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Ecosystem services provided by forests are increasingly threatened by
anthropogenic and climatic disturbances. International initiatives to reduce
greenhouse gas emissions from forest disturbances, such as Reducing
Emissions from Deforestation and Degradation+ (REDD+), require robust
quantifications of the dynamics and extent of Land Use/Land Cover (LULC).
However, no study present yet a comparative synthesis of existing LULC products
and long-term landscape evolution on the Pacific Slope and Coast of Ecuador
(EPSC). In addition, previous studies on the evolution of the forest cover in the
EPSC were achieved on small regions and short time-scales, never analysing
before the 1990s. In this context, we conducted a long-term study of landscape
dynamics at the scale of the EPSC on the last 6 decades (1960-2019). In addition,
we propose a comparative synthesis of the main land use databases from remote
sensing. To do this, we compared six LULC databases (HILDA+, ESA-CCI, MODIS,
GLCLUC, TMF, GFC) derived from remote sensing using the Ecuadorian Ministry
of Environment and Water (MAATE) LULC dataset as a reference. This comparison
was performed with confusion matrices. Three metrics are calculated from the
confusion matrices: Accuracy, F1-score and MCC. HILDA+ and TMF products
showed the best agreement with the MAATE map (F1-score of 0.63 and 0.65,
respectively). HILDA + captured net forest cover losses better than TMF (65% vs
27% of the net losses recorded by MAATE). Of the six databases analysed, HILDA+
was identified as the product with the best correlation with the Ministry’s LULC
maps. Therefore, HILDA+ was chosen to analyse deforestation since 1960 in the
EPSC. The major limitation encountered using HILDA+ is the coarse spatial
resolution of 1 km. Yet, four deforestation phases were identified in the EPSC
over 1960-2019. They reflect the historical, social, political, and climatical
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context of each ecosystem. Over the entire period (1960-2019), forest cover
decreased by 43.9%. Since the 1960s, tropical rainforest areas declined by a
third. Dry and transitional tropical forests lost more than half their area.

KEYWORDS

deforestation, landscape, tropical forests, spatio-temporal dynamics, long term, remote
sensing, anthropogenic and climatic disturbances, Pacific slope

1 Introduction

Forests provide numerous ecosystem services such as climate
and water regulation, erosion prevention and carbon storage (Daily,
1998; Krieger, 2001; Garcia-Nieto et al., 2013). However, forest
ecosystems are threatened by anthropogenic pressures, leading to
land use changes and promoting deforestation (Barlow et al., 2016),
with multiple consequences such as species extinction (Whitmore
and Sayer, 1992; Giam, 2017), emissions of carbon and other
greenhouse gases (Eva et al., 2012), soil erosion and consequent
loss of organic matter (Ochoa-Cueva et al,, 2015). Forests are also
affected by climate change and subject to extreme weather events
(Franga et al., 2020) that generate climatic stress for trees (Anderegg
et al.,, 2012; Scholze et al., 2006) and that disrupt the ecological
functions of forest ecosystems. On a global scale, between 1990 and
2020, forest cover decreased from 32.5% to 30.8% of total land area
(UN  Environment Programme and Food and Agriculture
Organization of the United Nations, 2020). The greatest losses
occurred in South America and Africa. In South America,
Ecuador has the highest rate of deforestation (Mosandl et al.,
2008; Armenteras et al,, 2017), and the forests located on the
Pacific Slope and Coast of Ecuador (EPSC) are the most
threatened by deforestation and are considered a biodiversity
1988). On the EPSC, the anthropogenic
pressures responsible for deforestation are mainly linked to the

hotspot  (Myers,
conversion of forest to cropland. According to the Land Use/Land
Cover (LULC) map of the Ministry of Environment and Water of
Ecuador (MAATE) in 2022, 73.9% of cropland was on the EPSC.
Climatic disturbances are mainly linked to the ENSO phenomena,
which cause extreme flooding and drought in the EPSC (Vicente-
Serrano et al., 2017).

In this context, international initiatives such as the Reducing
Emissions from Deforestation and Forest Degradation (REDD+)
project (Matthews et al., 2014), whose main objective is to reduce
greenhouse gas emissions linked to deforestation (Goetz et al., 2015),
have showed the importance of better quantifying the process of
forest dynamics in tropical zones. REDD+ was implemented
nationally in Ecuador through the “Bosques para Buen vivir”
plan (MAATE, 2017). Through this project, MAATE expressed
the importance of having a long-term monitoring of
deforestation process and provided eight national LULC maps
between 1990 and 2022.

Studies comparing land use and land cover databases in South
America mainly focus on emblematic regions such as Brazil (Souza
et al., 2020), the Amazon basin (Ometto et al., 2016; Neves, A. K.
et al., 2020) or even the Gran Chaco (Graesser et al., 2022; Baumann
et al,, 2017; Fehlenberg et al., 2017). These studies were generally
based on the use of the main LULC products available at continental
or global scales, such as MapBiomas, Global Forest Change, MODIS
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Land Cover, ESA CCI Land Cover or PRODES. The study of
deforestation in South America therefore focuses on these key
regions. In the Brazilian Amazonian, Wagner et al. (2022) used
high-resolution images (5 m, Planet NICFI) and a U-Net network to
map tree cover loss in the state of Mato Grosso between 2015 and
2021, revealing an increase in deforestation and significant
discrepancies with the Global Forest Change data. Blaschke et al.
(2023) shows a weakening of the resilience of the Amazon rainforest
based on spatial trends in optical/radar satellite data. In the Peruvian
Amazon, Mostiga et al. (2024) estimate a loss of 3.4 M ha between
2000 and 2020. In the Andes and their foothills, although less
documented than in the Amazon, studies particularly in dry eco-
regions and high altitude areas. For example, Rodriguez-Echeverry
(2023) report a 45% loss of inter-Andean dry forest in the Rio Chota
watershed between 1991 and 2017, an annual deforestation rate of
2.3%, mainly due to agricultural expansion. Finally, Juarez et al.
(2024) identify rainfall (41%) and temperature (20%) as the main
factors of deforestation in the Peruvian Andes between 2000 and
2020, while highlighting the permanent role of agriculture as an
underlying engine. An intensification in LULC changes, and
especially deforestation, was observed in Piura Basin, Peruvian
Pacific slope, due to the intensification of climate extremes
between 2012 and 2022, compared to 2001-2011 (Castillon,
et al, 2025). The study by Romero-Mufoz et al. (2020) shows
that deforestation, combined with hunting, affects 40% of the area of
the South American Chaco, with strong synergistic consequences on
biodiversity (increased habitat loss, increased human pressures)
Ecuador remains relatively little studied, particularly on the
entire Pacific slope, where work comparing data sets is rare. One
of the only studies covering this territory is that of Ferrer Velasco
et al. (2022), which highlights major discrepancies between
databases in regions of piedmont and humid tropical coastal forests.

The studies by Sierra et al. (2021) and Gonzélez-Jaramillo et al.
(2016) at national level agree in identifying the coastal biome as the
most affected by deforestation compared to the Andean regions and
the Amazon basin. The study by Sierra et al. (2021) used national
LULC maps of MAATE and showed that, in 2018, coastal forests had
retained only 27% of their original area in 1990. The analysis showed
that the five most threatened and least well-preserved forest
ecosystems are located on the coast. The analysis by Gonzélez-
Jaramillo et al. (2016) of NOAA-AVHRR images acquired on three
dates: 1986, 2001 and 2008, has identified the coastal biome as the
area most affected by deforestation, with forest cover falling from
15.2% to 1.9%. Other studies focused on specific areas of the EPSC.
Rivas et al. (2021), focused on the seasonal dry forests of the coastal
biome and showed that only 27.04% of their original area remained
in 1990. This latter study showed that semi-deciduous forests
present the highest levels of fragmentation and require more
effective protection. These fragmentation processes and their
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consequences for biodiversity were studied by Rivas et al. (2024)
which explains why global forest connectivity fell from 25% to
13.69% between 1990 and 2018. Kleemann et al. (2022) highlighted
the spatial patterns of deforestation in and around protected areas
on the scale of continental Ecuador and showed that 25.5% of total
deforestation between 1990 and 2018 took place around protected
areas (up to 10 km around) and that the areas in the immediate
vicinity (5 km) of areas with a high level of protection were the most
affected. Other studies focused on small areas in specific regions of
the south or north of Ecuador. Tapia-Armijos et al. (2015) analysed
deforestation in the provinces of Loja and Zamora Chinchipe over
3 years 1976, 1989 and 2008. The study found a 46% loss in the
original forest cover in southern Ecuador in 2008. Sierra and
Stallings (1998) analysed the dynamics of deforestation in
northwestern Ecuador between 1983 and 1995 and found that

the forests in this region could disappear completely
within 30-35 years.
Thus, previous studies show that few have analysed

deforestation at the scale of the EPSC and that they have
generally focused on small specific areas. Previous studies based
on MAATE LULC maps do not analyse deforestation before the
1990s. In addition, most remote sensing studies that monitor forests
in EPSCs are based on satellite images taken in a few specific years
and that do not allow us to go back before the 1980s. The previous
studies do not present a continuous monitoring of the deforestation
process. These studies do not present a continuous analysis over
time and over the long term of the deforestation process at the scale
of the EPSC. None of the previous studies provides a comparative
synthesis of existing land use products.

In this study, we propose the first comparative synthesis of six
existing land use products at the EPSC scale. Unlike previous studies,
we can analyse the deforestation process with an annual temporal
resolution from the 1960s, whereas most studies only go back to
the 1990s.

Here, we reconstructed the landscape dynamics over 6 decades
(1960-2019) by analysing forest cover evolution with an annual time
resolution at EPSC scale. We have established the different spatio-
temporal dynamics of the deforestation process at the scale of
bioclimatic zones. We have recontextualized the deforestation
process in the political, social, economic and climate context to
better understand the impacts of disruptive events (anthropogenic
and climatic) on forest ecosystems. We used Hlstoric Land
Dynamics Assessment+ (HILDA+), a long-term remote sensing
product validated with MAATE reference LULC data.

2 Study area

Ecuador (81.03°W-75.16"'W, 1.48°N-5.04"S) is located in the
north-west of South America, between Colombia and Peru. The
country is composed of three main regions: the Pacific coast to the
west (Costa) and the Amazon plain to the east (Oriente), separated
by the Andes Mountains (Sierra). The Sierra region is bordered by
two main chains separated by the inter-Andean zone characterized
by several valleys in which the capital of Ecuador, Quito is located.
The topographical and climatic characteristics of these different
regions influence the spatial distribution and type of forest cover. In
2022, the Amazon basin, home to tropical rain forests, accounted for
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76,4% of the country’s forest cover according to the MAATE (http://
ide.ambiente.gob.ec/mapainteractivo). The rest of the forest cover is
mostly located in the Pacific slope and coast of Ecuador (EPSC)
considered a biodiversity hotspot (Myers, 1988).

Our study area is the EPSC which extends from the Pacific
Ocean to the Andean foothills on an area of ~116,436 km?, covering
47% of the Ecuadorian territory. In 2022, according to the MAATE,
59,6% of the EPSC is occupied by agricultural land, and forest cover
represents 24,7% (Figure la). In the EPSC, large bioclimatic
differences are responsible for a wide diversity of landscapes and
ecosystems (Figure 1b). The coastal region is delimited on the
western part by the low altitude Coastal Cordillera (1° N to 2° S,
with a maximum altitude of 860 m. a.s.l) and is exposed to dry
climatic conditions with annual rainfall below 600 mm/year (Erazo
et al., 2018). It is predominantly covered with tropical dry forests,
but also deciduous and semi deciduous forests (Diertl, 2010).
Around the Andean foothills, rainfall can reach 2,000 mm/year
and the rain-fed bioclimate is home to tropical rainforests, with
evergreen forests stretching to the north of the country. Beyond the
foothills of the Andes, at the highest altitudes, forest cover gives way
to paramo vegetation, an ecosystem of tropical alpine grasslands
characterized by shrub communities. In the north of the country, at
altitudes above 4,000 m. a.s.], there is grass-paramo vegetation. To
the south, the tree line is at an altitude of over 2,500 m. a.s.], above
which lies shrub-paramo vegetation. This difference is due to the
Andean depression located between southern Ecuador and northern
Peru (Richter, 2003).

3 Materials and methods
3.1 Datasets

3.1.1 Earth observation-based products

Four LULC and two forest cover change products were selected
for this study as they offer global spatial coverage, a medium (1 km-
300 m) to high (30 m) spatial resolutions and a long-term temporal
coverage (longer than 20 years). Most of them are available at a
temporal resolution of 1 year. All databases are freely available. The
characteristics of the products are summarized in Table 1.

Two types of data are available: Land Use/Land Cover (LULC)
maps HIstoric Land Dynamics Assessment+ (HILDA+), ESA
Climatic Change Initiative Land Cover (ESA-CCI LC), Moderate
Resolution Imaging Spectroradiometer (MODIS) Land Cover Type,
Global Land Cover and Land Use Change (GLCLUC) and forest
cover change maps Tropical Moist Forest (TMF), Global Forest
Change (GFC). All of them include Earth Observation (EO) data,
mostly originating from multispectral images but also from LiDAR-
derived canopy heights derived from GEDI in the case of GLCLUC
(Potapov et al., 2022). HILDA + results from the combination of
multi-source land cover databases and FAO statistics (Winkler et al.,
2021). The products are based on supervised classification
approaches, except ESA-CCI LC which is
unsupervised classification. For the four LULC databases, the

based on an

number of land use classes ranges from 6 to 110. ESA CCI and
MODIS distinguish between different types of forest cover
(Evergreen Needleleaf/Broadleaf Forests, Deciduous Needleleaf/

Broadleaf Forests, Mixed Forests). GLCLUC distinguishes
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(a) LULC for the year 2022 (MAATE) in the EPSC, delineated in red, in the west of Ecuador. (b) Forest characteristics differ according to three
bioclimatic zones ranging from dry tropical to humid tropical climate. EPSC encompassed 16 provinces of the 24 of the country.

between tree heights. For the other two forest cover change
databases, TMF provides information on the different types of
disturbance (deforestation and degradation) experienced by the
forest canopy on an annual basis (Vancutsem et al., 2021), while
GFC provides information on canopy loss and gain relative to the
initial tree canopy (Hansen et al, 2013). All the databases use
different definitions to define forest cover. The tree heights and
percentages of tree cover used to characterize forest cover differ from
one database to another. In this study, we will try to align as much as
possible with the FAO definition of forest. The FAO defines a forest
as land with more than 10% tree cover and trees at least 5 m high
(Chazdon et al., 2016).

3.1.2 Reference LULC dataset

In the present study we used as a reference the land use maps
produced by the Ecuadorian Ministry of the Environment are
derived from Landsat satellite images (Landsat TM, Landsat
ETM+) before 2008 and the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) after 2008 at a
spatial resolution of 30 m. These LULC maps are available for
8 years (1990, 2000, 2008, 2014, 2016, 2018, 2020 and 2022). For
each year, satellite images from the previous year can be used to
reduce the areas where no information is available due to the
presence of clouds. Land wuse maps are generated using
ISODATA automatic unsupervised classification (MAATE, 2017).
Field work and visual editing of land-use maps made by MAATE
correct classification problems. Level 1 describes six types of land
use: forest, shrubland, agricultural land, urban, water and other land.
The data is provided in Shapefile format at scale 1:100,000 (MAATE,
2017). The Ministry defines a forest as a plant or cultivated
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community larger than lha tree cover and with trees over 5 m
tall. The MAATE maps were used as a reference because the maps
produced were validated and corrected by field data. The accuracy of
the MAATE LULC maps was estimated using using the kappa index.
An average value of 0.7 was obtained for the whole set of maps. The
final

mapainteractivo.

product is available at: http://ide.ambiente.gob.ec/

3.2 Methodology

The general method of our analysis is organized in four parts:
reclassification of all databases as two classes Forest/No Forest (F/
NF), comparison of EO-based products with the MAATE reference
maps, production of confusion matrix and associated metrics and
validation of selected EO-based products through analysis of forest
cover losses (Figure 2).

3.2.1 Reclassification of databases as forest/
no forest

We classified all the different EO-based products and the
MAATE database, used as LULC reference, into two categories:
Forest vs No-Forest. The goal is to homogenize the classes, since
initially the number of classes is different, so that the products are
comparable (Vancutsem et al., 2012; Pérez-Hoyos et al., 2017). For
each year, we defined as Forest, all forest categories as initially
defined in each product, all other land use categories being defined
as No-Forest. Specifically, for GFC, we reclassified the initial Tree
Cover (year 2000), considering as Forest pixels the pixel with a tree
cover percentage >10% and No-Forest the rest of the pixels. The

frontiersin.org
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TABLE 1 Characteristics of land use and forest cover change databases derived from remote sensing products and used in this study.

Database HILDA + ESA - CCI MODIS GLCLUC TMF GFC
Historic land Land Land cover  Global land cover Tropical Global forest change
dynamics cover type and land use moist
Assessment+ times- (MCD12Q1) change forest
series
Type of data LULC LULC LULC LULC Annual Change Forest
Collection Cover
Change
Spatial 1000 m 300 m 500 m 30 m 30 m 30 m
resolution
Spatiale global global global global pantropical global
coverage
Temporal annual annual annual 5 years annual annual
resolution
Temporal 1960-2019 1992-2020 2001-2022 2000-2020 1990-2022 2000-2022
coverage
Sensors combination of remote AVHRR, MODIS Landsat Landsat Landsat
sensing LU/LC databases MERIS GEDI
and statistics (FAO) SPOT-VGT,
PROBA-V
$3-OLCI
Method supervised classification unsupervised supervised supervised classification supervised supervised classification
classification classification classification
Number of 6 36 17 110 6 2
classes

Definition of Tree cover 10% Tree cover 15% Tree cover 10%

Height between Tree cover >50% = Tree cover between 0% and 100%

forest Height 5 m 3 and <25 m
Reference Winkler, K., Fuchs, R., ESA. Land Sulla-Menashe, D Potapov, P et al., 2022. C. Vancutsem, M. C. Hansen et al., High-
publication Rounsevell, M. et al. Cover CCI and Fried,M. The global et al. Long-term  Resolution Global Maps of 21st-

MODIS Collection
6.1 (C61) Land

Product User
Guide Version

Global land use changes
are four times greater

2000-2020 land cover and
land use change dataset

(1990-2019)
monitoring of

Century Forest Cover
Change.Science342,850-853

than previously 2. Tech. Cover Type Product | derived from the Landsat = forest cover (2013).DOI:10.1126/science.
estimated. Nat Commun Rep. (2017) User Guide archive: first results. Front. | changes in the 1244693
12, 2,501 (2021) Remote Sens. 3: 856,903 humid tropics.
Science Advances
2021
Web address https://doi.pangaea.de/ https://cds. https://appeears. https://storage.googleapis. | https://forobs.jrc. | https://storage.googleapis.com/
dataset 10.1594/PANGAEA. climate. earthdatacloud.nasa. | com/earthenginepartners- ec.europa.eu/ earthenginepartners-hansen/
download 9218462format= copernicus.eu/ gov/task/area hansen/GLCLU2000- TMF/data GFC-2023-v1.11/download.html
html#download cdsapp#!/ 2020/v2/download.html

dataset/satellite-
land-cover?tab=
form

output is a Forest/No-Forest mask for the year 2000, which is
updated for each year by subtracting the tree cover losses for that
year, resulting in a reclassified F/NF map for each year. For
GLCLUC we consider Forest pixels the pixels with a tree
height >5 m. These choices of classifications for the GFC and the
GLCLUC are explained by the decision to align as closely as possible
with the FAO definition of forest.

3.2.2 Comparison of EO-based products with the
MAATE reference databases

From the MAATE LULC reference database, two polygons
Forest and No-Forest are selected and extracted, to create two
distinct F/NF layers. We then perform an extraction of each pixel
for each EO-based product based on the F/NF layers of the MAATE
reference database. Each pixel is extracted according to the F or NF
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layer in which its centroid is located. This step is carried out for the
six EO-based product and for each of the available year. Each
database therefore retains its spatial resolution.

3.2.3 Confusion matrix and associated metrics

To measure the robustness of the EO-based products, we
produced confusion matrix for the 8 years of data (1990, 2000,
2008, 2014, 2016, 2018, 2020, 2022) common to the EO-based
product studied and the MAATE product (Congalton and Green,
2008; Olofsson et al., 2014; Phillips et al., 2024). The outputs of
the confusion matrices are: True Positive (TP), False Negative
(FN), True Negative (TN) and False Positive (FP) (see
Supplementary Figure 1). When the pixels in EO-based
products contained in MAATE Forest layer are classified as
Forest, they are labelled TP, otherwise they are labelled FN.
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STEP 2 : Comparison of EO-based
products with the MAATE reference

STEP 3 : Confusion matrix and associated metrics

STEP 4 : Validation of selected EO-based products
through analysis of forest cover losses

ol

matrices are used to calculate the associated metrics: (1) The
accuracy, (2) the Fl-score and (3) the Mathew Correlation

Coefficient (MCC).
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T =
Y = TP Y TN + FP + FN
2.TP
Fl-score= ——————
2-TP+FP+FN
TP-TN - FP-FN
MCC =

V(TP +FP)- (TP+EN)- (IN + FP)- (IN + EN)

While Accuracy is commonly used to evaluate the performance
of a classification model, the F1-score and MCC metrics provide
additional information when classes are unbalanced. In our case,
No-Forested areas outweighed Forested areas. However, the F1-
score can reach a limit in cases of extreme imbalance, as it does not
consider true negatives (TN). The Fl-score is defined as the
harmonic mean of precision (TP/(TP + FP)) and recall (TP/(TP
+ FN)), and focuses on the model’s performance with respect to the
positive class, ignoring true negatives. As a result, this metric can be
biased in the presence of class imbalance, especially when the
MCC
incorporates all components of the confusion matrix (TP, TN,

positive class is underrepresented. In contrast, the
FP, FN) into a single correlation-based formula, allowing it to
measure the overall consistency between predictions and true
labels, regardless of class distribution. Therefore, MCC is more
robust to class imbalance and provides a more reliable evaluation
of the model’s overall performance, especially in multi-class or
highly imbalanced scenarios (Chicco and Jurman, 2020; Luque
et al., 2019). The MCC metric is more robust to imbalances. At

the end of this step, two databases are selected: HILDA+ and TMF.

3.2.4 Validation of selected EO-based products
through analysis of forest cover losses

Confusion matrices were used to validate the spatial distribution
of forest cover. The final step was to quantitatively evaluate the
remote sensing products selected from the confusion matrices on
forest cover loss. Net losses are shown in diagram form. This
quantitative comparison between the remote sensing products
selected and the MAATE led to the selection of HILDA+. We
will analyse the deforestation process with HILDA+, and we will
therefore use the definition of Forest provided by HILDA+, which is
based on the FAO definition.

3.2.5 Identification of changes in the dynamics of
forest cover obtained with HILDA+

In order to identify the changes in forest cover dynamics
obtained with HILDA+, we analysed the annual time series
expressed as forest area (km?). We applied a local linear
regression with a sliding window of 7 years, allowing to estimate
the local slope of the forest trajectory at each date. The slope of this
regression, expressed in km’/year, is an estimate of the first
derivative of the series, i.e., the annual rate of change in forest
cover (Verbesselt et al., 2010). It allows the local characterization of
the intensity of the loss (more or less strong negative slope) or the
relative stability of the cover (slope close to zero). The changes in
slope from 1 year to another, obtained by calculating the difference
between two successive slopes, correspond to the second derivative
of the series. This second derivative provides information on trend
variations in the forest trajectory, particularly by identifying
accelerations, slowdowns or breaks in deforestation processes
(Verbesselt et al., 2010). Years in which this slope change exceeds
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a predefined threshold (85th percentile) are considered significant
breaks in canopy evolution. These breaks were then grouped when
they were less than 5 years apart, and the three most marked events
were selected. This approach allows for the robust identification of
tipping points in forest cover change, taking into account not only
the trend but also its inflections. This approach makes it possible to
mathematically detect key moments of change in the forest
trajectory, whether they are accelerations, slowdowns or trend
reversals (Supplementary Figure 2).

4 Results

4.1 Accuracy assessment of the different
EO-based products

The metrics associated with the confusion matrix (Figure 3)
allow us to analyse accuracy, Fl-score and MCC, and to guide the
analysis by selecting the best-performing databases. The databases
with the highest accuracy are HILDA+ and TMF, with values
between 0.75 and 0.82 and between 0.75 and 0.78 respectively. In
2018, HILDA + correctly classified 82% of instances. In contrast, the
MODIS database displays the lowest accuracy values, correctly
classifying between 40% and 42%
2008-2020 period. Accuracy values of all database range between
0.4 and 0.65. The highest F1-score is displayed by HILDA+, varying
between 0.61 and 0.64. In contrast, the lowest is displayed by
MODIS, which ranges from 0.44 to 0.47. Analysing the MCC
metric, we can see that the highest values displayed by HILDA +
are between 0.45 and 0.5. TMF also has an MCC close to that of
HILDA+, with values between 0.43 and 0.45. Those for MODIS vary
between 0.18 and 0.19. The MODIS values show a strong difference
between F1-score and MCC, with Fl-score values twice as high as
MCC values. If the MCC is much lower than the F1-score, this may
indicate that the model has a problem with True Negatives or

of instances over the

False Positives.

Following this initial spatial analysis with confusion matrices
based on Forest cover and No-Forest cover, we selected the
databases used for a more precise analysis of forest cover gains
and losses. The chosen databases are HILDA+, which has a low
spatial resolution but goes back to the 1960s, and TMF, which has a
more precise spatial resolution but goes back to the 1990s.

4.2 Comparison of deforestation between
HILDA+/TMF and MAATE

To validate the two EO-based products selected, we carried out a
second analysis that showing the loss of forest cover over the whole
period for HILDA+ and TMF compared with MAATE (Figure 4).
The gross losses recorded by MAATE are 13,589 km* between
1990 and 2018 on EPSC. The gross losses recorded by HILDA +
are 7,905 km? corresponding to 58.2% of the gross losses recorded by
MAATE. The gross losses recorded by TMF are 4,890 km’
corresponding to 36% of the gross losses recorded by MAATE.
Forest cover gains are 2,562 km* according to MAATE. HILDA +
observed 27.4% of the gains recorded by MAATE, compared to 66%
for TMF. MAATE reports a net loss of 11,028 km* HILDA + reports
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Confusion matrix metrics resulting from the comparison between Forest and No Forest from the MAATE LULC and HILDA+ (black), TMF (dark
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Comparison of gain/loss/net loss between MAATE, HILDA + et
TMF over 1990-2018 on EPSC.

a net loss of 7,203 km®, or 65.3% of the net losses reported by
MAATE. TMF reports a net loss of 3,018 km?, or 27.4% of the net
losses reported by MAATE.

Following this analysis, we chose HILDA + to analyse
deforestation. Confusion matrices were used to spatially validate
HILDA+, which showed good agreement in terms of the spatial
distribution of forest cover compared with MAATE. The
quantitative comparison of forest cover losses shows that over
the period 1990-2018, HILDA + managed to detect more than
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65% of the losses reported by MAATE, over a recent period when
changes are complex to identify. HILDA + has the advantage of
going back to the 1960s. At that date, the uncertainties presented by
HILDA + are much smaller than for the recent period. HILDA + can
therefore be a good product for obtaining accurate estimates of
forest cover and associated losses over the long term. The annual
resolution makes it possible to analyse the evolution of the
deforestation process and to define phases of deforestation that
are more intense than others. From a historical point of view,
1960 marked the beginning of the agrarian reforms that led to
the massive displacement of the population and the reorganization
of the land, with consequences for the deforestation process.

4.3 Long-term analysis of forest cover
evolution of the EPSC over
1960-2019 with HILDA+

We used HILDA + to monitor the evolution of forest cover on
the EPSC over 1960-2019 (Figure 5). On the EPSC, between
1960 and 2019, 4 phases were identified in the deforestation
process. The first phase between 1960 and 1968 showed a rapid
decrease in forest cover from 34,487 km? to 31,714 km?, with a net
loss of 2,773 km” or 8.04% over 8 years. During the second phase,
between 1968 and 1982, forest cover continued to decrease much
less rapidly until 1974, when it finally stabilized at about 31,100 km”.
At the end of the period, in 1982, forest cover had decreased by
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FIGURE 5
Evolution of forest cover over EPSC from 1960 to 2019 using HILDA+.

9.82% since the 1960s. The third phase between 1982 and 2000,
recorded a continuous large loss of forest cover from 31,100 km” to
22,778 km?, representing a loss of 8,322 km?. At the end of this
period, in 2000, forest cover had decreased by 33.95% since the
1960s. The last phase, from 2000 to 2019, exhibited a continuous but
less regular and weaker decrease in forest cover than during the
previous period, reaching a forest cover of 19,354 km?, representing
a loss of 3,424 km?2. Over the last 2 decades, while the trend is still
towards a decrease in forest cover, this decrease is 2.4 times less
important than over the 18-year period from 1982 to 2000. Over the
entire period from 1960 to 2019, forest cover was reduced by 43.88%.

Analysis of changes in forest cover at the scale of the EPSC has
revealed 4 phases of deforestation. We can then carry out an analysis
on the scale of bioclimatic zones to better distinguish the spatio-
temporal dynamics of the deforestation process according to forest
cover types. The analysis by bioclimatic zones with the HILDA +
database (Figure 6) shows that over the entire period between
1960 and 2019, tropical rainforests lost 32% of their area,
compared to 54.6% for transition forests and 50.5% for dry
tropical forests (Figure 6D). However, while the tropical rain
forest and seasonal forests have a similar area, 16,122 km® and
15,938 km? respectively in 1960, dry tropical forests initially have an
area almost 6.6 times smaller, with a coverage of 2,413 km” in 1960
(Figure 6D). The dynamics of deforestation differ according to the
type of forest considered. There was a net loss of forest cover twice as
large in the period 1960-1970 for tropical transition forests with a
loss of 2,000 km? at the end of the 1970s against 1,000 km® for
tropical rainforests (Figures 6A,B). Deforestation rates remained
stable during the 1970s and 1980s and there was almost no
deforestation until the early 1980s for dry tropical forests. The
period 1980-1990 marks the beginning of a strong deforestation
of dry tropical forests with net losses multiplied by three and a loss of
14.3% of forest cover in 10 years (Figure 6C). In this period, the net
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losses recorded for tropical transition forests are 2.5 times higher
than in the previous period and 2 times higher for tropical rain
forests. At the end of the 1990s, transition forests lost 30.6% of their
area compared to 1960, while tropical rainforests lost only 11.6% of
their original area in 1960 (Figures 6A,B). The largest losses for the
period 1990-2000 were recorded for tropical rainforests with a net
loss multiplied by 2, reaching a loss of 24.6% since the 1960s
(Figure 6A). For the last two periods, net loss of forest cover for
all bioclimatic zones continues to increase steadily but less rapidly
than in the other two periods (Figures 6A-C).

5 Discussion
5.1 Uncertainties of HILDA+ and TMF

5.1.1 Uncertainties of HILDA + layers

HILDA+ is based on a combination of several remote sensing
LULC databases and statistics such as those of the FAO. HILDA +
provides annual layers of uncertainty information that express the
concordance between the different land cover databases from which
HILDA+ is based. Thus, HILDA + provides the mean class area
fraction from all available datasets per year to generate per-pixel
quality information (Winkler et al., 2021) (Figure 7). The increase in
uncertainty over time can be explained by various factors.

The increase in the number of datasets used by HILDA + over
time has led to higher uncertainty over the recent period. The
concordance between all databases is more complicated to obtain
when the number of databases is high. Until the 2000s, HILDA+ is
based on two or three databases: GLAD UMD VCEF available from
1982, Global Human Settlement Layer available for 1975 and 1990,
and ESA-CCI Land Cover available from 1992. Since the 2000s,
HILDA + has relied on seven databases. In addition to the three
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and (C) dry climate. The central graphs show the cumulative loss of forest cover per decade for the three bioclimatic zones. The lower graph (D) shows
the area of forest cover in 1960 and 2019 for the three bioclimatic regions.
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databases mentioned above, HILDA + relies on: GLC 2000,
Globeland30, Hansen GFC, MODIS MCDI12Ql, Ramankutty
cropland (Winkler et al, 2021). The multiplication of datasets
introduces more variability, potential for errors and increases
overall uncertainty. For the earliest periods, few databases
are available.

The uncertainty over recent periods can also be explained by the
increasing complexity of farming systems and land use dynamics. In
recent years, the diversification of agricultural systems has led to a
complex mosaic of plots with different uses that land use change
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models have difficulty in accurately representing. This difficulty,
linked to the increasing complexity of landscapes is mentioned by
HILDA+, which states that “dataset deviation is larger in agricultural
categories cropland and pasture/rangeland. Especially
heterogeneous landscapes, which hold a mix of managed and

in

unmanaged lands, land use/cover class coverage is ambiguous
(lower area fractions) and, thus, dataset information deviates”
(Winkler et al., 2021).

In addition to the complexity of landscapes, rapid changes in
land use related to socio-economic and climatic conditions may
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The average number of valid Landsat observations is used to generate TMF LULC per year for the different periods used in the validation process.

explain some of the high uncertainty that occurred mainly during
the period 2000-2008. During this period, the country was
affected by several crises and economic instability that led to
rapid changes in land use. During the same period, extreme
El and La
affected ecological processes by causing prolonged droughts or

weather events such as Nifo Nina also

floods. These events have had a direct impact on agricultural

practices. Adaptation of agricultural practices to cope with these
extreme climatic conditions is manifested by rapid and
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sometimes temporary changes in land use and increase
the uncertainty of data for this period. The spatial resolution
of HILDA + at 1 km may be inadequate to represent
this landscape complexity and increases uncertainty over
this period.

Another factor may explain the errors and uncertainties.
HILDA+ is constructed from land cover databases produced
with optical images that are subject to cloud cover. This aspect is
clearly highlighted in the case of the TMF database.
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5.1.2 Uncertainty of TMF layers

TMF provides layers representing the number of valid Landsat
observations per year. Observations are considered valid when the
image is cloud-free, fog-free, sensor artifacts and location issues.
EPSC is largely subject to the presence of clouds accounting for the
low number of valid observations (Figure 8). Even if the number of
valid observations increased with time as new Landsat missions with
higher temporal sampling periods were put into orbit, it remained in
many locations even in the recent years. For example, in the
Province of Manabi, located between the coast of the coastal
cordillera in the center of EPSC, over the period 2016-2018, the
number of valid observations ranged between 0 and 18 and has an
average of 0.71 per year. Areas with several valid observations per
year are located above 1,000 m. The low number of useful optical
images in coastal areas decreases the reliability of TMF over these
areas (Vancutsem et al., 2021).

5.2 Analysis of the four phases of forest
cover evolution

Between 1960 and 2019, the EPSC experienced four periods of
deforestation (Figure 5). These four phases can be explained by
anthropogenic and climatic factors.

The first phase of deforestation highlighted by HILDA + took
place between 1960 and 1968. During this period, the forest cover
has been steadily and rapidly decreasing from 34,487 km’ to
31,714 km® (Figure 5). Over the whole period, a net loss of
2,773 km* was recorded. The first phase is the consequence of a
structural transformation of Ecuadorian society and economy that
began in the 1950s, with a shift from a rural and agrarian economy to
an urban society and a commercial economy. The banana economy
replaces the predominant cocoa crop after the end of World War II
(Cabarle et al, 1989) and marks the culmination of the agro-
exporter model. This agricultural change, with export agriculture,
created a need for new land having land or river access to the ports
(Delavaud, 1980) to be directly linked to world markets
(Fauroux, 1981).

This evolution of the economic model was accompanied by a
demographic boom. The increase in the population of cities
during this period caused a need to increase agricultural
supply (Salvador Lara, 1995). The increase in population in
the Sierra generated pressure on the existing production area.
These changes led the state to intervene in the reorganization of
production systems to meet the need to increase agricultural
supply and encourage the population of the Sierra to colonize the
regions of the Costa. The State established a project for
restructuring Ecuadorian agriculture that resulted in the
agrarian reforms of July 1964 and October 1973. These
abolished  old
relationships where a few owned most of lands and aimed at a

reforms colonial inherited production
more equitable redistribution allowing landless farmers to own
small plots (Fauroux, 1981; Deler, 1987). The objective of the
State was to increase productivity and expand the supply of
manufactured products (Fauroux, 1981). The migration of
landless peasants, especially from the uplands, was an essential
factor in the expansion of agricultural borders into the forested

areas of the coast (Commander and Peek, 1986). This economic
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change is encouraged by the Ecuadorian state, which promotes
the expansion of agricultural land by granting loans and land to
Ecuadorian and foreign entrepreneurs and peasants.

Nevertheless, we found with HILDA + data that in the period
1960-1970, seasonal forests on the central coast are twice as affected
as tropical rainforests in the north of the country (Figures 6A,B).
This spatial distinction is confirmed by Sierra and Stallings (1998)
which explains that this first period of deforestation is concentrated
on the central and northern coast and is explained by the fact that
the process of deforestation remains limited by an emerging
transport network outside the traditional axes: Quito-Guayaquil-
Cuenca. At that time, the north of the province of Esmeraldas was
still inaccessible (Figure 6A) 1981;
Stallings, 1998).

The second phase of deforestation identified with HILDA +
corresponds to a period of stabilization of forest cover between
1968 and 1982 over the entire EPSC (Figure 5). The analysis of
the losses of forest cover in the three bioclimatic zones shows a

(Fauroux, Sierra and

stabilization of the forest cover loss over the whole period
(Figures 6A-C). This stabilization is explained by several
factors. The failure of the State in the restructuring of
agriculture has social and economic consequences that affect
forest cover, with a slowdown in deforestation and a gradual
stabilization of forest cover over the period. This stabilization of
the forest cover on the EPSC can also be related to the beginning
of the deforestation period in the Amazon basin with the
exploitation of oil resources (Southgate and Whitaker, 1992).
The failure of agrarian reforms caused a multidimensional crisis
on the coast, with a peasantry revolt that materialized by a
phenomenon of invasion of the land which accelerated in 1975,
giving rise to clashes between peasants and the police and tensions
between employers and workers (Fauroux, 1981). This period of
tension slowed the clearing of land on the Pacific coast of Ecuador.
This
overproduction of bananas in 1968, which also led to a crisis and

social crisis was compounded by the problem of

massacres in the cities of Guayaquil. These socio-economic
The
impoverishment of farmers and the failure of agricultural

phenomena caused deforestation to slow down.
products markets were slowed down by inefficient storage
methods and the still little developed ENSO communication links
between the different production areas lead to shortages in some
places and overproduction of products in others.

Another phenomenon explained a slowdown in deforestation on
the coast. During this period, the Oriente began to be coveted for its
oil resources, which led to the construction of roads to serve oil
production, especially around Nueva-Loja that began in the 1970s
(Deler, 1987; Lopez, 2021). Infrastructure development was
supporting rapid settlement and agricultural expansion in the
Oriente. Between the 1974 and 1982 censuses, 92,700 people
settled in the four eastern provinces of Ecuador (Southgate et al.,
1991). The 1982 census showed that a relatively small proportion of
the labor force found employment in the oil industry and 60% of the
economically active population of the region worked in agriculture.
Thus, the oil boom of the 1970s caused the share of agricultural
products in total exports to fall: in 1964 all agricultural products
(bananas, coffee, cocoa) represent 89.2% of the country’s exports,
compared with 36.2% in 1976, while oil exports account for 47.8%
(Fauroux, 1981).
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The third deforestation period runs from 1982 to 2000. There is
a continuous large loss of forest cover from 31,100 km” in 1982 to
22,778 km® in 2,000 (Figure 5). Deforestation now affects all
bioclimatic zones (Figures 6A-C). By establishing a spatio-
temporal differentiation, between 1980 and 1990, we observed
greater losses of dry tropical forests and transitions and from the
1990s, the deforestation process moved towards the north of the
country, and since 1990, tropical rainforests were the most affected
biome by deforestation. Sierra and Stallings (1998) also point to a
resumption of deforestation on the Costa. The period of
deforestation is due to the development of the road network
mainly in the north of the country. On the Costa, construction
of new roads began in the 1970s, such as those to access La Tola, at
the extreme northwest of the country and later, Borbon and the
lower Santiago River. The consequences of these constructions on
deforestation are visible only from the 1980s with the extension of
the agricultural border to the forests of the north of Esmeraldas. In
1982, almost half of the population of the parish of Borbén was made
up of immigrants, compared to 20% in 1978. The number of
immigrants in Malimpia Parish tripled between 1978 and
1982 and quadrupled between 1982 and 1990 (Sierra and
Stallings, 1998). Then, in the 1980s, new roads were built from
the coast inland, following rivers and forest paths (for example, in
the parishes of Chontaduro and Chumunde). By the late 1980s,
many areas north of Esmeraldas, particularly near the coast, were
dominated by settlers. The 1990s marked the beginning of a process
of rapid expansion of agriculture on the coast, and mainly in the
north, where Esmeraldas became a province that attracted people
through the availability of land to produce agricultural products for
export (mainly bananas, coffee and cocoa).

The oil economy also had important multiplier -effects.
Subsequently, oil extraction has created urban and rural jobs
with relatively high wages, generating demand for services, food
and other commodities produced in the deforested areas. The
consequences of the oil economy are the development of regional
markets, stimulating the development of a commercial agricultural
sector for domestic markets. During this period, there is an
expansion of agricultural land on the Costa.

Sierra and Stallings (1998) have highlighted the role of selective
timber extraction in north-western Ecuador [for example, heavy
woods such as chanul (Humiriastrum sp.) and guayacan (Tabebuia
sp.)]. This aspect is also widely discussed by Amelung and Diehl
(1992) and Guppy (1984). Nearly 70% of the deforestation that
occurred in the forests of the north-west of the EPSC between the
1980s and 1990s can be explained solely by timber extraction (Sierra
and Stallings, 1998). In addition to the anthropogenic disturbances
described, there were also climatic disturbances during this period,
with two major ENSO episodes, in 1982-1983 and 1997-1998,
responsible for extremes inundations (Franga et al, 2020;
Quiroz, 1983).

The fourth period of deforestation between 2000 and 2019 is
characterized by a slowdown in deforestation compared to the
previous period (Figure 5). With HILDA + there was a decrease
in forest cover which is 2.5 times less rapid compared to the period
1982-2000. This period of deforestation, which corresponds to the
last 20 years, is characterized by a contraction of the agricultural area
and a tendency to a decrease in deforestation compared with the
previous period, with a significant slowdown in the expansion of
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agricultural land, a decrease in demand for new agricultural land and
an intensification of rural production systems. This is due to much
lower population growth rates than in the past and the
concentration of the country’s population in dense urban and
rural areas. This population concentration was responsible for
about 60% of the decrease in deforestation in the Ecuadorian
provinces (MAATE, 2017). When the annual growth of urban
areas was high (between 2000 and 2008) compared to the 1990s,
deforestation was lower. Beyond these social factors, which
contributed to the decrease in deforestation, when the country’s
economy entered crisis in 1999, deforestation decreased. Thus, the
recurrence of El Nifo, the fall in oil prices and the financial crisis of
1998-1999 have had a major impact on the national economy and
household purchasing power (Ramirez and Ramirez, 2005). The
1998 EL Nifo event caused losses equivalent to 14.5% of GDP and
the 1998/1999 crisis cost between 25% and 22% of GDP. The fall in
oil prices in 1998 aggravated the fiscal crisis, forcing the state to cut
public services and transfers. Public social expenditure, which had
increased between 1992 and 1996, fell by 37% between 1996 and
1999. This has resulted in an increase in urban poverty, from 19% of
households in 1995 to 42% in 1999. In rural areas, it rose from 56%
to 77% (Ramirez and Ramirez, 2005). The crisis has been a trigger
for a general decline in demand for agricultural products and
deforestation. From 2005, once the impact of the crisis and
inflation linked to dollarization are under control, we observe a
reactivation of deforestation in some regions such as north of
Esmeraldas (Figure 6A).

6 Conclusion

The HILDA + database used in this study has the specificity of
being based on a combination of Land Use/Land Cover databases
from satellite images. This database was selected in two stages.
Firstly, six EO-based products were compared with the MAATE
reference database using a confusion matrix and associated metrics.
At the end of this first stage, two databases were selected: TMF and
HILDA+ with maximum overall accuracy of 0.78 and
0.82 respectively. This was followed by a more detailed analysis
of forest cover losses and gains. Through the spatial and quantitative
validation of HILDA+ with the MAATE reference database, we were
able to analyse the evolution of deforestation on the EPSC between
1960 and 2019.

Thanks to the annual temporal resolution of HILDA + we were
able to highlight four phases of deforestation over the whole study area.
An initial period of intense deforestation from 1960 to 1968, which
corresponds to the banana boom, followed by a period of stabilization of
forest cover from 1968 to 1982 with the start of oil exploitation in the
Amazon basin. The deforestation process is then relaunched until the
2000s, promoted by public policies and globalized trade. The fourth
period of deforestation is characterized by a slowdown, related to
political and social crises. At a spatial resolution of 1 km, we were
able to establish a spatial differentiation of the deforestation process
according to the three bioclimatic zones (rain climate, seasonal climate
and dry climate), which are not affected during the same phases of
deforestation. While tropical rainforests have declined by one-third
since the 1960s, dry and seasonal forests lost more than half of their
surface area between 1960 and 2019.
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One of the limitations of HILDA+ is its 1 km spatial resolution.
HILDA+’s spatial resolution is an obstacle to analysing deforestation
at a finer scale. To analyse the complex changes in the EPSC landscape
more accurately over recent years, we need data at higher spatial
resolution. Also, HILDA+ is based on databases that use optical
images, subject to cloud cover, which is very important above the
EPSC. One possibility is to use radar images to overcome the problem
of cloud cover. The use of these data could also make it possible to
capture climate disturbances linked to the ENSO phenomenon and
the rapid inter-annual changes that affect forest cover. Although the
spatial resolution of HILDA+ and the optical data used are limiting
factors in capturing the complex and rapid changes in landscapes over
the recent period, HILDA + presents itself as a coherent product over
the long term, validated with the MAATE reference database and
making it possible to analyse changes in forest cover over 6 decades at
the scale of the whole the EPSC.
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