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Forest degradation is the alteration of forest biomass, structure or services
without the conversion to another land cover. Unlike deforestation, forest
degradation is subtle and less visible, but it often leads to deforestation
eventually. In this study we conducted a comprehensive analysis of degraded
forest detection in the Guinea forest region using remote sensing techniques.
Our aim was to explore the use of Sentinel-2 satellite imagery in detecting and
monitoring forest degradation in Guinea, West Africa, where selective logging is
the primary degradation process observed. Consequently, degraded forests
exhibit fewer large trees than intact forests, resulting in discontinuities in the
canopy structure. This study consists in a comparative analysis between the
contextual Random Forest (RF) algorithm previously introduced, three
convolutional neural network (CNN) models (U-Net, SegNet, ResNet-UNet),
and the photo-interpreted (PI) method, with all model results undergoing
independent validation by external Guinean photo-interpreters. The CNN and
RFmodels were trained using subsets of themaps obtained by the PImethod. The
results show that the CNN U-Net model is the most adequate method, with an
94% agreement with the photo-interpreted map in the Ziama massif for the year
2021 unused for the training. All models were also tested over the Mount Nimba
area, which was not included in the training dataset. Again, the U-Net model
surpassed all othermodels with an overall agreement above 91%, and an accuracy
of 91.5% as established during a second validation exercise carried out by
independent photo-interpreters following the widely used Verified Carbon
Standard validation methodology. These results underscore the robustness
and efficiency of the U-Net model in accurately identifying degraded forests
across diverse areas with similar typology of degraded forests. Altogether, the
results show that the method is transferable and applicable across different years
and among the different Guinean forest regions, such as the Ziama, Diécké, and
Nimba massifs. Based on the superior performance and robustness
demonstrated by the U-Net model, we selected it to replace the previous
photo-interpretation-based method for forest class updates in the land cover
map produced for the Guinean ministry of agriculture.
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1 Introduction

Deforestation refers to the conversion of forests into non-forest
areas, such as croplands, urban areas and plantations, while forest
degradation signifies a gradual change in forest structure without a
modification in land use (FAO, 2020). Besides, forest degradation
encompasses a range of changes that do not necessarily involve a
decrease in forest cover but rather manifest as reductions in biomass,
biodiversity, alterations in species composition, and soil degradation
(Chazdon, 2008; Chazdon et al., 2016). As a result, degraded forests
no longer provide the same ecosystem services as intact primary
forests. The impacts of degradation can vary, leading to subtle
modifications in the canopy structure and height at small scales,
or substantial loss of biomass at larger scales (Chazdon et al., 2016;
Ghazoul et al., 2015; Putz and Redford, 2010; Thompson et al.,
2013). Vásquez-Grandón et al. (2018) emphasize that the absence of
consensus on the definition of degraded forests is due to these
circumstances and highlight the significance of establishing local
criteria and thresholds to identify the transition from ongoing
degradation processes to the state of degraded forests. However,
assessing and quantifying forest degradation and degraded forest
extents pose significant challenges due to the maintenance of the
forested environment and the complexity of its characterization.

The causes of forest degradation are diverse and include
agricultural expansion, selective logging targeting commercially
valuable or rare wood species, recurrent fires of anthropogenic
origin, road construction, or pollution from mining projects
(IPCC, 2019). This is exacerbated by climate change and
especially by the increasing severity of droughts or the frequency
of wildfires (IPCC, 2021).

Forest degradation is context-dependent, driven by specific
factors that vary across regions. For example, in West Africa,
shifting agricultural practices can result in the regeneration of
secondary forests, while slash-and-burn techniques affect soil
fertility and hinder tree regeneration. Infrastructural
developments, such as roads associated with mining and oil
industries, disrupt the natural dispersal of plants and animal
movements within forest remnants, leading to shifts in species
composition, reduced species diversity, and alterations in
microclimatic conditions along newly created edges. These
changes may contribute to the desiccation of trees at the forest
edges and to the increased vulnerability of remaining forest areas
(Vásquez-Grandón et al., 2018; Chazdon et al., 2016; Ghazoul et al.,
2015; Briant et al., 2010; Ernst et al., 2010; Wasseige and Defourny,
2004; Wasseige et al., 2014). Additionally, forest degradation carries
significant implications for the forest carbon budget with increased
carbon emissions (Chaplin-Kramer et al., 2015; Maxwell et al., 2019;
Qin et al., 2021; Bullock and Woodcock, 2021) and higher risks of
zoonotic diseases (Rulli et al., 2017; Olivero et al., 2017; Dehaudt
et al., 2022). Furthermore, the significant role of degradation as a
precursor to deforestation is evident, with approximately 45% of
pantropical cases showing that forest degradation is followed by
deforestation (Vancutsem et al., 2021).

Unlike deforestation, which is more easily identifiable, forest
degradation poses unique challenges for quantification. Moreover,
its occurrence is intricately linked to location, local human activities,
climate, and forest types, resulting in varying extents and temporal
scales of degradation. The limited availability of global-scale

detection methodologies further compounds the challenge.
Nonetheless, remote sensing emerges as a crucial solution for
addressing the complexities associated with estimating degraded
forest surfaces. It enables the detection and quantification of forest
degradation across expansive areas, facilitating an enhanced
understanding of its spatial and temporal patterns.

Various remote sensing approaches have been employed to detect
forest degradation, using data acquired from spaceborne and airborne
LiDAR, radar, or optical radiometers (Dupuis et al., 2020).

For instance, changes in the optical spectral fractions (Souza,
2003; Bullock et al., 2020; Matricardi et al., 2020; Souza et al., 2013)
and/or indices in forest cover (Zhang et al., 2021) are good indicators
of forest degradation, as they capture variations in vegetation health,
density, and composition. Synthetic Aperture Radar (SAR) data,
such as those from Sentinel-1A or COSMO-SkyMed, are particularly
effective in detecting structural changes in forested areas, even under
cloud cover, as demonstrated by Kuck et al. (2021), who achieved
88% accuracy in detecting selective logging in the Brazilian Amazon.
Similarly, Singh et al. (2021) highlighted the complementarity of
optical and SAR data, achieving 86% classification accuracy for
forest degradation in India.

LiDAR, with its ability to provide high-resolution three-
dimensional structural information, has been used to derive
metrics such as canopy height and density, which are directly
correlated with forest condition. For instance, Shapiro et al.
(2021) introduced a Forest Condition (FC) metric using LiDAR
and Landsat data to estimate forest degradation in the Congo Basin,
finding FC positively correlated with canopy cover and burn ratio
changes. Landsat time series data, characterized by their long-term
availability and wide coverage, provides a comprehensive
perspective on forest degradation dynamics. Chen et al. (2021)
utilized Continuous Change Detection and Classification -
Spectral Mixture Analysis (CCDC-SMA) on Google Earth Engine
to monitor both abrupt and gradual forest degradation in temperate
forests, achieving an overall map accuracy of 91% in Georgia.
Similarly, Vogelmann et al. (2017) exploited Landsat time series
data to characterize forest degradation in Lam Dong Province,
Vietnam, providing detailed insights into land cover changes and
the persistence of highly protected national reserves over the period
from 1973 to 2014.

The complementarity of these technologies lies in their ability to
provide unique yet overlapping insights. While optical data excel in
capturing vegetation health and spectral changes, SAR provides
structural insights unaffected by weather conditions, and LiDAR
delivers precise canopy and terrain elevationmeasurements. Together,
these technologies offer a robust framework for detecting and
monitoring forest degradation, even in complex and heterogeneous
landscapes. Additionally, the detection of secondary signs of
disturbances affecting the forest canopy becomes crucial when
degraded forests undergo fragmentation due to various factors like
road construction, trails, logistics platforms, and farming activities
(Mitchell et al., 2017; Wasseige and Defourny, 2004).

This study integrates into a larger scale project, the Agro-
Ecological Zoning of Guinea (ZAEG) project that aimed to fulfill
the request from the Guinea Ministry of Agriculture for a land use/
land cover (LULC) map. The previous 2015 Guinea LULC map
developed as part of the ZAEG project, highlighted threats such as
agriculture, fire, and wood extraction in Guinea, highlighting the
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need to monitor the forests. However, among the 47 classes, the
“degraded forest” class was underestimating the degraded forest
areas. In Guinea most of the degradation results from selective
logging. As a result, degraded forests are marked by a reduced
presence of mature trees compared to undisturbed forests, resulting
in disruptions in the canopy structure (Vo Quang et al., 2022)
(Figure 1), which requires specific mapping procedure. The primary
motivation for the previous study (Vo Quang et al., 2022) and the
current study is to improve the mapping of degraded forests.
Besides, in the ZAEG project, the overarching goal is to
strengthen knowledge and skills in Global South countries, which
conducts to prioritize the use of free imagery data and open-source
tools. Finally, we aim to develop an automated method that reduces
the manual photo-interpretation workload for national cartographic
operators (Vo Quang et al., 2022), except for map validation.

With a focus on long-term sustainability and cost-effectiveness,
our research utilizes the freely available and regularly acquired
Sentinel-2 optical imagery. The use of SAR Sentinel-1 data has
also been investigated, as it was shown to be suitable to monitor
forest degradation in other contexts (e.g., Ballère et al., 2021).
However, we found that because the C-band SAR signal saturates
due to the canopy’s density, it was not adequate for the Guinean
context. Therefore, we prioritized Sentinel-2’s optical imagery, which
proved to differ between the non-degraded and the degraded forests in
Guinea as shown in our previous study (Vo Quang et al., 2022).

In Vo Quang et al. (2022), it was shown that incorporating the
spatial context of each pixel, taken as the set of values of the
neighbouring pixels, in a Random Forest classification can
enhance the detection of degraded forests. Despite this
improvement, the method still requires retraining for each new
site, posing a significant limitation for national-scale land cover
projects. Our goal being to create an automated detection method
that does not need to be retrained at each new study site or study
year, we here explore the possibility to use convolutional neural
networks (CNNs) as they rely on the detection of spatial feature and
by definition involve the pixel context for pixel classification. CNNs
have shown remarkable success in various domains, including
remote sensing (Garcia-Garcia et al., 2017; Qayyum et al., 2017;
Han et al., 2012; Zhang et al., 2016). One of the key advantages of
deep learning in remote sensing is its ability to automatically learn
hierarchical representations of features directly from raw data.
CNNs, with their specialized architecture for spatial data, have
been extensively applied for tasks such as image classification,

object detection, land cover mapping, change detection, and scene
understanding in remote sensing applications (Lambers et al., 2019;
Cao and Zhang, 2020; Duporge et al., 2021; Zhang et al., 2018; Park
and Lee, 2019; Wagner et al., 2020; Wagner et al., 2019).

In image classification, CNNs have demonstrated superior
performance in distinguishing different land cover classes by
learning discriminative features from multispectral or
hyperspectral imagery (Knopp et al., 2020; Yan et al., 2019;
Stoian et al., 2019; Emek and Demir, 2020; Irvin et al., 2020; de
Bem et al., 2020; Ortega Adarme et al., 2020; Maretto et al., 2021).
These models can effectively handle the high-dimensional and
complex nature of remote sensing data, capturing spectral,
spatial, and contextual information for accurate classification
results. Additionally, CNN-based object detection algorithms
have proven effective in detecting and delineating specific objects
or features of interest, such as buildings, roads, and vegetation,
enabling detailed mapping and analysis (Yang et al., 2018; Li et al.,
2019; Safonova et al., 2019; Neupane et al., 2021; Osio et al., 2022;
Gallwey et al., 2020; Yi et al., 2019).

Deep learning techniques have also been widely applied in the
analysis of aerial and satellite imagery for environmental
monitoring, including forest degradation detection. For instance,
Convolutional Neural Networks (CNNs) have been employed to
analyze high-resolution optical and radar imagery for identifying
deforestation patterns, mapping fire forests, and monitoring
selective logging activities (Kuck et al., 2021; Chen et al., 2021;
Ballère et al., 2021; Reiche et al., 2023). CNN-based models have also
proven effective in detecting land cover and land use changes,
enabling more precise mapping of forested areas and degraded
zones (Zhu et al., 2017; Liu et al., 2019).

Overall, deep learning has become a powerful tool for extracting
insights from remote sensing data, enabling the learning of complex
patterns from raw imagery. With advancements in computing
power and large datasets, it is crucial for environmental
monitoring and land management. However, challenges remain,
particularly the need for large, labeled training datasets for effective
CNN implementation. The precise identification and annotation of
objects within training images remain a bottleneck for many satellite
data applications (Zhu et al., 2017; Hua et al., 2022). Annotating
images requires specialized training, in-depth subject knowledge,
and technical skills. Digitization is a challenging task as pixel
misclassification can lead to confusion between classes for
classification models. The investment required for skilled

FIGURE 1
Structural differences observed between dense forests and degraded forests in the Guinean forest region. Selective logging leads to changes in
forest composition: the abundance of commercial species decreases, while secondary species within logging gaps increase.
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personnel and the time-consuming process of interpreting and
annotating elements can be considerable and unfeasible for deep
learning applications with satellite images. Consequently, fully
automated and expert-free deep learning approaches are not
currently viable for most remote sensing applications (Zhu et al.,
2017; Irvin et al., 2020). Lastly, limited availability of labeled data can
hinder the performance and generalization ability of deep learning
models. Models trained on specific datasets or study areas may not
generalize well to new and unseen data from different locations.

Therefore, in this study, our objective is to identify the optimal
method based on two criteria: transferability across different years
and generalizability to new regions, in order to reduce the reliance
on manual photo-interpretation. We will compare two context-
sensitive machine learning approaches for detecting and mapping
degraded forests in Guinea, to replicate the way a photo-
interpretation operator considers the pixel neighborhood while
mapping degraded forests. Building upon the dataset developed
in Vo Quang et al. (2022), we will evaluate the performance of the
contextual Random Forest (RF) algorithm, which considers the pixel
neighborhood, and the convolutional neural network (CNN)
approach known for capturing intricate patterns in image data.
The classification maps generated by the selected model will
undergo external validation and integration into the ZAEG project.

Specifically, we aim to adapt the U-Net model (Ronneberger
et al., 2015) to analyze Sentinel-2 images in the study areas and
compare the results with two other models: SegNet (Badrinarayanan
et al., 2017) and ResNet-UNet, a variant of the CNNmodels ResNet
(He et al., 2015) and U-Net, developed by the computer vision
research community as a fusion and adaptation of the two
architectures. Our evaluation will address research questions
related to dataset size, overall agreement with photo-interpreted
maps, data normalization, generalization capabilities, and
performance in different settings. Through this comparison, and
together with an independent validation, we seek valuable insights

into the effectiveness and performance of each model, shedding light
on the factors influencing its performance.

2 Materials and methods

Our objective is to evaluate the ability of CNN algorithms to
provide a three-class map (intact forest, degraded forest and other)
in the context of the study area in Guinea that consists of three
massifs. We also compare the results to those obtained with the
random forest based algorithm previously developed (Vo Quang
et al., 2022). In summary, the contextual RF and the CNN are trained
using the photo-interpreted maps, on years 2015–2020, and on two
sites. Their results are validated against additional maps obtained in
2021, and/or on a third site. Finally, the maps are further validated
on sites interpreted by independent photo-interpreters.

Firstly, by photo-interpretation, we create a training dataset
based on Sentinel-2 data on two of the forest massifs (Ziama,
Diécké) and on years 2015–2020. We use this dataset to train
four algorithms: one relying on the contextual RF algorithm
previously described (Vo Quang et al., 2022), and the other three
relying on three convolutional neural networks.

Secondly, the evaluation of the algorithms is made in two steps. In
the first evaluation step, the maps from the contextual RF and from
the CNN algorithms are compared to the photo-interpretation maps
that were not used for the training, i.e., additional maps created in
2021 in the Ziama and Diécké massifs and in the third massif
(Nimba), inferring the “Agreement” between the automated
detection method (RF and CNN) with the photo-interpretation
map. In the second evaluation step, we assess the result with an
independently derived photo-interpreted validation dataset consisting
in 900 sites, and from this comparison we infer the “Accuracy”.
Figure 2 illustrates the global flowchart of ourmethodology, providing
an overview of the steps involved in the validation process.

FIGURE 2
Overall flowchart.
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2.1 Study sites

The first study site is the UNESCO World Heritage forests of
Ziama (Figure 3), located in the Republic of Guinea, West Africa,
and classified as a Biosphere Reserve in 1981. The study area
encompasses Guinean montane forests, characterized by tropical
broadleaf rainforests situated at elevations above 600 m. These
forests receive an annual rainfall ranging from 1,600 to
2,400 mm, with distinct dry and monsoon seasons. Managed by

the Nzérékoré Forest Centre for 15 years, the focus has been on
preserving the central areas where human activities are strictly
prohibited. The total area of Ziama Forest spans 116,700 ha, with
42,547 ha (36.5%) designated as protected central mountainous
areas. The climate exhibits a humid tropical pattern, including a
short dry season (December to February) and an average
annual temperature of 24°C. The study area features dense
humid forest vegetation, characterized by evergreen to semi-
deciduous foliage.

FIGURE 3
2015 Land use and land cover map (LULC) of Guinea with the study site locations in Ziama, Diécké, and the Nimba massif. The LULC 2015 map was
created as part of the Agro-ecological Zoning of Guinea (ZAEG) project using photo-interpretation and includes 47 classes based on the European Corine
Land Cover classification system.
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To assess the effectiveness and applicability of our models, we
include two additional study sites: Diécké Forest Reserve, and
Mount Nimba (Figure 3), a prominent geographical feature
situated in the southern region of Guinea, near the borders with
Côte d’Ivoire and Liberia. Mount Nimba holds significant scientific
and conservation value, being designated as a UNESCO World
Heritage Site and recognized as a conservation hotspot.
Incorporating Mount Nimba into our study allows for an
evaluation of the robustness of our models in a diverse and
ecologically significant area, contributing to the scientific
understanding of degraded forests in Guinea.

2.2 Remote sensing dataset

Fourteen Sentinel-2 images acquired between late 2015 and
2020, including 10 of the Ziama massif and 4 of Diécké, were
subjected to photo-interpretation (Table 1). The photo-
interpretation process involved labeling 2.7 million hectares
classifying pixels into three categories: (1) dense forest, (2)
degraded forest, or (3) non-forest, which encompassed various
land cover types such as crops, villages, bare soils, rivers, shrub
and herbaceous areas, palm plantations, and tree plantations. In
addition, for the classification testing and model evaluation phase,
three cloud-free Sentinel-2 images from 2021 were selected, one for
each of the three forest massifs in Guinea: Ziama, Diécké, and
Mount Nimba. Notably, no Sentinel-2 image from Mount Nimba
was included in the model training to evaluate its generalization
capability. The acquisition dates of the images are provided in
Table 1. Hence, the classification models were evaluated using
independent data from the calibration phase, ensuring temporal
and spatial independence.

2.3 Photo-interpretation (PI) method

Photo-interpretation (PI), conducted by the authors, is used to
provide maps serving as a training dataset and as a first validation
dataset. To delineate the boundaries of dense and degraded forests,
manual delineation was performed using QGIS software, resulting in
a pixel mask with a resolution of 10 m by 10 m, consistent with the
resolution of Sentinel-2 imagery. The identification of degraded
forests followed the method described in Vo Quang et al. (2022),
which was supported field observations. The PI method uses
Sentinel-2 imagery with color compositions from the near-
infrared, mid-infrared, and red bands. The separability of the
“degraded forest” and “dense forest” classes is highest during the
dry season but decreases in the wet season (Vo Quang et al., 2022).

Interpretation is based on texture (more pronounced in dense
forests), color (degraded forests have “greenish” orange and red
tones), and context (human activity around forest patches). If the
differences in texture between intact forests and degraded forests are
not significant, the interpretation relies more heavily on other
factors such as color and context, and the use of high-resolution
imagery can also help to differentiate these areas more clearly. To
complement these criteria and to achieve accurate photo-
interpretation of the Sentinel-2 images, we also utilized imagery
with a pixel resolution of less than 1 m for detailed analyses from
Google Earth Pro and Bing Aerial imagery. Additionally, temporal
tiles from the same scenes were photo-interpreted to provide the
CNN model with representations of degraded and dense forests
under different radiometric and atmospheric conditions, enhancing
its generalization capability so that the model can be applied on a
variety of images.

The multi-year photo-interpretation strategy ensured that the
training dataset (2015–2020) captured dynamic land cover changes.
Integrating data from multiple years minimized the impact of land
cover changes on classification accuracy, enhancing the model’s
robustness and generalizability.

2.4 Data preparation

Classifications (contextual RF and CNN) were performed on a
dataset derived from the Sentinel-2 spectral bands. For each
Sentinel-2 (S2) image, 10 spectral bands (bands 2–8A, 11, and
12) were resampled to a 10-meter resolution using the Sentinel-2
Toolbox software developed by ESA. Two water stress indices,
namely, the Moisture Stress Index (MSI) and the Canopy Water
Content (CWC), were used, together with the Leaf Area Index
(LAI). LAI and CWC were extracted from S2 images (Weiss
and Baret, 2016). CWC, LAI, and MSI were calculated for all
14 images used in the study. The georeferencing of the data was
performed using the WGS84 geodetic system with UTM zone
29 projection.

Finally, the data were normalized to ensure consistency and
improve the models’ performance during the training process, as
data normalization is a crucial step in training neural networks. It
involves scaling the input data to a standard range or distribution,
preventing certain features from dominating the learning process
due to their larger magnitudes. Since we selected cloud-free Sentinel-
2 images, cropping high pixel values caused by clouds was
unnecessary. In our case, normalization was achieved by
dividing each pixel value in the Sentinel-2 images by the
maximum pixel value in that specific image, ensuring
uniformity across the dataset.

TABLE 1 Sentinel-2 data photo-interpreted and used for CNN model training or evaluation.

Massif Ziama Diécké Nimba

Involvement phase Training Validation Training Validation Validation

Acquisition dates of S2 images
(MM/DD/YYYY)

12/3/2015 02/05/2017 12/27/2018 03/07/2019 01/
06/2020 01/11/2020 01/16/2020 01/21/2020 02/

05/2020 02/15/2020

01/25/2021 02/02/2017 01/06/2020
02/05/2020 02/15/2020

02/09/2021 01/25/2021

Total area (km2) 21,160 2,116 6,480 1,620 2,400
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Additionally, the dataset was divided into 128 × 128 pixel
image patches, resulting in a total of 64,180 patches. These were
randomly allocated into a training dataset (70%) and a test dataset
(30%) for model training purposes. Note that the validation relies
on the comparison of the model outputs with PI maps for year
2021 unused for the training, and on external validation points
(see below).

2.5 Contextual random forest algorithm

The contextual RF algorithm (Vo Quang et al., 2022) extends the
classical RF by incorporating neighboring pixel values within a
13*13 pixel window to contextualize each pixel’s classification.
With Sentinel-2 (S2) bands and additional variables, and within
the 13*13 pixel window, the process yielded over 2,000 features per
pixel in the RF model.

Training data were randomly sampled as patches from the
image, while the remaining pixels were allocated for validation
and inference. Our methodology, building on previous research
(Vo Quang et al., 2022), explored varying patch sizes to assess their
impact on model accuracy. Total patch sizes ranged from 1.6% to
25.8% of the total image surface, providing insights into the
relationship between training data volume and model efficiency.
The selection of patches in our study, constituting 1.6% of the total
image surface, represents the minimal photo-interpretation effort
required for image analysis, ensuring satisfactory overall accuracy
(89.6%, Vo Quang et al., 2022). Moreover a 10-pixel buffer was
applied around each patch to mitigate spatial autocorrelation, to
ensure robust validation by maintaining spatial independence
between training and validation pixels.

2.6 Convolutional neural networks (CNNs)

CNNs, are powerful deep learning models designed for
analyzing images, making them relevant in the field of remote
sensing. Unlike traditional machine learning algorithms, CNNs
automatically learn hierarchical representations of data through
multiple interconnected layers, allowing them to capture spatial
dependencies and extract relevant features from images for effective
analysis and interpretation.

The core components of a CNN include convolutional layers,
which detect spatial patterns at various scales, and pooling layers,
which reduce the spatial dimensions of feature maps to improve
computational efficiency and translation invariance. These features
are then integrated by fully connected layers or specialized output
layers to produce predictions, such as pixel-wise classifications in
semantic segmentation tasks. In remote sensing, semantic
segmentation is crucial, labeling each pixel with its corresponding
class for a more detailed understanding.

In our study, we selected the U-Net model for semantic
segmentation (Ronneberger et al., 2015) due to its effectiveness
and popularity in biomedical imaging. Its unique U-shaped
architecture and skip connections enable it to capture both local
and global contextual information while preserving spatial details,
making it well-suited for accurately segmenting complex structures
in remote sensing imagery.

The U-Net model consists of 5 encoding steps, including a
bottleneck layer, and 4 decoding steps. Each encoding step includes
two convolutional layers with ReLU activation, followed by 2 ×
2 max pooling for downsampling. The number of filters doubles at
each level, ranging from 32 to 512. To prevent overfitting, a dropout
layer (rate = 0.5) is applied after the last encoding block and at two
levels of the decoder. The decoder uses transpose convolutions for
upsampling, concatenating features from the encoder through skip
connections, and applying convolutional layers with ReLU
activation to refine the outputs. Unlike the original U-Net, which
typically uses a softmax activation for mutually exclusive classes, our
version employs a sigmoid activation in the output layer to handle
multilabel segmentation.

This dropout rate determines the likelihood of randomly
excluding a neuron during training. Dropout reduces
interdependencies among neurons, preventing the model from
overfitting to the training data — a common challenge in deep
learning. Overfitting occurs when a model becomes too specialized
to the training data and fails to generalize effectively to new data,
undermining its intended purpose.

In addition to the U-Net model, two other segmentation models,
namely, SegNet and ResNet-UNet, were evaluated in this study.
SegNet (Badrinarayanan et al., 2017) utilizes an encoder-decoder
structure with skip connections to achieve accurate segmentation.
Similar to U-Net, SegNet captures both local and global contextual
information through its encoding and decoding paths. However,
instead of directly passing the indices of maximum activation from
the encoder to the decoder, SegNet saves pooling indices during the
max pooling operation. These indices are then used in the decoding
path to upsample the feature maps and reconstruct the segmented
image. This approach helps to recover finer details and improve
segmentation accuracy.

ResNet-UNet (He et al., 2015) is a combination of two common
architectures: ResNet and U-Net. ResNet is known for its residual
blocks, which enable the training of very deep neural networks. In
ResNet-UNet, the encoder path of U-Net is replaced with the ResNet
architecture. This integration brings together the benefits of both
architectures: the ability of ResNet to handle deeper networks and
the spatial context capturing capability of U-Net.

In satellite imagery semantic segmentation, where datasets are
extensive and spatially complex, optimization methods like
RMSprop and Adam are commonly used. These adaptive
algorithms manage learning rates effectively and facilitate rapid
convergence, essential for training on large datasets. However,
empirical investigations comparing various optimization
techniques may help identify the best choice for a specific dataset
and network architecture.

For all three architectures, model training utilized the Adam
optimization algorithm (Kingma and Ba, 2014), which adjusts the
learning rate for each parameter based on the gradients and their
historical values, allowing for more efficient updates. The Dice loss
function, introduced by Milletari et al. (2016), measuring overlap
between predicted and ground truth segmentations, was employed
as the primary loss function to ensure model predictions align
closely with actual segmentations. Training was conducted over
100 epochs maximum, with performance monitored to select the
best model based on the highest validation accuracy, but the training
can stop earlier:early stopping is employed with a patience of
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5 epochs, meaning that the training halts if the performance does not
improve after 5 consecutive epochs. This approach prevents
overfitting and ensures that the model’s performance generalizes
well to unseen data.

The three CNNs were implemented using the Python
environment provided by Google Colab Pro, utilizing Python 3.7,
TensorFlow 2.4, and Keras 2.4.3 for the deep learning analysis. GPU
acceleration was leveraged to optimize computation performance,
and the analysis was conducted on a Google Colab Pro instance with
25 GB of RAM and a high-performance NVIDIA Tesla T4 GPU.

The three CNNs were compared to identify the most suitable
approach for segmenting degraded forests in S2 imagery. Various
training dataset size were also tested. The performances are
measured as the agreement with the photo-interpretated maps
over different acquisition years and over new forest areas unseen
in the training phase.

2.7 External validation for year 2021

The degraded forest maps generated for the year 2021 by photo-
interpretation, by the contextual RF, and by the three CNN were
further validated across the three massifs. This procedure follows the
widely used Verified Carbon Standard (VCS) methodologies, which
provide a framework for independent validation and verification of
greenhouse gas emissions reduction projects. VCS projects undergo
rigorous evaluation and must meet minimum accuracy
requirements, including a minimum overall accuracy of 85% and
a minimum accuracy of 80% for each class (Verified Carbon
Standard, 2019). The validation protocol adhered to a stratified
random sampling design, stratified based on the three defined
classes (Stehman, 2009). A total of 900 validation sites (300 for
each forest massif) were distributed evenly among the regions, with
each site representing a 1-hectare square.

The validation is based on photo-interpretation by independent
experts at each of the 900 sites, based on the Sentinel-2 data, the
high-resolution online images (such as Google Earth Pro and Bing
Aerial) and the high spatial resolution SPOT 6/7 satellite imagery.

The validation process consisted of two phases: “blind” photo-
interpretation and “plausibility” analysis, hereafter called
“plausibility” validation, conducted by two teams of independent
experts. During the “blind” interpretation phase, class codes were
assigned to pixels without considering the model’s map to be
validated. In cases where the results of blind interpretation
disagreed with the model’s map, “plausibility” validation was
performed by a second team of independent Guinean photo-
interpreters for all sampling units (Szantoi et al., 2020; Olofsson
et al., 2012). Plausibility validation serves several key purposes in our
study. Firstly, it provides an independent assessment of the model’s
performance, especially in complex scenarios where the algorithm’s
predictions diverge from initial blind interpretations. Such instances
are crucial for understanding the model’s limitations and for
identifying specific conditions under which the model might
either excel or require further improvement. It is also necessary
as the photo-interpretation of the degraded forests is not exempt of
errors. This method allows for the incorporation of expert
knowledge in the validation process. Combining blind and
plausibility analysis is the up-to-date validation strategy and is

used for the validation of several Copernicus products (D’Amico
and Corsini, 2015; Szantoi et al., 2021). However, because the
plausibility validation is not adopted by the whole remote
sensing community, we will report the results of both blind and
plausibility validation.

3 Results

An assessment of the impact of the training dataset size on the
U-Net model performance is conducted in Section 3.1.
Subsequently, the performances of the three CNN models are
evaluated by comparison in Section 3.2 for the year 2021, using
our photo-interpretation maps. Additionally, the results of PI,
contextual RF, and the maps from the best CNN are compared
to external validation points in Sections 3.3 and 3.4.

Hereafter, the word “agreement”will refer to the similarity of the
model output with our photo-interpreted maps unused for the
model training. “Accuracy” will be restricted to the external
validation.

3.1 Assessment of the training dataset size
impact on the U-Net performance

First, we explore the impact of training dataset size on
classification performance without data normalization. By varying
the training dataset size, we assess model agreement, focusing on the
U-Net model’s performance on the 2021 test dataset, which was not
included in the training (Table 2). The training duration (in epochs)
is highly variable among tests, but is always lower than the
maximum number of epochs (100) in all cases except test e.
Agreement between model output and the photo-interpreted map
increases with more training images, exceeding 89% for the Ziama
and Diécké regions. However, test (g), which used all available
training images, shows a slight decrease in agreement.

Model performance becomes unstable with small training
datasets: models trained on only 2 images show overall
agreement (OAg) from 75.0% to 88.4% for Ziama (tests c, d, e),
sometimes lower than those trained on a single image (tests a, b).
Additionally, including the 2017 Diécké image in the training lowers
agreement for classifying Diécké 2021 (test d, 84.6%) compared to
tests using only Ziama images (tests a, b, c; 85.1%–93.3%).

An interesting outcome is observed with test ‘f,’ which excludes
Diécké images from the training dataset but achieves the highest
overall agreement for Diécké 2021 validation data (93.5%).
Additionally, including one 2017 Diécké image in the training
lowers agreement for classifying Diécké 2021 (test d, 84.6%). This
result highlights the robustness of the model trained exclusively on
Ziama images, suggesting that the diversity within the Ziama
training data may compensate for the absence of Diécké-specific
representations. However when the four 2020 Diécké images are
used for training, overall agreement reaches 93.5% for Diécké 2021
(test e), as in test f.

This shows the importance of training the CNN models over
multiple images over each year in order to provide some
representation of the same surface at different phenological
stages. Figure 4 shows the Sentinel-2 color composite, with near
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infrared displayed in red, with black circles around some rubber
plantations in Diécké. These specific rubber trees being deciduous
(personal communication with a guinean forester) they can be
distinguished by using Sentinel-2 time series, for example, by
identifying its NDVI seasonal signature (e.g., Li et al., 2022).
However this means that it would be difficult to identify them
using a single image. In our case including one image in January and
another one in February 2020 which totally differ from each other in
terms of near-infrared reflectance over the rubber plantation
because they show the plantation before and after the foliation,
has permitted to catch this specific surface signature and to detect
the rubber plantation in 2021.

In 2021, Mount Nimba classifications show lower overall
agreement than Ziama and Diécké, mainly due to the lack of
specific training for the area. In test g, 10 Ziama and 4 Diécké
images were used for model training. Test g results show agreements
of 0.8155 for Ziama, 0.7580 for Nimba, and 0.8968 for Diécké
(Table 2). These outcomes, slightly lower than those with a selective

image subset, reflect the greater variability and complexity of the
larger dataset. Using all available images without normalization
increased spectral and land cover variations, complicating the
model’s ability to generalize. This highlights the need for a
balance between dataset size and training strategy, as more data
without adequate preprocessing may not always improve
classification due to increased complexity. Lastly, in an effort to
optimize the dataset, various combinations of input bands were
tested during the training process. Specifically, when the LAI, MSI
and CWC were not used, the agreement reached 66.48% only,
indicating the significant contribution of these additional
parameters to the overall performance of the model.

3.2 Performance comparison with SegNet
and ResNet-UNet

The second section of our results focuses on: i) a performance
comparison of the U-Net, SegNet, and ResNet-UNet models against
the PI maps; ii) the impact of data normalization on classification
performance; iii) the models’ adaptability to temporal variations in
forest conditions; and iv) their generalization capability to new
forest areas, particularly in the Nimba region.

The three CNN models were trained using 14 images from the
Ziama and Diécké massifs, incorporating 10 spectral bands, as well
as LAI, CWC, and MSI. All tests were conducted on Sentinel-2
images acquired in 2021 (2021/01/25 for Ziama and Diécké; 2021/
02/09 for Nimba). Classification results were compared to the
2021 photo-interpreted maps, which were not included in
the training.

Table 3 summarizes the results, showing overall agreement for
the three classes and each model, both with and without data
normalization. Without normalization, none of the models
achieved an overall agreement above 85% across all three massifs.
However, with normalization, all CNN models surpassed the 85%
threshold, with U-Net and ResNet-Unet achieving agreements
above 90%. This indicates that normalization, which adjusts
values measured at different scales, aids in simplifying deep
learning models by ensuring all input features have a similar
range and distribution.

TABLE 2 Overall agreement (OAg)of the U-Net network applied to the 3 massifs in 2021, in 3 classes, with the photo-interpretation maps. The number of
epochs at which the model is stopped is also indicated. Highest OAg is shown in bold.

Test Images used in the training set Model Number
of

epochs

Ziama
2021–01–25

(OAg)

Nimba
2021–01–25

(OAg)

Diecke
2021–02–09

(OAg)Ziama Diécké

2015 2017 2019 2020 2017 2020

a x U-Net 98 0.843 0.758 0.851

b x 11 0.802 0.711 0.852

c x x 24 0.870 0.809 0.933

d x x 42 0.750 0.846 0.846

e x x 100 0.884 0.813 0.935

f x x x x 47 0.893 0.830 0.935

g x x x x x x 18 0.8155 0.7580 0.8968

FIGURE 4
Rubber tree plantations (deciduous species) in the Diécké area
between 2017 and 2021 (black circles) on Sentinel-2 color composites
from the near-infrared, mid-infrared, and red bands.
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The classification maps generated by the U-Net model for the
Diécké and Nimba massifs are presented in Figure 5, depicting
both the normalized and the non-normalized data scenarios.
These maps illustrate the improved effectiveness of CNN
models when satellite image normalization techniques
are applied.

Based on the evaluation results, the U-Net model emerges as the
top-performing model, surpassing both SegNet and ResNet-Unet in
terms of overall agreement with the photo-interpreted
map. Furthermore, U-Net consistently achieves the highest

overall agreement across all three massifs. It accurately classifies
94.41% of pixels in Ziama, 95.61% in Diécké, and achieves a
commendable 90.33% agreement for Mount Nimba, despite not
being specifically trained on that area.

Table 4 provides comprehensive statistics for the U-Net model,
covering all three massifs. Notably, the classification performance of
the “degraded forest” class is relatively good for all three massifs,
although it remains the most challenging class to classify accurately.
OnMount Nimba, the U-Net model shows some confusion between
the “degraded forest” and “dense forest” classes, resulting in slightly

TABLE 3 Overall agreement (OAg) of the 3 CNN models with the photo-interpreted maps on the 3 regions in 2021, with and without data normalization.

Training dataset Model Normalization Number of
epochs

Ziama
2021 (OAg)

Nimba
2021 (OAg)

Diecke
2021 (OAg)

Average
OAg

Ziama + Diecke =
14 images (2017, 2018,

2019, 2020)

U-Net No 18 0.8155 0.7580 0.8968 0.8234

SegNet 48 0.8384 0.7410 0.8176 0.7990

ResNet-
Unet

33 0.7975 0.7109 0.9069 0.8051

U-Net Yes 82 0.9441 0.9033 0.9561 0.9345

SegNet 91 0.8984 0.8327 0.9330 0.8880

ResNet-
Unet

50 0.9380 0.9010 0.9540 0.9310

FIGURE 5
U-Net Classification Maps. Comparison of the 2021 classification maps and the photo-interpreted maps for Mount Nimba (top) and the Diécké
massif (bottom) with andwithout data normalization. Overall agreement (OAg) is calculated as the ratio of correctly classified pixels to the total number of
pixels in the photo-interpretation validation dataset.
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lower producer and user accuracies for the “dense forest” class
(88.4% and 93.6%, respectively) compared to the other two massifs
(both exceeding 95%).

Of significant importance, the U-Net model demonstrates
notable improvements in the agreement of the “degraded forest”
class, achieving producer and user agreements ranging from 73% to
81.3% across all three massifs. The contextual RF approach (Vo
Quang et al. (2022) required photo-interpretation of 1.6% of the
latest year’s imagery to achieve an overall agreement of 0.897.
Notably, our prior approach, faced limitations in detecting the
“degraded forest” class with a producer agreement of 0.581 and a
user agreement of 0.658, partly due to the necessity of initial photo-
interpretation and constraints related to RAM capacity affecting the
volume of input data. The current methodology builds upon this
foundation by eliminating the need for preliminary photo-
interpretation and optimizing data handling to incorporate a
more extensive training dataset. It accurately segments degraded
forests in unseen areas, showcasing its robustness beyond the
training dataset, and reproduces the results from a photo-
interpretation method.

3.3 Validation of U-Net results

The agreement discussed in the previous sections was
determined by comparing the classification results to subsets
of our photo-interpreted maps, which were not included in the
training. The classification maps generated by the U-Net
model, trained on all images from Ziama and Diécké
(2015–2020) with normalized data, underwent independent
validation by external Guinean photo-interpreters to
mitigate potential operator bias.

Table 5 presents the accuracies derived from the blind and
plausibility validation results for the three massifs: Ziama (91.3%),
Diécké (86.0%), and Nimba (89.0%), with a combined accuracy of
88.8%. Normalized error matrices by class surface area are shown in
Tables 5, 6, yielding normalized overall accuracies of 96.9%, 93.9%,
and 91.5% for Ziama, Diécké, and Nimba, respectively. The
combined normalized accuracy for all massifs was 94.1%. The
“degraded forest” class showed user and producer accuracies of
72.3% and 83.9%.

The CNN method identified a larger area of degraded
forests than the validation process. This discrepancy may
arise from the CNN’s incorporation of additional
biophysical parameters, such as leaf area, canopy water
content, and water stress, which are not considered in visual
interpretation. Thus, the CNN model may produce maps

depicting more extensive forest degradation than what is
detected through validation.

3.4 Comparison with PI and contextual RF

We performed a comparative analysis between the contextual
RF algorithm, the photo-interpreted (PI) method, and the U-Net
model. All these methods were validated by the external Guinean
photo-interpreters. Table 7 and Figure 6 summarize the results in
the Ziama massif. For all cartographic products, the class area
weights and overall accuracies from external validation were
calculated. The overall accuracy is better with the U-Net
model than with PI and the contextual RF algorithm, the
main difference being that the producer accuracy for the
degraded forest class is much higher with the U-Net (100%)
than with the other two maps with both the blind and the
plausibility validation.

In addition, a comparative analysis is conducted on the
Nimba massif in 2021 to evaluate each model’s ability over a
new scene. The evaluation includes: i) The Nimba 2021 map,
generated using the photo-interpretation method; ii) The
classification results of the contextual RF method, applied to
the Sentinel-2 2021 image with training limited to Ziama; iii) The
classification results of the contextual RF method, trained on
both Ziama and a 1.6% area of Nimba. iv) the results obtained
from the U-Net approach.

Most importantly, the analysis reveals significant improvements
in performance when incorporating a small proportion of Nimba in
the training data for the contextual RF methodology, which is
therefore not directly transferable to a new scene (Table 8). On
the contrary, the OA obtained by U-Net without specific training on
this new site is above 91%. Among all models, U-Net exhibits the
best performance, achieving the highest overall accuracy and the
best user and producer accuracies for the ‘degraded forest’ class on
Nimba as previously for Ziama. These results demonstrate the
robustness and efficiency of U-Net in accurately identifying
degraded forests across different areas without specific training
on the Nimba massif (Figure 7).

Based on the superior performance and robustness, the
U-Net model is selected for the forest class update in the
ZAEG project, replacing the previous photo-interpretation-
based method. This decision aligns with the goal of
developing a reliable, robust, and reproducible methodology
for degraded forest detection, providing valuable insights for
stakeholders, and contributing to a better understanding of the
current state of tropical forests.

TABLE 4 Statistics and Processing Time for the U-Net Model trained in Ziama and Diécké in years 2017–2020 and applied to the three massifs in 2021, with
normalized data. PAg = Producer’s Agreement; UAg = User’s Agreement; OAg = Overall Agreement.

Model Massif
(2021)

Classification
time

OAg PAg
dense
forest

UAg
dense
forest

PAg
degraded
forest

UAg
degraded
forest

PAg
other

UAg
other

U-Net Ziama 2 ‘25 ‘’ 0.944 0.950 0.963 0.792 0.732 0.97 0.978

Nimba 2 ‘08 ‘’ 0.903 0.884 0.936 0.813 0.731 0.935 0.954

Diécké 1 ‘50 ‘’ 0.956 0.951 0.987 0.782 0.734 0.982 0.975
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4 Discussion

In 2015, the ZAEG project produced land use and land cover
(LULC) mapping, with an update in 2020 covering forty-two classes

for Guinea. However, mapping the evolution of degraded forests was
challenging due to the labor-intensive manual delineation of
degraded areas and reliance on single-date satellite imagery.
Balancing production schedules and ensuring quality is crucial

TABLE 5 Normalized error matrices for each massif using the U-Net algorithm.

Classes 1 2 3 Total UA

Ziama

1 32,7 0 0 32,7 100%

2 2,7 (1,4) 5,9 (8,7) 3,2 (1,6) 11,8 50,0% (74,0%)

3 0 0 55,5 55,5 100,0%

Total 35,4 (34,1) 5,9 (8,7) 58,7 (57,2) 100

PA 92,4% (95.9%) 100% 94,6% (97,1%)

OA: 94,1% (96.9%)

Diecke

1 26,4 0,3 0 26,7 99,0%

2 3,1 (2,1) 2,2 (5,4) 3,3 (1.1) 8,6 26,0% (63%)

3 0 3,2 (2.6) 61,4 64,7 (62.1) 95,0% (96,0%)

Total 29,5 (28.5) 5,7 (8.3) 64,7 (63.2) 100

PA 89,5% (92.7%) 39,1% (65.6%) 94,9% (98.2%)

OA 90,1% (93.9%)

Nimba

1 14,1 0,4 0,1 14,7 96,0%

2 3,5 (0.9) 11,7 (16.2) 6,5 (4.5) 21,7 54,0% (75.0%)

3 0 8,9 (2.5) 54,7 (61.1) 63,6 86,0% (96.0%)

Total 17,6 21 61,4 100

PA 80,3% (94.2%) 55,6% (84.5%) 89,2% (92.9%)

OA 80,5% (91.5%)

UA, User Accuracy, PA, Producer Accuracy, OA, Overall Accuracy. Class 1: dense forest; class 2: degraded forests, class 3: other. The statistics are given for the blind validation, the numbers

between brackets standing for the plausibility validation when it differs from the blind validation.

Bold numbers indicate the accuracy for the degraded forest class and the overall accuracy.

TABLE 6 Overall normalized error matrix using the U-Net algorithm.

All sites

Classes 1 2 3 Total UA

1 73,3 0,7 0,1 74,1 98,80%

2 9,3 (4.4) 19,8 (30.4) 13 (7.3) 42,1 47,1% (72.3%)

3 0 12,1 (5.1) 171,7 (178.7) 183,8 93,40% (97.2%)

Total 82,5 32,7 (36.2) 184,8 (186.2) 300

PA 88,80% (94.4%) 60,7% (83.9%) 92,90% (96.0%)

OA 88,3% (94.1%)

UA, User Accuracy, PA, Producer Accuracy, OA, Overall Accuracy. The statistics are given for the blind validation, the numbers between brackets standing for the plausibility validation when it

differs from the blind validation.

Bold numbers indicate the accuracy for the degraded forest class and the overall accuracy.
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for project success, as highlighted by the Intergovernmental Panel
on Climate Change (IPCC). We followed Verified Carbon Standard
(VCS) methodologies, which require a minimum average correct
classification rate of 85%, with lower rates precluding
further analysis.

The contextual Random Forest classification method showed
promise by considering neighboring pixel attributes (Vo Quang
et al., 2022). With only 1.6% of a new image in the Ziama forest
region photo-interpreted, the model inferred satisfactorily across the
remaining image. Similar improvements were observed in the
Nimba mountain site. However, limitations arose due to the
computer’s memory capacity, which became saturated with large
training datasets, as each pixel classification used over 2000 features.
The need for new photo interpretation at each site also restricted its
generalization capacity.

On the other hand, the CNN approach exhibited robustness and
operational efficiency. A key challenge was the limited availability of
labeled data for training CNN models. To overcome this, we photo-
interpreted 14 images (2015–2020), covering 2.7 million hectares in
Ziama and Diécké, expanding the training data and incorporating
temporal variability to enhance model generalization. This approach

mitigated data scarcity, enriched the dataset with diverse spectral
signatures and land cover states, and significantly improved CNN
accuracy for classifying degraded forests. Comparing three CNN
models offered valuable insights for researchers and stakeholders in
tropical forest monitoring, helping them select the most suitable
model for their needs.

Despite the CNN approach requiring a substantial amount of
training data and longer training time, it achieved commendable
precision scores when inferring on new data. Trained on various
forest regions and at different time periods, the U-Net model
minimized the need for extensive photo-interpretation when
inferring on images on the Nimba forest site, where no further
training samples were required. By ensuring adequate training of the
model in advance, it can be readily deployed to end-users
with confidence.

In the context of forest degradation mapping, DL-DEGRAD
(Dalagnol et al., 2023) demonstrated the effectiveness of CNNs,
specifically using the U-Net model, to detect degradation caused by
logging, fire, and road construction. They applied this approach to
very high-resolution (4.77 m) Planet NICFI imagery, utilizing multi-
temporal and multi-regional datasets. The model achieved

TABLE 7 Normalized error matrices for the photo-interpreted map of Ziama 2021, the U-Net model, and the contextual Random Forest model.

Classes 1 2 3 Total UA

PI 2021

1 32,5 (32.2) 0,3 (0.6) 0,3 33,2 98,1% (97.1%)

2 2,6 (1.4) 5,7 (8.1) 2,5 (1.3) 10,9 52,7% (74.7%)

3 0,0 0,5 (2.1) 55,5 (53.9) 56 99,1% (96.2%)

Total 35,1 (33.6) 6,6 (10.9) 58,3 (55.5) 100

PA 92,5% (95.7%) 87,1% (74.1%) 95,1% (97.10%)

OA 93,69% (94.18%)

U-Net

1 32,7 0 0 32,7 100%

2 2,7 (1.4) 5,9 (8.7) 3,2 (1.6) 11,8 50,0% (74%)

3 0 0 55,5 55,5 100,00%

Total 35,4 5,9 (8.7) 58,7 (57.2) 100

PA 92,4% (95.9%) 100% 94,6% (97.1%)

OA 94,12% (96.9%)

Contextual RF

1 32,0 (31) 1,0 (1.9) 0,3 33,3 96,2% (93.3%)

2 3,1 (2.3) 6,9 (8.5) 1,9 (1.2) 12 58,0% (71%)

3 2,2 (0.9) 3,0 (8.2) 49,6 (45.7) 54,8 90,6% (83.5%)

Total 37,3 (34.2) 10,9 (18.6) 51,8 (47.2) 100

PA 85,9% (90.9%) 63,5% (45.6%) 95,7% (96.8%)

OA 88,52%(85.2%)

UA, User’s accuracy; PA, Producer’s accuracy; OA, Overall accuracy. Class 1: dense forest; class 2: degraded forests, class 3: other. The statistics are given for the blind validation, the numbers

between brackets standing for the plausibility validation when it differs from the blind validation.

Bold numbers indicate the accuracy for the degraded forest class and the overall accuracy.
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significant precision in mapping degradation across the Brazilian
Amazon, with F1-scores of 68.9 for logging and 75.6 for fire. This
study emphasizes the importance of incorporating diverse training
datasets to improve model robustness, particularly in regions
affected by complex disturbances such as logging and fire.

Similarly, our study also leveraged the U-Net model with multi-
temporal and multi-regional training data, focusing on forest
degradation across different regions in Guinea, including the
Nimba massif. However, unlike DL-DEGRAD, which utilized
very high-resolution imagery, our study relied on Sentinel-2 data
at a 10 m resolution. Despite the lower resolution compared to
Planet NICFI imagery, our findings align with DL-DEGRAD in
recognizing the value of diverse training datasets for improving
generalization, particularly in cross-site inference. While DL-
DEGRAD applied high-resolution imagery at a national scale to
map degradation in the Brazilian Amazon, our study highlights the
challenges of applying similar methodologies with Sentinel-2 data,
especially in regions where the resolution of 10 m can limit the
detection of fine-scale disturbances. It is important to acknowledge
that our study focused on detecting a specific aspect of forest
degradation in the Guinea forest region, which is characterized
by a seasonal climate. This is probably the reason why the inclusion
of water stress related indicators (CWC and MSI) improves the

classification scores, as during the dry season the degraded forest,
i.e., less dense forest, seem to indicate a higher stress. Thus, the
identified degraded forest modalities are specific to this particular
forest type and climatic conditions, relying on the expertise of
photo-interpretation as the foundational cornerstone. Indeed, it is
crucial to emphasize that the study retained the expertise of photo-
interpretation as its fundamental basis, upon which the entire
investigation relies. It also incorporates field ecological expertise
about the understanding of what is forest degradation in the
Guinean context, which was built upon direct field observations.
Regarding the inclusion of ancillary data, such as water stress
indicators, we acknowledge their potential to enhance
classification accuracy by capturing environmental factors that
may not be fully represented in spectral data alone. However, in
regions like Guinea, the availability of such local data is very limited.
This presents challenges in fully contextualizing degradation
processes within local forest dynamics. Future research endeavors
may expand the scope to encompass other types of forest
degradation and environmental contexts, thereby providing a
more comprehensive understanding of forest dynamics and
degradation processes.

One of the main limitations of this study is the relatively small
size of the training dataset, which may have constrained the model’s

FIGURE 6
Comparison of the photo-interpretedmap of Ziama 2021 (bottom left), themaps generated by the contextual Random Forest VoQuang et al. (2022)
applied to 2021 (bottom right), and themap produced by the CNNmodel U-Net (top right). The “plausibility” overall accuracies (OA) obtained by external
and independent validation are provided. On the left, the Sentinel-2 2021 image in infrared color composition (top left), showing the points used for the
external validation.
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ability to generalize to unseen data. Increasing the size and diversity
of the training dataset could potentially lead to more robust and
accurate predictions. Regarding model performance, although
architectures like ResNet-Unet and SegNet, which were
developed after U-Net and built upon its principles, were tested,
U-Net still outperformed these models in this specific context. This
may be due to the fact that more complex architectures, such as
ResNet-Unet and SegNet, require larger datasets to fully realize their
potential. Future studies could explore the use of hybrid models or
advanced architectures that combine the strengths of these models

to further enhance performance. Additionally, the potential benefits
of using pre-trained models on larger, more generalized datasets
should be investigated. Fine-tuning a pre-trained model could allow
the model to better adapt to the unique characteristics of the study
area and improve segmentation accuracy. However, further research
is needed to evaluate the effectiveness of this approach in this
specific context.

The effectiveness of the U-Net model in our study stems from its
training on a dataset that captures a specific pattern of forest
degradation influenced by the region’s unique climatic

TABLE 8 Normalized error matrices for the photo-interpreted map of Nimba 2021, the U-Net model, and the contextual Random Forest model, with and
without Nimba in the training.

Classes 1 2 3 Total UA

PI

1 14,5 0,6 (0.8) 0,5 (0.3) 15,6 93,1%

2 3,2 (1.1) 11,3 (14.7) 5,0 (3.7) 19,5 57,8% (75.6%)

3 1,2 (0) 9,0 (5.4) 54,7 (59.5) 64,9 84,3% (91.7%)

Total 19,0 (15.6) 20,9 60,1 (63.5) 100

PA 76,5% (93.10%) 53,9% (70.4%) 91,0% (93.7%)

OA 80,48% (88.8%)

Contextual RF Nimba 0%

1 3,5 (3.4) 0,1 0 3,6 96,7% 93.3%)

2 6,6 (6.3) 0,5 (0.8) 0 7,1 7,7% (11.5%)

3 21,6 (17.9) 24,9 (28.2) 42,8 (43.2) 89,3 48,0% (48.4%)

Total 31,6 (27.6) 25,5 (29.2) 42,8 (43.2) 100

PA 11,0% (12.2%) 2,1% (2.8%) 100,00%

OA 46,8% (47.4%)

U-net

1 14,1 0,4 0,1 14,7 96,00%

2 3,5 (0.9) 11,7 (16.2) 6,5 (4.5) 21,7 54,0% (75%)

3 0 8,9 (2.5) 54,7 (61.1) 63,6 86,0% (96%)

Total 17,6 (15) 21,0 (19.2) 61,4 (65.8) 100

PA 80,3% (94.2%) 55,6% (84.5%) 89,2% (92.9%)

OA 80,54% (91.5%)

Contextual RF Nimba 1,6%

1 14,4 (13.9) 0,6 (1.2) 0,3 (0.2) 15,3 93,9% (90.9%)

2 3,3 (1.8) 11,5 (13.6) 3,6 (3.1) 18,4 62,5% (73.6%)

3 3,1 (1.5) 11,3 (10.8) 51,9 (53.9) 66,2 78,3% (81.4%)

Total 20,8 (17.3) 23,4 (25.6) 55,8 (57.1) 100

PA 69,2% (80.7%) 49,1% (53%) 93,0% (94,4%)

OA 77,8% (81.4%)

UA, User’s accuracy; PA, Producer’s accuracy; OA, Overall accuracy. Class 1: dense forest; class 2: degraded forests, class 3: other. The statistics are given for the blind validation, the numbers

between brackets standing for the plausibility validation when it differs from the blind validation.

Bold numbers indicate the accuracy for the degraded forest class and the overall accuracy.
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characteristics. For successful application in different areas, it is
essential that these regions share similar climatic conditions and
degradation patterns with those in Guinea. Regions experiencing
comparable seasonal climates and degradation processes, such as
selective logging or agricultural expansion, are likely to benefit most
from our approach. Vo Quang et al. (2022) showed that the Guinea
degraded forests differ from the non-degraded ones during the dry
season, as the more open canopy of the degraded forest favors some
additional desiccation that is visible in the short-wave infrared
spectral band radiometry. This is not the only sign of degraded
forest that is considered by the contextual RF and the U-Net to
identify them, but it is still an important feature for the algorithms. It
is not certain how our algorithms would perform over equatorial
forests where there is no dry season and thus probably no
desiccation. We expect that processing areas with vastly different
climates or unique degradation modalities will require adjustments
and validations, including tailoring training datasets to reflect
relevant spectral signatures and degradation indicators.

Thus, our study emphasizes the importance of context when
deploying deep learning CNN methods for forest monitoring. It
highlights the need for a nuanced understanding of local
environmental conditions and degradation dynamics. This careful
consideration opens avenues for global forest monitoring initiatives

to effectively leverage deep learning CNN techniques while
accounting for regional specificities.

5 Conclusion

The outcome of our study is the development of an automatic
detection system for degraded forests in Guinea. The results are
promising, both qualitatively and quantitatively: external validation
of the classification maps demonstrated an overall accuracy
exceeding 94%. The U-Net architecture, utilized for semantic
segmentation, exhibited the ability to classify the image while
considering contextual information. This enabled the automatic
detection of patterns of forest degradation in satellite images,
providing results in few minutes for the Forest Guinea area of
about 47,000 square kilometers.

Our study highlights the effectiveness of the U-Net model in
automatically detecting degraded forests in Guinea. The comparison
of different methodologies, including Random Forest and deep
learning, emphasized the superiority of deep learning techniques
in terms of accuracy and generalization capabilities. The integration
of expanded training data and the use of CNN models provided
valuable insights for improving tropical forest monitoring. Our

FIGURE 7
Comparison of the photo-interpreted map of Nimba 2021 (top left), the maps generated by the contextual RF applied to the Sentinel-2 2021 image
(bottom), and themap produced by the U-Netmodel (top right). The “plausibility” overall accuracies (OA) from the external validation are reported. On the
right, the Sentinel-2 2021 image in infrared color composition, showing the points used for the external validation.
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findings contribute to the advancement of automated forest
degradation detection and demonstrate the potential of deep
learning approaches in supporting ecological research and
decision-making processes.

While our study has advanced the detection of degraded forests,
several avenues for future research remain. Expanding the training
dataset to include a wider range of forest types and environmental
conditions will enhance model generalization, enabling better
detection and classification of various forest degradation
modalities. Future research should also explore other types of
forest degradation and broaden the geographical scope to deepen
our understanding of forest dynamics. Integrating additional data
sources, such as LiDAR or hyperspectral imagery, could provide
complementary information for more accurate forest degradation
assessments, facilitating the identification of specific drivers
and impacts.

In conclusion, our study offers new possibilities for detecting
degraded forests with deep learning techniques. Continued research
and innovation will enhance forest monitoring, support evidence-
based decision-making, and promote the sustainable management
of global forest resources.
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