose UA differences were −12.33%
and 20%, respectively.

In both land cover classifications, crops had the same UA value,
so the percentage difference accuracy was equal to zero and does not
appear in the UA chart (Figure 5). Built-up, bare soils, and crops,
were more accurately classified with the complete combination of
radar and optical datasets. Plastic films and highway classes were
better classified with the Copernicus dataset combination.

3.2 Classification maps

Figure 6 shows the LULC classification maps on three
example sites (A, B and C), performed with Sentinel-2
multispectral data (row 1), Sentinel-2 data combined with L 8
(row 2), with S-1 (row 3), and with S-1/L 8 (row 4), all with NI(s).
The classified maps are graphically very similar for each inset.
Border pixels between adjoining class types often show different
boundaries drawn depending on the different spatial resolutions
of source images and spectral contamination of pixels near
field edges.

A heterogeneous area with agricultural crops, bare soils, plastic
film covers, photovoltaic fields, and a highway is displayed in
(Figure 6A). All the classified maps detect the photovoltaic field
well, highlighted by the white circle, as well as the plastic films,
represented in light blue. The bare soil areas are correctly mapped by
every satellite combination. With S-2 classification (Figure 6 A1), a
bridge over the highway (with a white arrow) and an area inside bare
soil land (white square), were wrongly classified as built-up classes.
The multispectral combination between S-2/L 8 (Figure 6 A2) and S-
2/S-1/L 8 (Figure 6 A4) showed an increase of visual accuracy.

FIGURE 5
Difference in classification accuracy between Sentinel-1/Sentinel-2/Landsat 8 and Sentinel-1/Sentinel-2 for each land cover class, both with
normalized indices. The negative values represent a higher accuracy for the S-1/S-2 dataset.
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An urban area with its surrounding agricultural fields and bare
soil is displayed in (Figure 6B). The confusion of built-up class
(Figure 6 B1) was progressively reduced by the addition of a single

Landsat 8 (Figure 6 B2) or Sentinel-1 data (Figure 6 B3) to Sentinel-
2. Further reduction was performed by the addition of radar
(Figure 6 B4) to optical combination. This reduced confusion can

FIGURE 6
Comparison of three example sites (A–C)with S-2 (1), S-2/L 8 (2), S-2/S-1 (3) and S-2/S-1/L 8 (4) land cover classifications (Spatial resolution 10 m).
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be seen directly in the confusion matrices for the whole municipal
territory mapped (Table 6). High-density plantations (white arrows)
were classified as forests instead of crops in S-2 and S-2/S-1 maps
(Figure 6 B1 and B3). S-2/L 8 (Figure 6 B2) and S-2/S-1/L 8 (Figure 6
B4) were instead more accurate.

A less heterogeneous agricultural landscape, with crops, winter
wheat, bare soil, and forest covers, is represented in Figure 6C. Land
cover stands were well detected from every satellite single sensor or

multispectral combination. A misclassifying of built-up instead of
photovoltaic class was observed (white circle) in the Sentinel-2
derived map (Figure 6 C1). Here, each multispectral combination
considered showed an improvement of accuracy respect to the use of
S-2 (Figure 6 C2–C4).

In all the maps produced, an incorrect classification of built-up
as bare soil or crops can be attributed to the diffuse presence, in
several sites of the investigated territory, of outcropping rock.

TABLE 6 Confusion matrix of the RF validation samples performed for S-1/S-2/L8 band combination and NI(s).

Built-up W. wheat Forest Bare soil Crops Highway Plastic Photov. UA

Built-up 87 0 0 5 5 0 0 0 0.8969

Winter wheat 0 47 1 0 2 0 0 0 0.94

Forest 4 0 19 1 3 0 0 0 0.7037

Bare soil 0 0 0 125 4 2 1 0 0.947

Crops 0 4 3 6 114 0 0 0 0.8976

Highway 0 0 0 1 0 21 1 0 0.91

Plastic films 0 0 0 3 0 4 38 0 0.84

Photovoltaic 0 0 0 0 3 0 0 8 0.7273

PA 0.956 0.9216 0.8261 0.8865 0.8702 0.7778 0.95 1

PA, Producer’s accuracy; UA, User’s accuracy.

FIGURE 7
Sentinel-2 satellite image (a) and pixel-based Acquaviva municipality maps (b) with a 10 m classification map produced using GEE for optical
(Sentinel-2, Landsat 8) and radar (Sentinel-1) data.
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Figure 7 displays the LULC classification of the whole territory
of Acquaviva delle Fonti performed using S-1/S-2/L 8 band
combination, with normalized indices. The detailed insets

(Figure 7) and the whole territory classifications (Figure 7)
demonstrate a surprisingly smooth result of the classified LULC,
given that no prior segmentation technique was applied.

FIGURE 8
Spectral datasets: bands and NI(s) variable importance. (L8 = Landsat 8, S1 = Sentinel-1, S2 = Sentinel-2).
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3.3 Feature importance

The large amount of multi-source input predictors data required
a detailed assessment of single band importance for classification
efforts. Figure 8 displays the Gini importance (Breiman et al., 1984),
as standardized values, of the input features used for LULC
classification. This variable gives quantitative information about
the contribution of different bands to the Random Forest classifier
used. A specific predictor plays a significant role in the classification
when associated with a high Gini importance; instead, a low
importance means that a specific feature determines only limited
improvements.

For Sentinel-2 image (S-2), short wave infrared 2 band (B12) was
the highest performing band, fully in line with other studies
(Schuster et al., 2012; Immitzer et al., 2016), while red edge
3 band did not perform as well.

The near infrared band (B5) was the variable with less
importance in Landsat 8 classification, both as a single sensor
and combined with Sentinel-2 data (S-1/L 8 and S-2/L8). For the
S-1/L 8 bands combination, vertical visualization (VV) of C radar
data was the band with the higher contribution to detect LULC types
of investigated territory. The Sentinel-2 green band (B3) did not
perform as well for all optical and radar data combinations (S-1/S-
2/L 8).

The importance of the normalized difference indices was quite
different in the classifications performed. Green Normalized
Difference Vegetation Index (GNDVI) was the higher performing
band in optical combination (S-2/L8), even in combination with
radar data (S-1/S-2/L8).

Focusing on visible bands, it appears (Figure 8) that those bands
were unimportant in the Landsat OLI single sensor classification
(L8) and in all the classifications performed in combination with
that sensor data (S-1/L 8, S-2/L 8, and S-1/S-2/L 8), where the visible
bands of the Sentinel-2 sensor also did not perform as well.

For Sentinel-1 image, VV band performed a variable importance
slightly higher than VH band or VH and VV bands combination.

4 Discussion

In this work, we provided a versatile framework for LULC
mapping and evaluated its effectiveness in mapping a
heterogeneous territory in southern Italy. The resulting land
cover map has practical applications in Italian territory, serving
as valuable input for decision support to aid in planning and
management, investigating opportunities for agricultural
expansion and environmental needs.

The combined use of the Random Forest (RF) machine learning
algorithms and cloud platforms, such as Google Earth Engine
(GEE), confirmed to be useful tools for analyzing and processing
geospatial big data (Phan et al., 2020; Tassi et al., 2021; Sidhu et al.,
2018; Zurqani et al., 2018; Vizzari, 2022) and obtaining higher
accuracy in the pixel-based classification methodology (Wieland
and Pittore, 2014; Pan et al., 2022; Trujillo-Jiménez et al., 2022). To
further increase the accuracy of the results a data combination
methodology was adopted (Ye et al., 2014; Quan et al., 2020).
Specifically, single sensor data (S-1, S-2, L8) and different sensor
data combinations (S-1/S-2, S-1/L 8, S-2/L 8, S-1/S-2/L 8) were

tested in the study area. Moreover, three normalized spectral indices
(NDVI, GNDVI, NDBI) and a radar index (VHVV) were also used
to better emphasize vegetation reflectance signatures or reduce hill
shade and building shadows.

A statistical assessment of the results obtained was carried out
using splitted validation samples (Quan et al., 2020; Lanorte et al.,
2017; Chen et al., 2017), to verify the reliability of the final, pixel-
based LULC maps produced and to compare the accuracies of
different multi spectral/multi source datasets in land cover
classifying. Despite large areas of the territory being covered with
a heterogeneous mix of crops (legumes, vegetable, olive, orchards),
vegetation habitats and built-up settlements, and the complex mix of
transitions between different land cover types, Overall
Accuracy >80%, for a seasonally aggregated composite dataset,
was generally achieved.

We used indices and bands together because the datasets using
the NI(s)-only predictors obtained lower levels of accuracy than the
datasets using reflectance measurements. Although the spectral
indices are a useful way of analyzing vegetation covers or urban
settlements (Fan and Liu, 2016) and were successfully used in the
past, NDVI, GNDVI and NDBI did not work well alone as full
descriptors of optical imagery in characterizing a large variety of
LULC classes of the investigated territory. This could be due to the
reduction of the spectral bands processed to detect land cover when
those indices were used alone. Indeed, Yu et al. (2014) found a
positive linear correlation between the number of bands used in
classification and the classification accuracy for different, multi-
sensor dataset types.

The datasets that combined optical and/or radar data with the
normalized difference indices (NDVI, GNDVI, NDBI, VHVV) were
the most accurate (Zurqani et al., 2018; Vizzari, 2022; Quan et al.,
2020). The OA of the LULC classifications was significantly high,
reaching 0.8964, for the S-1/S-2/L8 data combination (Table 5).

The Sentinel-2 single-sensor datasets obtained higher accuracy
than Landsat 8 single-sensor datasets, with the OA about 80%. The
combined multi-sensor datasets obtained the most accurate LULC
classifications. The combination of Copernicus data with
normalized indices produced levels of accuracy only lower than
those obtained combining optical and radar data (S-1/S-2/L 8/).

The Sentinel-1 datasets obtained the worst accuracies (Table 5;
Figure 4). However, this work revealed the C band capability to
slightly improve the optically derived classifications based on the
high radar image frequency and the different polarization (Ye et al.,
2014; Quan et al., 2020). Winter wheat, crops, and built-up classes
experience advantages with the addition of SAR imagery, benefiting
both producer’s (PA) and user’s (UA) accuracies. In the case of built-
up areas, only the PA of the S-1/L8 combination, accompanied by
normalized indices (NI), remains unchanged. The classification of
plastic films exhibits a notable enhancement when C-bands are
introduced to optical imagery, except for the S1/S2/L8 combination,
where UA remains unaffected.

Table 7 summarizes the qualitative variations, from producer’s
and user’s perspective, performed by optical dataset after adding
Sentinel-1 data.

The RF supervised classification accurately delineates the urban
and industrial settlements, a hospital area, and nearly the individual
buildings scattered throughout the territory (Figure 7). The
anthropic interventions such as plastic films, used for vineyard
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crop protection, and photovoltaic fields were correctly delineated
(Malof et al., 2016; Sun et al., 2021). Moreover, the highway was
accurately distinguished and good capability in discriminating
crops, winter wheat, and bare soil classes was observed (Tran
et al., 2022). Visually, the most accurate pixel-based LULC final
map of the study area (Figure 7b), based on visual interpretation and
comparison with the Sentinel-2 composite satellite image
(Figure 7a), is noiseless and well-defined. In line with the Löw
et al. (2013) findings, the number of RF decision trees was set to a
relatively high number of 500, after testing the importance of this
parameter by changing it, whereas other parameters were
set the same.

A confusion matrix was generated to assess misclassification
errors in land cover classification. Several factors contributed to
misclassification, including mixed pixels in heterogeneous
landscapes, spectral similarities between different classes,
differences in spatial resolution among sensors, algorithmic
constraints, and atmospheric interference. Additionally, variations
in land cover phenology may have led to temporal inconsistencies,
particularly in classes with seasonal vegetation.

From the confusion matrix (Table 6), it became apparent that
specific confusion occurred between built-up and bare soil or crops
(Bhatti and Tripathi, 2014). The irregular presence, in the study area,
of un-vegetated outcropping bedrocks, which the satellite sensors
detect as built-up structures may have generated this issue. Forest
was well classified, even taking into account the confusion with the
built-up class due to the urban parks. Highway and winter wheat had
the lowest degrees of misinterpretation, while bare soil and crops
had the highest ones due to their territorial heterogeneity. Some
photovoltaic panels present in crops generated confusion between
these classes.

The key to obtaining satisfactory classification results is the
quality of the reference data selected (Congalton et al., 2014). In this
work, both the training and the validation samples were kept
constant for each input dataset, while the ground true points
control was based on visual interpretation of high-resolution

satellite images or, in case of misinterpretation, after in situ
recognition. Several studies have obtained high classification
accuracy in territories less heterogeneous than the Acquaviva
municipality, characterized by few land cover classes more easily
detected by a remote sensing approach, due to their almost univocal
spectral signature (Carrasco et al., 2019).

In summary, the GEE platform enabled high-speed analysis of a
large dataset freely available for research, using parallel processing on
remote servers that allowed the combination of data from multiple
sensors without the preliminary finding and downloading steps.
Furthermore, the GEE routines can combine optical images to
detect the best cloud-free pixels to create full cloud-free images
(Kumar and Mutanga, 2018); this was a helpful approach, in this
work, to assess a great number of images for accurate classification
and provided an acceptable representation of all LULC classes
(Tamiminia et al., 2020; Shafizadeh-Moghadam et al., 2021).

The RF supervised classification provides flexibility in the
modeling process for combining multi-source data types with the
aim of accurately classifying the territory of Acquaviva delle Fonti.
Particularly, this study shows the potential of the combined use of
optical and radar imagery for LULC classification of agricultural
areas characterized by a heterogeneous land cover. Unlike the case of
landscapes with clearly distinguishable land cover categories such as
water, forest, bare soil, and built-up areas, here the LULC types were
numerous and very fragmented, even within the individual classes.
The forest type includes both coniferous and broadleaf trees. The
latter, mainly deciduous oaks, can be easily misclassified as fruit
trees, just like the fruit trees of the crops class. Crops, the class with
the largest surface, was indeed characterized by various
combinations of agricultural crops differently organized: fruit
trees (Cherry, Almond, Olive, etc.) over annual crops (legumes,
vegetables), annual crops without fruit trees and vice versa. Plastic
films were of different colors and shape, sometimes completely
covering the soil and sometime partially. The performed
classifications seem overcome the misclassification errors,
detecting with an appropriate accuracy the LULC stands.

TABLE 7 Qualitative variation of land cover classification after adding SAR data.

With NI(s) Without NI(s)

PA UA PA UA

Class 1/2 1/8 1/2/8 1/2 1/8 1/2/8 1/2 1/8 1/2/8 1/2 1/8 1/2/8

Built-up + = + + + + + + + + + +

Winter Wheat + + + + + + + + + + + +

Forest + + − + + = + + + − + =

Bare soil + + + + + = + + − + + +

Crops + + + + + + + + + + + +

Highway + + − + + + + + + + − +

Plastic films + + + + + = + + + + + =

Photovoltaic + − + − = = + + = − + =

OA + + + + + +
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Finally, this work, confirmed that increasing the number of
bands leads to a greater ability to capture complementary
information on the spectral and structural characteristics of land
cover types. Data combination is an effective methodology which
could improve the accuracy of the results (Ye et al., 2014; Quan et al.,
2020) especially considering heterogeneous landscape.

In addition to assessing the effectiveness of combining radar and
optical data on land cover mapping, the methodological
contribution of this study also concerns the following topics:
Time period selection; Multi-temporal remote sensing data;
Median composite approach; Supervised pixel selection; Random
Forest classifier; Training and validation dataset; Cross-validation of
classification; Variable importance analysis; Multiple accuracy
assessment (OA, PA, UA, and F-score); Statistical significance
(McNemar’s test); High accuracy threshold (≥80%).

The increasing accuracy of the results could also improved by
detecting land features at different times (Lopes et al., 2020) and could
be the subject of future studies such as area estimation and accuracy
assessment of land change by using Olofsson et al. (2013); Olofsson
et al. (2014) procedure. To mitigate misclassification, future work
could apply post-classification refinement techniques such as majority
filtering. Another suggestion for future works involves the object-
based approach integrated with the Gray-Level Co-occurrenceMatrix
(GLCM) to extract textural index statistics and applying Simple Non-
Iterative Clustering (SNIC) to identify spatial clusters.

5 Conclusion

The LULC classification of the complex environment by means of
remote sensing images is challenging due to the extreme fragmentation
of the different land uses such as rural buildings, roads, plastic films
(Hurskainen et al., 2019). Another issue is represented by the huge
amount of data which needs high-powered processing resources
(Scheip and Wegmann, 2021; Amani et al., 2020).

This study has analyzed the potential of multi-sensor imagery and
normalized derived indices to characterize and detect LULC in small-
scale areas dominated by heterogeneous land use and frequent cloud
cover. Using S-1, S-2, and L8 imagery for land cover mapping, the
accuracy of single-sensor dataset versus multi-sensor dataset
was provided.

The results indicate that optical and radar data combination (S-
1/S-2/L 8) approach performed higher LULC overall classification
accuracy (OA) than a single-sensor (S-1; S-2; L 8) approach and
when normalized spectral indices were added to the combination.

Datasets only based on SAR images performed the lowest
accuracy levels, whereas combined datasets (S-1/S-2/L8 or S-2/
L8) outperformed one-sensor datasets.

The pixel-based classification, performed using the complete
dataset combination with an RF classifier, achieved the highest
Overall Accuracy score of 89.64%. The most accurately classified
land cover classes were photovoltaic, plastic films, built-up, and winter
wheat with producer’s accuracies higher than 96% and all class-
specific accuracies (PA and UA) were generally higher than 75%.

Pixel-based image analysis faces some limitations. Firstly, image
pixels do not perfectly represent real geographical objects, and their
topology is constrained. Secondly, this approach tends to overlook
spatial photo-interpretive elements like texture, context, and shape.

Lastly, the heightened variability present in high spatial resolution
imagery can confound pixel-based classifiers, leading to reduced
classification accuracies.

Enhancing classification accuracy commonly involves
augmenting the number of training samples. Nonetheless, users
are constrained to utilize only a specific quantity of samples within
classification methods (Vuolo et al., 2018).

Despite data processing and classification limitations, the
integration of optical (Sentinel-2 and Landsat 8) and SAR
(Sentinel-1) data captures complementary information on the
spectral and structural characteristics of land cover types. In
general, a higher number of bands resulted in a higher level of
classification accuracy. The framework presented in this study, will
of interest to improve land cover dynamic studies, such as
hydrological modeling or land consumption in complex and
fragmented environments along all the regional and national territory.
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