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The Australian EEZ provides habitat for ten species of mysticete whales
seasonally supporting critical life functions ranging from feeding to
breeding. All of these species produce downsweeping calls, which may
confound passive acoustic monitoring efforts. In an attempt to optimize a
detector for Eastern Indian Ocean pygmy blue whale (EIOPBW) downsweeps,
we tried a spectrogram correlator based on confirmed templates and a neural
network trained on general blue whale D-calls followed by clustering
algorithms. Outputs were manually validated by bioacousticians. We found
that downsweeps exhibit significant variability and form a graded continuum
of acoustic features, as opposed to clusters. Comparative analysis
demonstrated parallels between EIOPBW call variants and downsweeps of
other mysticete species, raising concerns about the reliability of assigning
calls to species based solely on spectrographic features. Geographical and
seasonal patterns of downsweeps were more conclusive for EIOPBW when
aligned with known migratory routes and timings. Challenges in automated
detection, variability in environmental noise, and human biases in manual
classification were acknowledged. To improve species identification, we
suggest integrating soft labeling, advanced acoustic transforms, sound
propagation corrections, and cross-referenced databases. Until automated
methods achieve higher reliability, passive acoustic monitoring will require a
multidisciplinary approach incorporating regional ecological insights and
manual validation.
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1 Introduction

With the world’s third largest exclusive economic zone (EEZ), Australia has
strategically developed its blue economy over the past decade, comprising shipping
(ship building and port expansion), offshore energy (oil, gas, and renewables),
tourism, fisheries, and aquaculture (Australian Government, 2013). Western
Australia, in particular, has a strong history of offshore energy development,
ranging from oil and gas off the northwest coast to upcoming windfarms off the
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southwest coast1,2. Moreover, the growth of Western Australian
ports is planned for both shipping and maritime defense3,4.
Sustainability of the blue economy hinges on careful
environmental planning to safeguard Western Australia’s
marine biodiversity.

TheWestern Australian offshore environment provides habitat to
ten species of baleen whale: common minke whale (Balaenoptera
acutorostrata), Antarctic minke whale (B. bonaerensis), sei whale (B.
borealis), Bryde’s whale (B. edeni), blue whale (B. musculus), Omura’s
whale (B. omurai), fin whale (B. physalus), pygmy right whale
(Caperea marginata), southern right whale (Eubalaena australis),
and humpback whale (Megaptera novaeangliae). Of these, the
southern right whale and the blue whale are listed as endangered
in Australia5. The blue whale comprises two subspecies: the Antarctic
blue whale (B.m. intermedia) and the pygmy blue whale (B.m.
brevicauda). While the southern right whale and the Antarctic
blue whale mainly occur seasonally along the southwestern and
southern coasts of Western Australia, the pygmy blue whale occurs
mainly along the entire Western Australian coast, annually migrating
from the southern feeding grounds to the northern breeding grounds.
The Blue Whale Conservation Management Plan (Australian
Government, 2015) requires that anthropogenic threats be
demonstrably minimized to aid the recovery of this species.

Effective conservation management requires adequate
monitoring of abundance and distribution. Observation
methods include visual surveying and passive acoustic
monitoring (PAM) (e.g., Verfuss et al., 2018). Visual surveys
may be done from shore for species traveling close to shore or
require boats, planes, or drones to travel along predesigned
transects or along the coast, with observers counting or
photographing animals per time or area. Visual surveys can be
expensive to carry out and can be challenging in bad weather or
poor light. Additionally, some (sub-) species are difficult to
visually tell apart in the field (e.g., Bryde’s and Omura’s
whales, Antarctic and pygmy blue whales). Often in

combination with visual surveys, PAM can be done by towing
acoustic receivers along line transects. In some situations,
recorder packages may be moored on the seafloor. PAM is
independent of light and (mostly) weather conditions. A
drawback of PAM is that it only detects animals when they
vocalize. However, PAM can tell (sub-)species apart by their
stereotypical sounds (in particular, songs).

Blue whales produce songs that are stereotypical to
subspecies. The Antarctic blue whale song contains the Z-call
(named after its Z-shape in spectrograms), consisting of a ~9 s
constant-wave sound at ~28 Hz, followed by a ~1 s downsweep
from ~28 Hz to 18 Hz, ending in a ~8 s constant-wave sound at
~18 Hz (e.g., Gavrilov et al., 2012; Miller et al., 2014). Five
different populations of pygmy blue whales were
distinguishable by their stereotypical songs in the Indian
Ocean (Leroy et al., 2021). The Eastern Indian Ocean pygmy
blue whale (EIOPBW) sings songs with up to three units: a ~40 s
constant-wave unit, followed by a ~20 s upsweep, followed by
another ~20 s constant-wave unit, all with fundamental
frequencies in the range 18–23 Hz (Gavrilov et al., 2011;
Jolliffe et al., 2023). Evidence suggests that only males sing,
likely as part of breeding behavior (McDonald et al., 2001).
On the other hand, both males and females produce non-song
sounds (e.g., Cusano et al., 2022).

Bluewhale non-song sounds are typically short (up to a few seconds),
low in frequency (<100 Hz) and can be constant-wave or frequency-
modulated. Non-song sounds have been associated with various
functional behaviors, including feeding and mating (McDonald et al.,
2001; Oleson et al., 2007a; Oleson et al., 2007b; Lewis et al., 2018; Schall
et al., 2020). The most reported non-song sound is a downsweep, often
referred to as D-call. Given that all demographic cohorts produce non-
song sounds, their detection is desirable for speciesmonitoring. However,
with the ever-increasing amount of PAM data collected, automated tools
are needed to detect them.

Automated methods to detect and classify EIOPBW sounds
exist for both song and D-calls. Gavrilov and McCauley (2013)
optimized an EIOPBW song detector based on spectrogram
correlation of the first and third harmonics of the song unit
type II. Less than 5% of the true sounds were missed. This
detector is part of the CHORUS software package (Gavrilov
and Parsons, 2014)6. Guilment et al. (2018) implemented a
trainable dictionary-based algorithm with sparse
representations to detect and classify downsweeps amongst
other mysticete calls, with great success despite the variability
of any specific call. Torterotot et al. (2019)] built on Guilment
et al. (2018) and improved their detector by post-processing the
detections to specifically lower the false positives for Antarctic
blue whale D-calls. They were able to reach an average of a single
false positive per hour on their datasets. Miller et al. (2023) used a
DenseNet architecture (Huang et al., 2017) to detect downsweeps
from fin and blue whales off Antarctica. The neural network
detection probability outperformed manual analysis by a human
expert by more than 20% and 5% for low-medium and high signal-to-

1 Australian Government, Geoscience Australia, “Offshore Northwest

Australia”; https://www.ga.gov.au/scientific-topics/energy/province-

sedimentary-basin-geology/petroleum/offshore-northwest-australia;

last updated 29 August 2023.

2 Australian Government, Department of Climate Change, Energy, the

Environment and Water, “Indian Ocean off the Bunbury region, Western

Australia declared offshore wind area; https://www.dcceew.gov.au/

energy/renewable/offshore-wind/areas/bunbury; accessed

13 October 2024.

3 Government of Western Australia, Westport, “A new port in Kwinana:

Planning for the next century of trade growth in WA”; https://westport.

wa.gov.au/; accessed 13 October 2024.

4 Gascoyne Gateway; https://gascoynegateway.com.au/; accessed

13 October 2024.

5 Australian Government, Department of Climate Change, Energy, the

Environment and Water, “EPBC Act List of Threatened Fauna”; https://

www.environment.gov.au/cgi-bin/sprat/public/publicthreatenedlist.pl?

wanted=fauna#mammals_endangered; accessed 13 October 2024.

6 CHORUS software; https://cmst.curtin.edu.au/products/chorus-

software/; accessed 13 October 2024.
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noise ratios, respectively. To detect EIOPBW D-calls with neural
networks (similarly to Miller et al., 2023 or Rasmussen and Širović,
2021) or for dictionary-based approaches (Guilment et al., 2018), a
training database of these specific sounds is needed, so the detector
parameters may be tuned.

While the aim of our study had been to build and optimize a
detector for EIOPBW non-song sounds, including downsweeps,
detector performance indicated great variability of downsweeps,
so instead, we employed clustering approaches, and by the spatio-
temporal occurrence of downsweep types off Western Australia
discuss the challenges and contextual nuances in assigning
downsweeps to species.

2 Methods

2.1 Acoustic recordings

Underwater acoustic recordings were available from 96 sites
around Australia. While the study focus was on northwestern
Australia, recordings from additional Australian sites were
included as a sanity check, as EIOPBW are not expected to
occur on the east coast (Pacific Ocean). A map of recording
locations is displayed in Figure 1, with metadata listed in Table 1.
No datasets were available from the Northeast of Australia; most
datasets were from the Northwest. The data was collected at

variable sampling frequencies and duty cycles. Recording
locations were grouped geographically, mostly following the
Australian marine regions7. However, we split the large
Northwest and Southwest regions (Regions 3 and 4 in
Figure 1) in half, to increase our spatial resolution around
Western Australia.

2.2 EIOPBW non-song stencils

Simultaneous visual and passive acoustic surveys had been
undertaken in Geographe Bay, Western Australia, over two
seasons (November of 2011 and 2012) yielding spectrogram
examples of five EIOPBW non-song sound types (Recalde-Salas
et al., 2014; Figure 2). The upsweep (EIO5) had been recorded only
once at a medium signal-to-noise ratio and was therefore discarded.
For the other sound types, spectrogram stencils were created by
manually thresholding the spectrograms to values of 1 for pixels
corresponding to the signal and 0 everywhere else. For the
frequency-modulated call types EIO1 and 4, signal pixels were

FIGURE 1
Locations of all acoustic datasets, grouped into marine regions. Datasets are indicated by the colored dots (each color representing one region) and
the marine regions are indicated by numbers encased in colored circles.

7 Australian Government, “Australia’s marine regions”; https://www.

waterquality.gov.au/anz-guidelines/your-location/australia-marine-

regions; accessed 15 October 2024.
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TABLE 1Metadata for all the datasets used in the study. Bold datasets were used for the clustering experiment and the underlined datasets were used in the
manual detections.

Latitude Longitude Start date End date Duty cycle [s/s] Sampling frequency [kHz] Region ID

−9.82 129.41 25/05/2006 28/08/2006 400/900 8 1

−12.93 128.4 15/09/2010 09/03/2011 300/900 6 1

−13.13 128.19 09/03/2011 17/09/2011 300/900 6 1

−12.93 128.4 10/09/2011 31/03/2012 300/900 6 1

−13.13 128.19 01/04/2012 18/09/2012 300/900 6 1

−13.13 128.19 20/09/2012 20/03/2013 300/900 6 1

−12.93 128.4 19/03/2013 16/09/2013 300/900 6 1

−16.59 120.88 20/03/2003 11/08/2003 100/900 6 2

−13.84 123.29 13/09/2006 03/02/2007 300/900 6 2

−14.41 124.89 14/09/2006 01/03/2007 200/900 6 2

−14.41 124.89 01/04/2007 28/11/2007 200/900 6 2

−13.84 123.3 01/04/2007 12/11/2007 200/900 6 2

−13.75 122.07 14/06/2007 03/02/2008 200/900 6 2

−14.41 124.9 30/11/2007 11/08/2008 200/900 6 2

−13.84 123.3 30/11/2007 11/08/2008 200/900 6 2

−14.06 121.75 05/02/2008 06/07/2008 200/223 6 2

−18.4 121.65 28/07/2008 02/12/2008 300/900 8 2

−14.05 121.85 28/09/2008 09/06/2009 200/223 6 2

−17.45 122.05 17/06/2009 25/12/2009 180/900 8 2

−16.84 121.69 12/08/2009 20/04/2010 200/900 6 2

−17.45 122.05 04/05/2010 10/07/2010 200/900 6 2

−17.44 122.05 11/07/2010 05/11/2010 300/900 10 2

−15.48 121.25 20/11/2012 29/09/2013 300/900 6 2

−15.48 121.25 01/10/2013 02/06/2014 300/900 6 2

−15.48 121.25 19/08/2014 08/05/2015 300/900 6 2

−16.48 119.49 10/09/2017 10/05/2018 800/900 0.1 2

−21.47 114.05 28/09/2004 17/03/2005 120/900 5 3

−21.14 114.39 24/06/2005 19/10/2005 300/900 6 3

−19.88 115.25 18/12/2005 20/03/2006 200/900 6 3

−19.88 115.25 21/03/2006 27/11/2006 200/900 6 3

−21.42 114.83 16/04/2009 20/07/2009 200/900 16 3

−19.87 115.28 06/05/2009 23/07/2009 200/900 6 3

−21.42 114.83 22/07/2009 03/11/2009 200/900 16 3

−19.88 115.27 24/07/2009 23/03/2010 200/900 6 3

−21.53 115.03 12/09/2009 22/03/2010 200/900 8 3

−21.42 114.83 14/12/2009 25/03/2010 200/900 6 3

−20.61 114.8 17/01/2010 01/09/2010 200/900 6 3

−20.19 115.39 24/03/2010 26/10/2010 200/900 6 3

(Continued on following page)
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TABLE 1 (Continued) Metadata for all the datasets used in the study. Bold datasets were used for the clustering experiment and the underlined datasets
were used in the manual detections.

Latitude Longitude Start date End date Duty cycle [s/s] Sampling frequency [kHz] Region ID

−19.86 115.29 25/03/2010 06/11/2010 200/900 6 3

−21.53 115.03 26/03/2010 12/11/2010 200/900 6 3

−21.42 114.83 26/03/2010 04/11/2010 200/900 6 3

−19.93 113.23 19/05/2010 12/08/2010 200/900 16 3

−20.61 114.8 05/09/2010 09/01/2011 200/900 6 3

−19.95 115.54 17/09/2010 28/03/2011 200/900 6 3

−19.77 115.8 28/03/2011 11/08/2011 450/900 6 3

−20.14 118.39 30/06/2011 20/10/2011 300/900 10 3

−20.39 114.07 06/10/2011 18/01/2012 200/900 6 3

−20.14 118.39 01/11/2011 15/03/2012 300/900 10 3

−20.24 113.89 19/01/2012 11/09/2012 250/900 6 3

−19.39 115.92 20/11/2012 27/09/2013 300/900 6 3

−19.38 115.93 11/08/2014 13/06/2015 300/900 6 3

−20.83 113 01/12/2014 17/12/2014 3,600/0 0.5 3

−20.74 112.86 01/12/2014 16/01/2015 3,600/0 0.5 3

−20.66 112.71 01/12/2014 16/01/2015 3,600/0 0.5 3

−20.57 112.56 02/12/2014 17/12/2014 3,600/0 0.5 3

−20.48 112.41 02/12/2014 17/12/2014 3,600/0 0.5 3

−20.4 112.25 02/12/2014 15/12/2014 3,600/0 0.5 3

−20.31 112.12 02/12/2014 17/12/2014 3,600/0 0.5 3

−20.22 111.98 03/12/2014 16/12/2014 3,600/0 0.5 3

−20.13 111.83 03/12/2014 16/12/2014 3,600/0 0.5 3

−20.05 111.7 03/12/2014 16/12/2014 3,600/0 0.5 3

−19.96 111.54 03/12/2014 16/12/2014 3,600/0 0.5 3

−19.87 111.39 03/12/2014 16/12/2014 3,600/0 0.5 3

−19.78 111.25 04/12/2014 15/12/2014 3,600/0 0.5 3

−19.7 111.1 05/12/2014 15/12/2014 3,600/0 0.5 3

−19.79 114.58 31/12/2018 15/05/2019 180/900 96 3

−19.83 114.64 15/05/2019 11/08/2019 180/900 96 3

−19.78 114.62 11/08/2019 29/12/2019 180/900 96 3

−19.78 114.56 10/01/2021 06/01/2022 300/1,200 96 3

−19.38 114.11 10/01/2021 06/03/2022 300/1,200 96 3

−18.96 113.62 10/01/2021 06/03/2022 300/1,200 96 3

−19.14 115.23 10/02/2021 06/03/2022 300/1,200 96 3

−20.48 113.97 19/09/2021 30/10/2021 300/1,200 96 3

−20.29 115.18 19/09/2021 05/12/2022 300/1,200 96 3

−20.05 114.9 30/09/2021 06/02/2022 300/1,200 96 3

−19.78 114.56 06/01/2022 02/02/2023 300/1,200 96 3

(Continued on following page)
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limited to the fundamental contour; for the amplitude-modulated
call types EIO2 and 3, the first four harmonic contours were
included. Stencils were limited to the 10–100 Hz frequency band
(capturing all these calls’main energy) and fixed at 7 s duration. The
time and frequency resolutions of the stencils were 0.068 s and
1.46 Hz, respectively.

2.3 Spectrogram cross-correlation

Acoustic signals matching the EIOPBW non-song stencils were
found by normalized cross-correlation (Lewis, 2001). Audio
recordings in our database had been sampled at various sampling
rates, and so, all audio files were first resampled at 6 kHz, then

converted into a spectrogram with the same time and frequency
resolutions as the stencils (0.068 s and 1.46 Hz). Only the frequency
band from 10 Hz to 100 Hz was searched. Each EIOPBW non-song
stencil was cross-correlated with the spectrogram of the whole
recording, yielding a time series of correlation coefficients
(implemented using scikit-image; van der Walt et al., 2014).
Correlation coefficients >0.375 were chosen to indicate a
potential signal.

2.4 Manual sorting into classes

All detections output by the spectrogram-correlation detector
were manually sorted into classes by two analysts (PNHD—a

TABLE 1 (Continued) Metadata for all the datasets used in the study. Bold datasets were used for the clustering experiment and the underlined datasets
were used in the manual detections.

Latitude Longitude Start date End date Duty cycle [s/s] Sampling frequency [kHz] Region ID

−20.29 115.18 06/02/2022 31/01/2023 300/1,200 96 3

−20.05 114.89 06/02/2022 31/01/2023 300/1,200 96 3

−18.96 113.62 06/02/2022 04/02/2023 300/1,200 96 3

−19.38 114.11 06/03/2022 04/02/2023 300/1,200 96 3

−19.14 115.23 06/03/2022 26/01/2023 300/1,200 96 3

−20.48 113.96 31/05/2022 28/01/2023 300/1,200 96 3

−31.89 115 13/11/2009 22/07/2010 450/900 6 4

−31.9 115.03 06/08/2010 08/05/2011 400/900 6 4

−33.55 115.11 07/11/2012 07/01/2013 800/900 12 4

−34.71 119.6 10/02/2015 06/02/2016 300/900 6 4

−34.85 133.42 04/11/2011 11/02/2012 350/900 8 5

−33.36 130.68 11/02/2012 18/06/2012 250/900 8 5

−36.12 135.89 17/11/2015 08/11/2016 300/900 6 5

−39.82 145.85 04/04/2004 03/10/2004 120/900 4 6

−39.26 142.9 02/11/2005 03/07/2006 200/900 6 6

−39.2 142.81 09/02/2011 29/06/2011 500/900 6 6

−39.08 142.67 12/04/2012 15/01/2013 300/900 8 6

−39.92 145.72 02/02/2015 09/08/2015 450/900 6 6

−39.92 145.72 31/08/2015 06/04/2016 410/900 8 6

−32.32 152.95 06/04/2011 26/04/2012 300/900 6 7

FIGURE 2
Spectrograms of EIOPBW non-song sounds recorded in Geographe Bay, Western Australia, at the time of simultaneous visual species identification.
Reprinted from (Recalde-Salas et al., 2014); https://doi.org/10.1121/1.4871581; published CC BY. (a) EIO1. (b) EIO2. (c) EIO3. (d) EIO4. (e) EIO5.
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splitter, and CE—a lumper). The fin whale 20 Hz pulse (identified by
its higher-frequency component at ~90 Hz; Aulich et al., 2022) was
detected but removed from further analysis. As classes were
compared between the two analysts, the graded structure of
downsweeps became obvious.

We manually identified multiple scenarios of morphing, which
is the gradual transformation of a sound’s spectrographic contour in
shape, frequency, and/or duration. The addition of overtones and
the introduction of “embellishments” or decorations (Zwamborn
and Whitehead, 2017), such as contour undulations, were also
considered a morph. Several morphing examples were manually
assembled both linearly (e.g., where frequency shifts higher and
higher or duration extends longer and longer) and circularly
(i.e., where calls morph through gradations ending at the starting
point). We do not know whether the example calls were made by the
same individuals or species.

The data were not pre-processed to eliminate overlapping
sounds from various sources, such as vessels or other animals.
The sound samples presented in the figures of this study were
selected for their high signal-to-noise ratio to effectively illustrate
our findings.

It is important to note that since the spectrogram cross-
correlation was conducted within the 10–100 Hz frequency band,
sounds above 100 Hz were not the primary targets and were detected
opportunistically. This likely introduced some bias in their
detections in terms of the location, season, number of
occurrences, etc., as in the case of bioduck calls and some
patterned sequences of downsweeps.

2.5 Manual detections

With the goal of determining the diversity of downsweeps, in
addition to the five types identified by Recalde-Salas et al. (2014), a
subset of recordings was manually searched (one file every 5 h from
the underlined sets identified in Table 1), displaying spectrograms in
Raven Pro (Cornell Lab of Ornithology, Ithaca, NY, United States).
Any type of downsweep or call with downsweeping sections below
250 Hz was selected. The following frequency and time
measurements were taken in Raven (see Erbe et al., 2022 for
explanations).

1. Low frequency (i.e., minimum frequency of the call)
2. High frequency (i.e., maximum frequency of the call)
3. Peak frequency (i.e., frequency of peak energy)
4. Center frequency (i.e., frequency splitting the call spectrum

into two-halves of equal energy)
5. 25% frequency (i.e., frequency below which 25% of the call

energy lies)
6. 75% frequency (i.e., frequency below which 75% of the call

energy lies)
7. 50% energy bandwidth (i.e., the difference between the 75%

and 25% frequencies)
8. 90% energy bandwidth (i.e., the bandwidth centered on the

center frequency and capturing 90% of the call energy)
9. Duration
10. 50% energy duration (i.e., the duration over which 50% of the

energy occurs, computed as the time difference between the

points in time when the 75th and 25th percentiles of
cumulative energy over the full duration of the call occur)

11. 90% energy duration (i.e., the duration over which 90% of the
call energy occurs)

Whether these measurements clustered was visually assessed by
Principal Component Analysis (PCA) in MATLAB (The
MathWorks Inc., Natick, MA, United States) using the Statistics
and Machine Learning Toolbox.

2.6 Neural network detections and
clustering

We further tried to get an understanding of how downsweeps
would cluster using an objective neural-network approach on a
subset of the datasets. The DenseNet (Miller et al., 2023), originally
aimed at detecting blue whale D-calls, had been trained on a large
collection of recordings from the southern seas. In addition to its
geographical robustness, the trained model had also been observed
to fare well in detecting generally downswept tonals that occurred
within its operating bandwidth (20–115 Hz). As such, we used this
model in our attempt to extract downsweeps in our EIO recordings.
To keep the process tractable, we limited processing to a smaller
subset comprising the datasets in bold (Table 1). To confine the
outputs to only high-confidence detections, we applied a high
detection threshold of 0.99. We set the clip advance amount (for
converting long-duration recordings into fixed-dimension inputs to
the model) to 2.0 s, resulting in 55% overlap (clip length = 4.5 s)
between successive inputs to the DenseNet. While a clip overlap of
more than 50% minimizes the possibility of “losing” target sounds
between successive clips, it increases the possibility of a single target
sound being detected in more than one clip. To suppress multiple
detections of the same sound from being considered in downstream
processing, we retained only the detection corresponding to the
highest score within each bout of detections. This resulted in a total
of 17,372 detections.

To qualitatively and visually assess potential clusters in the
detected downsweeps in a 2-dimensional space, we used Uniform
Manifold Approximation and Projection (UMAP; McInnes et al.,
2018). We computed spectrograms of the detections (4.5 s long
clips) using a 0.512 s FFT window, with 70% overlap, and frequency
resolution of 1.95 Hz. By clipping frequencies outside the 20–155 Hz
range, we reduced the spectrogram dimensions to 48 × 27 (height ×
width). Our chosen UMAP parameter settings were n_neighbors =
5, min_dist = 0.1, spread = 0.75, and repulsion_strength = 15. We
arrived at these values for the parameters after intense experiments
to render the 2-dimensional clustering outputs such that points in
local neighborhoods were clumped closer together while the inter-
cluster distances were maximized.

2.7 Geospatial and seasonal distribution

Time series of downsweep presence were plotted for each of the
geospatial regions. For each recording location inside a region, the
number of detections in a day was divided by the cumulative number
of recording-seconds over that day and multiplied by 3,600, yielding
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FIGURE 3
EIO1 sound morphing scenarios. All spectrograms have the same x-axis (0-7 s) and the same y-axis (10-250 Hz). (A) EIO1 sounds changing in
duration from 1 s to 7 s (from panel a to panel k). The blue box in the bottom left corner shows a ~3 s example as previously published (Recalde-Salas et al.,
2014). (B) EIO1 soundswith lip at the start, changing in duration from 1 s to 7 s (from panel a to panel k). The blue box in the bottom left corner shows a ~3 s
example as previously published (Recalde-Salas et al., 2014). (C) Examples of hat shapes commonly seen at the start of EIO1 sounds. In these
examples, the maximum frequency of the hat increases from panel a to panel j and is > 250 Hz in the final three plots. The blue box indicates the variant
closest to the published EIO1 (Recalde-Salas et al., 2014). (D) Starting with the spectrogram in the blue box that most closely resembles an EIO1 call, the
concave downsweep part shortens and disappears both to the left and to the right. The lip also becomes shorter to the left, (towards panel a) but longer to
the right (towards panel k), at which stage the call has morphed into an EIO4 call (Recalde-Salas et al., 2014). (E) Wiggly versions of EIO1.
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the number of detections per hour. Then, for each day of a year for a
considered region, the number of detections was averaged across all
locations of the region.

2.8 Acoustic tracking of EIOPBW song
and D-calls

On 9 June 2022, a sonobuoy was deployed off northwestern
Australia (29°44.2014′ S, 114°13.092′ E) in Directional Frequency
Analysis and Recording (DIFAR) mode, yielding bearings to
acoustic sources, allowing for the direction to vocalizing animals
to be calculated. Songs of EIOPBW and D-calls were recorded. Data
processing steps were: 1. identifying calls in a spectrogram, 2.
thresholding samples in the spectrogram by power spectral
density, and 3. using the thresholded bearings to determine
either mean bearing to the vocalizing animal or a distribution of
bearings when there were multiple individuals vocalizing. The aim
was to pinpoint D-calls to spatio-temporal tracks of singers of
stereotypical (to species) songs.

3 Results

The EIOPBW non-song sound detector (spectrogram
correlator) outputs nearly 129,000 calls, which were manually
sorted into classes. Of these, 120,685 were downsweeps, including
6,997 of type EIO1 and 407 of type EIO4. Detections of potential
EIO2 and 3 sounds were much rarer and often confounded with ship
noise or EIOPBW song units, and therefore discarded from further
analysis. The following sections illustrate the variability of
EIO1 sounds and the gradual morphing of downsweeps.

We identified morphing cases of different downsweeps starting
from the EIOPBW non-song vocalization EIO1 reported in Recalde-
Salas et al. (2014). When relevant, the different sounds in the
morphing plots that resembled a published spectrogram of a
species were pointed out.

3.1 EIO1 morphing

EIOPBW non-song sounds of type EIO1 are ~2–3 s long
downsweeps, with the fundamental sweeping from ~100 Hz to
30 Hz, often with harmonic overtones. Sometimes they are only
weakly visible, possibly due to sound propagation effects. An
example very much like that published in Recalde-Salas et al.
(2014) is shown in the center (blue box) of Figure 3A. Towards
the left, the sound gets shorter; towards the right, it gets longer. As
indicated in the original publication (Recalde-Salas et al., 2014),
EIO1 calls may begin with a little lip. The lipped variety also appears
graded in duration (Figure 3B). Both lip and downsweep may
change in duration—independently. The lip may start with a
brief upsweep, turning it into a hat shape. The heat may become
so strongly frequency-modulated (i.e., reach to rather high
frequencies) that the local maximum in the contour is above the
250 Hz edge of the drawn spectrograms (Figure 3C). As already seen
in Figure 3C, the lip can become more pronounced in the duration it
takes up within the call, with the final concave downsweep of

EIO1 shortening and disappearing altogether, at which stage, the
call morphs into the entirely convex (i.e., inverted-U shaped) EIO4
(Recalde-Salas et al., 2014; Figure 3D). Finally, the EIO1 call may be
emitted with various frequency-modulated “wiggly decorations”.
Such alterations affect calls of all durations (shorter on the left to
longer on the right of Figure 3E).

3.2 Simple downsweep morphing

The majority of downsweeps were simple downsweeps which
were mostly concave (like the first half of a U) or (less often) straight.
Concave downsweeps (i.e., inverted-U shape, like EIO4) were rarer.
These simple downsweeps morphed in time and frequency, as did
the more complex EIO1 (Figures 4A, B). Downsweeps may also
gradually shift in frequency (start frequency, end frequency, and
bandwidth). This variability is observed in short (<1 s) and long
(>1 s) downsweeps (Figures 4C, D).

3.3 Hat-shape morphing

Downsweeps that start with an upsweep (hat shape) also grade
from lower to higher frequency (Figure 5).

3.4 Wheel of downsweep contours

While the preceding sections illustrated “linear” gradations,
where duration, frequency, or the number of decorations
monotonically increased from image to image, the same
spectrogram images were used in some of the examples,
indicating that gradations occur along multiple dimensions and
in multiple (back and forth) directions. We therefore also tried to
arrange gradations in a circle. Many such circles are
possible (Figure 6).

3.5 Visual clustering of manual detections

Manual scrolling through spectrograms of recordings yielded
1,623 Raven selection boxes, each containing a high signal-to-
noise ratio downsweep below 250 Hz. Some of these downsweeps
commenced above 250 Hz. Figure 7A shows the distributions of
the acoustic features. The first two principal components
explained 75% of the variance in the measurements. The
frequency parameters contributed strongly to the first
principal component (high frequency contributed the least),
while the duration and bandwidth measurements contributed
strongly to the second principal component (Figure 7B). The
scatter plot of Figure 7B implies that downsweeps did not
separate into distinct clusters. PCA identified one potential
cluster close to the center, in quadrant 2 of the component
1 versus component 2 scatter plot. The downsweeps in this
cluster were all of long duration >1 s and broadband (high
frequency–low frequency >100 Hz). A weaker 2nd cluster in
quadrant 3 contained short-duration (<1s) and narrowband
(high frequency–low frequency <50 Hz) downsweeps. The
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FIGURE 4
Simple morphing scenarios. All spectrograms have the same x-axis (0-7 s) and the same y-axis (10-250 Hz). (A) Simple concave downsweeps
increasing in duration from left to right (a-i). (B) Simple straight downsweeps increasing in duration from left to right (a-f). (C) Short (<1 s) downsweeps at
higher and higher frequency from left to right, without changes in duration. (D) Long (>1 s) downsweeps at increasing frequency from left to right (a-f).
Note how both start and end frequency increase.
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third cluster in quadrant 4 only contained calls of high frequency
(low frequency >100 Hz) and variable duration.

3.6 Neural network detections and visual
clustering

The 17,372 bandwidth-limited spectrograms detected with the
convolutional neural network constituted the inputs to the UMAP
clustering procedure. Figure 8 shows the result of the UMAP
clustering process, indicating that these calls do not separate well,
but rather transition smoothly.

3.7 Co-occurrence of call types

On several occasions, the simultaneous recording of
downsweeps with other call types was noted (but not
systematically tracked). Examples of downsweeps in the presence
of Antarctic minke whale bioducks and Omura’s whale calls are
shown in Figure 9 (top and bottom row, respectively). The
downsweeps did not occur at a fixed time in the other calls, and
so, are not biphonations.

3.8 Patterned sequences of downsweeps

While manually sorting the 7 s spectrograms surrounding
automated detections, it was noted that sometimes, downsweeps
occurred in patterned sequences. These examples were kept in the
hope that context around an automated detection might help
identify the calling species.

The most obvious class of such sequences are the bioduck
sounds from Antarctic minke whales that are packages of
downsweeps, and which were present in some of our recordings
(Figure 10A). Similarly, downsweep doublets were potentially from
pygmy right whales, based on the spectrogram in Dawbin and Cato
(1992) (Figure 10B). Additional patterned sequences are shown in
Figure 10C, but no publication of these specific patterns was found.
Some of these are likely humpback whales (see 1-minute-long
spectrograms containing these patterns together with additional
phrases; Figure 11).

3.9 Geospatial and seasonal distribution

Maps of geospatial and seasonal distribution were drawn for all
call classes. These were mostly inconclusive due to the graded nature
of these calls, except for the distribution map for calls of type EIO1
(Figure 12). The West and East coast exhibited two peaks. In the
Southwest and Southeast, these peaks occurred in March-May and
November-December. At lower latitude, the peaks shifted to June-
July and October-November, matching the known PBW migration.
Only very few EIO1 detections occurred in the northernmost region
(Region 1) and southernmost region (Region 5).

3.10 Acoustic tracking of EIOPBW song
and D-calls

Both EIOPBW songs and D-calls were recorded on the same
sonobuoy for 110 min. At least two individual animals were tracked
simultaneously (Figure 13). EIOPBW song was detected along both
tracks; however, D-calls were only detected on one of the two tracks.

FIGURE 5
Illustration of hat-shaped calls gradually increasing in frequency from panel a to panel n, from a peak (maximum frequency) at ~50 Hz (panel a) to a
peak at and above 250 Hz (panel n). All spectrograms have the same axes (0-7 s and 10-250 Hz).
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FIGURE 6
Wheel of gradually morphing downsweep contours. Symbols in between spectrograms indicate which feature (e.g., duration, frequency) changed
and how; follow thewheel clockwise. Each spectrogram represents 7 s and the frequency ranges from 10 to 250 Hz. Each spectrogram belongs to one of
the manually assigned classes (by PNHD and/or CE); N counts the number of calls in that class. Not all classes are featured. ‘PBW 4s 70–30’: likely PBW
downsweeps from 70 Hz to 30 Hz, 4 s; ‘PBW 4s 70O–30 O’: same as ‘PBW 4s 70–30′with overtones; “PBW 4s 70–30 hat”: same as ‘PBW 4s
70O–30 O′ with a lip at the beginning; ‘PBW EIO4’: likely PBW downsweeps as described in Recalde-Salas et al., 2014; ‘D N O’: downsweep with an
N-shape and overtones, fundamental frequency in the band 50–100 Hz and variable duration; ‘D Hat’: hat-shape with duration <1 s and fundamental
frequency within 20–100 Hz; ‘D Z harmos’: smooth Z-shape with fundamental frequency from 100 to 30 Hz, duration <2 s, with overtones, mostly
identified in presence of amplitude- and frequency-modulated sounds before or after; ‘D N short’: N-shape, <1 s duration, fundamental
frequency <50 Hz; ‘D î’: looking similar to an I with a circumflex accent, duration <1 s and fundamental frequency >50 Hz; ‘D cave harmo’: concave shape,
with overtones, fundamental frequency <50 Hz and duration <2 s; ‘D cave steep’: concave shape with steep slope and overtones, duration <2 s and
fundamental frequency ranges from 100 to 30 Hz, ‘Dcave <1 s’: concave shape and duration <1 s, fundamental frequency <100 Hz, ‘D Droplet’:
downsweep shaped asmultiple straight droplets with duration <1 s; ‘D double imp’: pygmy right whale doublet as described in Dawbin and Cato, 1992; ‘D
cave 100–50Hz’: concave between 100 and 50Hzwith variable duration between 1 s and 3 s, ‘D L’: L-shape downsweepwith duration <1 s, ‘Dcave short’:
concave with frequency ranging from 100 to 50 Hz and duration <1 s; ‘Dcave >50Hz’: concave with frequency >50 Hz and variable durations; ‘D cave
space harmo’: concave with strong harmonics, duration >2 s and fundamental frequency from 100 to below 50 Hz; ‘D deco’: downsweep with
decoration, nomatter its length or frequency range, ‘PBW EIO1 hat’: similar to EIO1 described in Recalde-Salas et al., 2014with the presence of a lip at the
beginning; ‘D 10Hz’: downsweep to 10 Hz regardless of its duration, bandwidth, or decorations; ‘Dwave’: wave-shape downsweep with variable duration
and frequency range; ‘D straight O’: straight downsweepwithout anymore complex shape, variable duration and frequency ranges from 80 to 40Hzwith
overtones; ‘D straight’: same as ‘D straight O’ without overtones; ‘D bolt’: down-plateau-down shape with variable durations and frequency ranges; ‘D
conv’: convex shape with different durations and frequency ranges.
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FIGURE 7
(A) Boxplots of the measurements of time and frequency features of 1,623 downsweeps. (B) Coefficients of the 11 parameters in their linear
combinations to principal components 1 and 2. The scattered red dots correspond to the measurements of 1,623 downsweeps. The majority of calls fall
into the 2nd quadrant with component 1 coefficients ranging from −0.07 to 0 and component 2 coefficients from 0 to 0.07. A weaker 2nd cluster can
perhaps be identified in quadrant 3, below the x-axis and left of the y-axis. Another weak cluster exists perhaps in quadrant 4, below the x-axis and
right of the y-axis.
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These 48 D-calls were ~3 s long, straight downsweeps from 60 Hz to
30 Hz. Morphing cases such as time stretching, a small lip at the
beginning, and the addition of overtones occurred. These D-calls
could be classed as a straight variant of EIO1.

4 Discussion

The main goal of this work was to build and optimize a
detector for EIOPBW non-song calls, which are mostly of
downsweeping type, to further study this species’ geographic

and seasonal pattern of occurrence. We tried two automated
detectors: 1) a simple spectrogram correlator based on stencils of
confirmed (by simultaneous visual and acoustic survey; Recalde-
Salas et al., 2014) EIOPBW non-song sounds, and 2) a neural
network that had previously been trained on general blue whale
D-calls (Miller et al., 2023) followed by an automated clustering
algorithm. Upon manual checking of the auto-detections and
clusters (and confirmed by manual detections, feature
measurements, and PCA), we found that downsweeps exhibit
great variability, do not cluster well, and instead are graded
(i.e., lie along an acoustic continuum). We provided several

FIGURE 8
Clustering output from applying UMAP to the 17,372 detected downsweeps.

FIGURE 9
Downsweeps recorded together with Antarcticminkewhale calls (i.e., 4-5 pulse packages >100Hz; from panel a to panel d) andOmura’s whale calls
(15–50 Hz, 5–6 s constant-wave; from panel e to panel h). X-axes: 0-7s. Y-axes: 10-250 Hz.
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FIGURE 10
Patterned sequences found in the audio recordings. (A) Downsweep packages and patterns likely from Antarctic minke whales based on
spectrograms published byDominello and Sirovic. (2016). (B) Spectrograms of downsweep doublets likely from pygmy right whales based onDawbin and
Cato (1992). (C) Patterned sequences of calls involving downsweeps; each row shows four examples of the same pattern. All spectrograms are 7s long,
covering 10-250 Hz.
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FIGURE 11
Downsweeps as part of humpback whale song. Longer (1-minute) andmore broadband (<1 kHz) examples of the patterns from Figure 10C. Note the
similarities of all these harmonic 1-s downsweeps below 100 Hz to EIO1 variants (in all but the 3rd spectrogram).
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examples of such gradations in call duration; bandwidth; start,
end, and maximum frequency; presence of overtones; frequency
modulations; and “decorations”.

Many other authors have noted the great variability of blue
whale downsweeps in other parts of the world (e.g., Rankin
et al., 2005; Berchok et al., 2006; Oleson et al., 2007a; Oleson

FIGURE 12
Annual time series of EIO1 detections by marine region. No underwater acoustic recordings were available from region 8. While there were
recordings in region 7, there were no EIO1 detections.

FIGURE 13
Bearings to EIOPBW song over time. Simultaneously recorded D-calls are indicated as red kites. Colors represent the relative number of song
detections by bearing. Time resolution 1 min. All of the little spectrogram images cover 0-7s and 10-250 Hz.
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et al., 2007b; Torterotot et al., 2023), without grading them or
lining them up into a continuum. As we compared our downsweep
variants to spectrograms from the literature, we noticed that along the
continuum, downsweeps morph through features that have been
described for other (non-blue whale) species. This raises questions
about the crudeness of describing sounds from spectrographic features
alone and ultimately, about our ability to generalize assignation of (non-
song) sounds to species in the absence of knowledge about the
ecological and behavioral contexts at the time and location of
acoustic recording.

The most common call type in the observations by Recalde-Salas
et al. (2014) was EIO1, also frequently observed in our datasets. This call
is graded in duration, frequency, presence of overtones, and decorations.
For example, the EIO1 variant in Figure 3Ad is similar to the DS1 call
spectrogram published for sei whales and the EIO1 variant in Figure 3Be
is similar to the DS1H call also published for sei whales (Cerchio and
Weir, 2022) (Figures 14A–D). The former call type was also recorded by
Tremblay et al. (2019) from sei whales, and the latter call type by Rankin
and Barlow (2007) and Cusano et al. (2023) from sei whales. The
EIO1 variant of Figure 3Bb resembles the humpback whale “muah”

FIGURE 14
(a, c, e, g and i) EIO1 variants recorded in our study, which compare to similar sounds published elsewhere. (b) DS1 and (d) DS1H from sei whales
(Cerchio and Weir, 2022, published CC BY 4.0). (f) Humpback whale “muah” (Recalde-Salas et al., 2020, published CC BY 4.0). (h) Humpback whale call
type D (Fournet et al., 2015, reprinted with permission from the Acoustical Society of America), which is similar to call type G in Epp, 2019, call type B in
Saloma et al., 2022, and one spectrogram in Indeck et al., 2020. (J) Downsweep of Antarctic minke whale (Casey et al., 2022), published CC BY 4.0.
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(Recalde-Salas et al., 2020) and the humpback whale B-call (D’Souza
et al., 2023); variants in Figure 3Ba Ca look similar to published
humpback downsweeps (call type D, Fournet et al., 2015; call type G;
Epp, 2019; call type B; Saloma et al., 2022; and one call in Indeck et al.,
2020). The variant in Figure 3Bc resembles the downsweep recorded
from Antarctic minke whales (Casey et al., 2022). The variants with
extended lips resemble calls from humpback whales (“Low Hum”, Epp,
2019; “Descending Moan” and “Wup”, (Fournet et al., 2015); “Eaw” and
“Modulated call”, Cusano et al., 2020; “Screech”, (Dunlop et al., 2007), or
right whales (“downcall” and “hybrid”,Webster et al., 2016), or sei whales
(“arch-call”, Cerchio andWeir, 2022). Figure 3Dc, Di compare with calls
from baleen whales geographically as far away as bowhead whales in the
Arctic (Thode et al., 2017).

How then can calls be assigned to species in the absence of visual
validation or relevant ecological contextual knowledge?We explored
1) acoustic co-occurrence of downsweeps with species-stereotypical
calls, 2) acoustic context provided by sounds before and after, and 3)
geographical and seasonal occurrence of downsweeps. While
downsweeps were sometimes recorded together with Antarctic
minke whale bioducks (Dominello and Širović, 2016) or Omura’s
whale calls (Browne et al., 2024), they occurred at variable time
relative to each other and were, hence, not biphonations. With ten
species of baleen whale occurring around Australia, most of which
are known to migrate annually between colder (southern, in
summer) and warmer (northern, in winter) grounds, co-
occurrence has been noted frequently (e.g., Erbe et al., 2015), and
so, sounds recorded at the same time do not have to come from the
same species. Given almost all of our data were recorded with a
single, omni-directional sensor, the two calling animals might not
even have been at the same location. Our sonobuoy recordings
provided bearing information to the calling individuals and
EIO1 downsweeps followed the track of an EIOPBW singer. It is
possible that the same individual produced both song and
downsweeps, or that a singer and non-song producer traveled
closely together in a small cohort. In the latter case, given the
two sound types were tracked together for 80 min, it is likely that the
cohort consisted of individuals of the same species and therefore,
that those downsweeps were indeed made by an EIOPBW.

Acoustic context can be derived from other sounds occurring
before or after a downsweep. Some of our downsweep detections
were part of patterned sequences or songs. Humpback whales
produce complex songs, using a great variety of units in long and
hierarchical patterns (Payne and McVay, 1971) and some of our
downsweeps were part of these complex patterns, but not all. For
downsweeps in simpler or no patterns, identification to species was
thus inconclusive.

Ecological and behavioral context in a given region can also
inform species identification. For instance, seasonally occurring
downsweeps during known migratory periods of PBW may be
attributable to the species with a high level of certainty in
locations where other species that produce downsweeps are very
unlikely to occur. The geographic and seasonal occurrence of
downsweeps resembling EIO1 from Recalde-Salas et al. (2014)
reported here is an example where knowledge of the migratory
timing of PBWs corroborates downsweep attribution to the species.
For downsweeps not resembling EIO1, looking at the geographic
and seasonal occurrence, however, was inconclusive as they could
not be separated into clusters.

More work needs to be done before downsweeps as single
spectrographic features, in the absence of regional ecological and
behavioral context, can perhaps be used routinely in environmental
mitigation and monitoring plans. First, beginning with automated
detectors, there will always be a trade-off between precision and recall,
between false alarms and missed detections. More specifically,
spectrogram correlation detectors are known to suffer from a lack
of variability in the detected signals due to fixed templates (Socheleau
et al., 2015). Their advantages are that they are intuitive, simple, and
quick to set up; they do not require the creation of a training database
for dictionary-based methods or neural networks. Second, sorting
detections into classes is prone to biases. The UMAP algorithm was
unable to cluster downsweeps—partly because downsweeps are
graded. Moreover, similar call types were found in different
clusters because of different ambient noise in the recordings. Even
for high signal-to-noise ratio examples, UMAP may cluster based on
noise features as the algorithm is influenced by both local and global
structures in the data (McInnes et al., 2018). Statistical clustering
techniques could have been applied to quantify the lack of clusters in
the data. However, these methods also suffer from drawbacks such as
sensitivity to noise, dependence on predefined parameters, and the
potential to detect spurious clusters that do not reflect meaningful
differences in the data. Furthermore, clustering algorithms may
impose artificial groupings based on mathematical assumptions
rather than perceptual or biologically relevant differences in the
sounds. Therefore, given that neither PCA or UMAP revealed
clusters, a visual inspection was considered sufficient to conclude
that the calls do not naturally cluster. Finally, manual sorting of
detections, apart from being overwhelming, is biased by human
perception (Leroy et al., 2018; Nguyen Hong Duc et al., 2021;
Dubus et al., 2024). One solution to averaging out the bias in the
human error could be to have citizen scientists annotate the data
(Nguyen Hong Duc et al., 2021; Dubus et al., 2024). This solution has
limitations, however, because the results may be prone to greater error
and lower precision, and the bias will still be present due to, for
example, how the citizen scientists were trained, their previous
experience in annotating, and the material they use for training.
Additional improvements, in particular for highly variable calls like
downsweeps, might be achieved by soft instead of hard labels for
sounds, such as probabilities for belonging to a type, population, or
species, rather than discrete call categories.

Given the similarities of call types across different species, we
might need to improve our ways of measuring and describing these
sounds. Transforms other than the Fourier transform (e.g., wavelet
transforms; Urazghildiiev and Clark, 2007; Mouy et al., 2008) might
capture different features and separate calls differently. Correcting for
the effects of the sound propagation environment could help (e.g.,
removing echoes, frequency-dependent absorption, and dispersion;
Erbe et al., 2022), but the location of the calling animal is typically
unknown in recordings from single, autonomous deployments.
Furthermore, a common library of audio sounds (Miller et al.,
2021; Parsons et al., 2024) with associated metadata (site, time of
the year, sampling frequency, supposed category) could enable
researchers to compare their annotations and increase their
training, testing, and reference database.

Finally, tools derived from phonetic science might improve
researchers’ accuracy in identifying species producing specific call
types. Phonetic science focuses on a combination of physical

Frontiers in Remote Sensing frontiersin.org19

Nguyen Hong Duc et al. 10.3389/frsen.2025.1539618

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1539618


properties, perception, and transmission of sounds and language
(Kortmann, 2020), in the context of recognizing, categorizing, and
understanding sounds. Species could have differences in pitch and
loudness that could contribute to manual downsweep identification;
albeit for sounds having frequencies below those humans are sensitive
to, these would need to be sped up during playback. Although
perception of sounds is inherently biased, theories and tools on
speech perception and sound production in humans may help
manual categorization of sounds accounting for how these are
processed by the brain. Until further advances can be made to allow
full automation of downsweep detection as single spectrographic
features, the extent of interpretation of results and their attribution
to species will need to be informed by regional ecological and behavioral
knowledge and manual reviewing of acoustic data by experienced
personnel in the identification of sounds spectrographically and
phonetically. Then, an integrated approach drawing from different
disciplines could be a critical pathway to progress automated
classification of downsweeps at the species level.

In conclusion, we showed that downsweeps do not cluster;
instead, they are graded and morph along a continuum of
acoustic features. We also demonstrated the challenges in
classifying downsweeps to species, with similar downsweep types
having been reported from diverse species of mysticete whales.
Hence, not all low-frequency downsweeps (<100 Hz) are blue
whales. Even humpback whales have downsweeps to below
50 Hz in their songs. While automated passive acoustic
monitoring for environmental management would ideally detect
non-song sounds in addition to species-stereotypical song (in order
to not only increase the probability of detection but also monitor the
non-singing demographics), reliance on downsweeps alone is
marred with several challenges—at this stage.
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