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Deep learning has been widely applied to high-dimensional hyperspectral image
classification and has achieved significant improvements in classification
accuracy. However, most current hyperspectral image classification networks
follow a patch-based learning framework, which divides the entire image into
multiple overlapping patches and uses each patch as input to the network. Such
locality-based methods have limitations in capturing global contextual
information and incur high computational costs due to patch overlap. To
alleviate these issues, we propose a global learning network with a large
receptive fields network (GLNet) to capture more comprehensive and
accurate global contextual information, thereby enriching the underlying
feature representation for hyperspectral image classification. The proposed
GLNet adopts an encoder-decoder architecture with skip connections. In the
encoder phase, we introduce a large receptive field context exploration (LRFC)
block to extract multi-scale contextual features. The LRFC block enables the
network to enlarge the receptive field and capture more spectral-spatial
information. In the decoder phase, to further extract rich semantic
information, we propose a multi-scale simple attention (MSA) block, which
extracts deep semantic information using multi-scale convolution kernels and
fuses the obtained features with SimAM. Specifically, on the IP dataset, GLNet
achieved overall accuracies (OA) of 98.72%, average accuracies (AA) of 98.63%,
and Kappa coefficients of 98.3%; similar improvements were observed on the PU
and HOS18 datasets, confirming its superior performance compared to baseline
models. The experimental results demonstrate that GLNet performs
exceptionally well in hyperspectral image classification tasks, particularly in
capturing global contextual information. Compared to traditional patch-based
methods, GLNet not only improves classification accuracy but also reduces
computational complexity. Future work will further optimize the model
structure, enhance computational efficiency, and explore its application
potential in other types of remote sensing data.
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1 Introduction

Hyperspectral images provide not only spatial information
typically found in natural images but also rich spectral
information Chen et al. (2024); Firsov et al. (2024). Each pixel in
a hyperspectral image contains dozens or even hundreds of spectral
bands. It is the high dimensionality, large amount of data, more
spectral information, and high spatial resolution of hyperspectral
images that make hyperspectral images more conducive to
automatic object identification and classification Zhao D. et al.
(2024); Sun et al. (2024). Consequently, hyperspectral image
classification has found wide-ranging applications in areas like
agricultural monitoring Adão et al. (2017), resource exploration
Mohanty et al. (2016), military reconnaissance Tiwari et al. (2011),
and urban planning Ghamisi et al. (2014).

In recent years, convolutional neural networks (CNNs) have
been widely used to learn spectral-spatial features for hyperspectral
image classification. CNNs are capable of extracting multi-
dimensional information including spectral, spatial, and spectral-
spatial features to achieve improved classification accuracy. The
methods used in CNNs for extracting spectral-spatial information
typically rely on 2D-CNNs or 3D-CNNs. However, stacked small-
scale convolution kernels (e.g., 3 × 3) used in CNN are sensitive to
rotation in high-spectral images. In order to further address the issue
of rotation sensitivity in CNN, CASSN Yang K. et al. (2021)
proposes a spectral-spatial network with cross-attention to
alleviate the impact of image rotation on high-spectral image
classification. Subsequently, more researchers have focused on
enhancing the rotational invariance robustness of the network.
RIAN Zheng et al. (2022) proposes a rotation-invariant attention
network, which suppresses redundant spectral information through
a central spectral attention module and extracts features through a
calibrated spatial attention module. RIAN achieves state-of-the-art
performance on various hyperspectral datasets and demonstrates
the effectiveness of rotation-invariant attention mechanisms in
improving the robustness of deep learning models. State-of-the-
art CNN-based hyperspectral image classification methods usually
segment images into overlapping small neighborhoods with
surrounding pixels and fuse spectral-spatial information using
joint statistics and morphological features. However, these
methods can only produce shallow appearance features and have
insufficient representation ability for high inter-class similarity and
large spatial differences, resulting in low classification accuracy.
Zheng et al. (2020) propose a fast patch-free global learning (FPGA)
framework based on an encoder-decoder fully convolutional
network (FCN). They use a global random stratified sampling
strategy to obtain different gradients during backpropagation,
solving the convergence difficulties in FCN. Moreover, Zhu Q.
et al. (2021) propose a spectral-spatial dependent global learning
(SSDGL) framework that combines global convolutional long-short
term memory (GCL) and global joint attention mechanism (GJAM)
to effectively leverage global spatial information. In order to extract
deep spectral-spatial features, these methods effectively alleviate the
problems of sample scarcity and imbalance through hierarchical
balance (H-B) sampling strategies and loss strategies. Compared to
CNN-based networks, the aforementioned high-spectral image
classification methods based on FCN can learn global
information of high-spectral images more effectively, but these

methods for extracting spectral-spatial features still rely on small-
scale convolution kernels (3 × 3), making it difficult to obtain
context information with a large receptive field and alleviate the
problem of image rotation in classification.

Traditional hyperspectral image classification methods typically
rely on local feature extraction by analyzing each pixel or small
region. While this approach improves classification performance to
some extent, it often fails to fully leverage global contextual
information when dealing with complex scenarios. Global
contextual information is essential for accurate classification, as it
provides comprehensive background knowledge, helping to better
distinguish between different classes, especially when there are
similarities or blurred boundaries between categories. Despite the
advances in deep learning for hyperspectral image classification,
current methods still face significant challenges, particularly in
effectively capturing global contextual information.

Due to the presence of the same object exhibiting different spectral
signatures in the collected hyperspectral data, integrating global and
contextual information can effectively improve the classification
accuracy of hyperspectral images. Existing hyperspectral image
classification methods still primarily rely on local feature extraction,
such as dividing images into multiple overlapping patches followed by
convolution operations. Although this approach can capture local
details to some extent, it struggles to model long-range dependencies
between distant pixels, resulting in the ineffective utilization of global
contextual information. Moreover, convolution kernels with small
receptive fields are less adaptable to ground objects with large scale
variations, and patch-based processing often introduces excessive
redundant computations. Some studies have attempted to enlarge
the receptive field using dilated or multi-scale convolutions;
however, these approaches may suffer from the loss of fine-grained
target information or insufficient fusion of multi-branch features. These
limitations become particularly prominent when the number of
categories is large, the data is imbalanced, and the spectral
dimensionality is high—ultimately constraining classification
accuracy and generalization capability. Therefore, developing a
method capable of efficiently leveraging large receptive fields for
global feature learning has become particularly urgent.

To address the aforementioned problem, we propose a global
learning network with large receptive fields (GLNet) based on an
encoder-decoder model with skip connections as the basic
framework. Specifically, in the context extraction part of the
encoder, we propose a large receptive field context exploration
(LRFC) block, which combines large convolution kernels,
spatially separable convolutions, and dilated convolutions to
extract multi-scale context features, enabling effective
enlargement of the receptive field while obtaining more spectral-
spatial information. To address the issue of further extracting deep
semantic information from the encoder, we propose a multi-scale
simple attention (MSA) block, which extracts deep semantic
information at different scales using multi-scale convolution
kernels and fuses the features obtained from different scale
branches using SimAM Yang L. et al. (2021).

The main contributions of this paper are as follows:

• Firstly, we propose a novel LRFC block to effectively extract
multi-scale contextual features with significant receptive fields
on each down-sampling stage of the encoder.
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• Secondly, we propose an MSA block to enrich the underlying
features representation. MSA block employs attention
mechanisms to combine and fuse multi-scale semantic
information to further enhance the extraction of deep
semantic information in the decoder.

• Thirdly, we propose a novel GLNet based on encoder-decoder
architecture to capture more comprehensive and accurate
global contextual information for hyperspectral image
classification. Our proposed GLNet achieves highly
competitive performance compared to several state-of-the-
art hyperspectral image classification methods on three
benchmark datasets (IP, PU, HOS18).

The rest of this paper is organized as follows. We first review the
related Work in Section 2. Then, we describe the details of our
proposed GLNet in Section 3. Finally, we give the hyperspectral
image classification experimental results in Section 4 and draw the
conclusions in Section 5.

2 Related work

2.1 Overview of hyperspectral image
classification methods

Hyperspectral images are a valuable source of multidimensional
information, but they also suffer from data redundancy, leading to
the “curse of dimensionality.” In a high-dimensional space, the data
density becomes sparse and overfitting can occur when the number
of samples is small. In the early stages of hyperspectral image
classification research, feature extraction and classifier
construction methods are commonly used to overcome this
problem. Feature extraction methods project high-dimensional
data into a low-dimensional space to reduce the number of
features and retain key information, such as principal component
analysis (PCA) Licciardi et al. (2012); Prasad and Bruce (2008),
independent component analysis (ICA) Villa et al. (2011), and linear
discriminant analysis (LDA), etc. With the advent of machine
learning classifiers, various classifiers, such as support vector
machine (SVM) Li et al. (2011), random forest (RF) Breiman
(2001); Rodriguez-Galiano et al. (2012), and sparse
representation classifiers, are constructed to extract more
discriminative spectral information. However, due to the
presence of noise, classifiers solely relying on spectral
information may not obtain promising classification results.
Therefore, researchers have begun to focus on filters to extract
more discriminative features. The Gabor filter He L. et al. (2016) and
the wavelet filter He et al. (2014) are useful in capturing texture and
edge information and analyzing different scale features. However,
both methods still have limitations since they do not fully utilize the
relationships between pixels, which may lead to incomplete or
inaccurate feature extraction. Therefore, morphological methods
such as mathematical morphology profile (MP) and extended
mathematical morphology profile (EMP) Benediktsson et al.
(2005) have been proposed. These methods process the image
morphologically and extract the shape and structure features of
the image, which can effectively enhance the accuracy and

robustness of the image features and make it more suitable for
practical applications.

In recent years, deep learning methods have shown great
potential in hyperspectral image classification, thanks to various
network architectures like Stacked Auto-Encoder (SAE) Chen et al.
(2014), Deep Belief Networks (DBN) Chen et al. (2015), Recurrent
Neural Network (RNN), and Convolutional Neural Network (CNN)
Makantasis et al. (2015); Guo et al. (2017). These methods can
automatically extract features from hyperspectral images, and
provide better classification accuracy than traditional machine
learning methods. Among them, the CNN-based hyperspectral
image classification methods are widely used. They can effectively
capture spatial and spectral information in hyperspectral images.
Gao et al. Gao et al. (2020) combine t-distributed random
neighborhood embedding with CNNs to classify hyperspectral
images using 2D-CNNs. Li et al. Li et al. (2020) propose a dual-
stream 2D-CNN architecture to better fuse spectral, local, and global
spatial features. Some researchers have also employed 3D
convolutional kernels to directly extract spectral-spatial
information. For example, Zhong et al. Zhong et al. (2017)
propose an end-to-end Spectral-Spatial Residual Network (SSRN)
based on the combination of spectral and spatial residual blocks,
which first extracts spectral features using 3D convolution in the
spectral dimension, then uses 3D convolution in the spatial domain
to extract spatial features for hyperspectral image classification.
Paoletti et al. Paoletti et al. (2018) construct a deep residual
network (PResNet) by stacking pyramid bottleneck residual units
Han et al. (2017) to extract more complex spatial and spectral
features as the network deepens.

Given the superiority of the attention mechanism in the
handling of long-range information, the Transformer architecture
has generated significant research interest and practical applications
in the field of hyperspectral image classification (HSI)Zhang et al.
(2022); Roy et al. (2023); Yang X. et al. (2022). In particular, He et al.
He et al. (2019) proposed a bidirectional encoder representation
transformer network (HSI-BERT), primarily built on a multi-head
self-attention (MHSA) mechanism in an MHSA layer. He et al.He
et al. (2024) proposed an Interval Group Spatial-Spectral Mamba
framework (IGroupSS-Mamba),Benefiting from the Interval Group
S6 Mechanis (IGSM),IGroupSS-Mamba achieves non-redundant
spatial-spectral dependencies modeling across different feature
groups. Ahmad et al. Ahmad et al. (2024)proposed a
WaveFormer, which combines the power of wavelet transforms
and ViT for hyperspectral image classification. Pang et al.Pang et al.
(2025) proposed the Mambahsi model, a spatial–spectral joint
processing approach for hyperspectral image classification. By
employing a multi-scale convolutional feature extraction module,
the model significantly improves classification accuracy,
highlighting the importance of integrating spatial and spectral
information in complex scenarios. Yao et al.Yao et al. (2023)
designed the ExViT framework by combining multimodal
learning with a vision Transformer architecture. They integrated
multiple remote sensing data sources and applied attention
mechanisms to capture long-range dependencies, which enhanced
the model’s understanding of global contextual information and
improved the robustness and accuracy of land use and land cover
classification.
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However, CNN’s reliance on patch-based input makes the
central class prediction heavily dependent on the surrounding
context, affecting the network’s performance in terms of patch
size setting. In general, larger patches can capture richer
contextual features, leading to better classification performance.
However, as the patch size expands, the overlap between adjacent
patches similarly increases, resulting in a surge in storage and
computational costs for the network. This makes it challenging
to achieve a balance between classification accuracy and network
efficiency. Furthermore, the final classification in CNN is
implemented through fully connected layers, which flatten the
feature maps into 1-D vectors, further compromising
information. To address these issues, in the image segmentation
field, Jonathan et al. proposed Fully Convolutional Networks
(FCN) Long et al. (2015), which can take arbitrary-sized feature
maps as inputs and produce pixel-level outputs for semantic
segmentation tasks. Due to the ability of FCNs to handle inputs
of any size and generate predictions for each pixel, outputting as
feature maps, it has also been increasingly applied in hyperspectral
image classification. F-CNN Li et al. (2018) utilizes the PCA
algorithm to extract the first principal component (PC) as the
training label. Then, the training data consists of hyperspectral
data and copies of the first PC. FCSPN Jiang et al. (2021) integrates
a 3-D fully convolution network (3D-FCN) with a convolutional
spatial propagation network (CSPN) for HSI classification,
effectively reducing computational complexity while enhancing
the algorithm’s adaptive ability. UML Wang et al. (2022) proposes
a multi-scale spatial channel attention mechanism and multi-scale
shuffle blocks, considering both effective spectral information and
contextual information, improving the redundancy operations and
land cover map distortion issues in hyperspectral image
classification.

2.2 Attention mechanism

Attention mechanisms are becoming increasingly popular in
hyperspectral image classification frameworks. These
mechanisms enhance regions with informative data and
suppress regions that have minimal impact on classification or
contain noise. Researchers have conducted in-depth and
extensive studies on attention mechanisms. For instance, Hu
et al. Hu et al. (2018) propose SENet, which uses channel-wise
attention mechanisms based on squeeze-and-excitation modules.
Woo et al. Woo et al. (2018) address the issue of neglecting the
importance of spatial features in image classification by SENet,
which only focuses on the relationship among features across
different channels, and propose a novel attention module that
incorporates both channel and spatial attention mechanisms for a
more comprehensive approach. Attention mechanisms have
great potential in hyperspectral image classification since
hyperspectral images have fine internal structures and provide
spectral features from a large number of channels, making them
suitable for the application of both spatial and channel-wise
attention mechanisms. Mei et al. Mei et al. (2019) propose an
algorithm that utilizes bidirectional CNNs to extract spectral and
spatial features separately, which are then combined in the
classification network. Attention mechanisms are introduced

during the feature extraction process in both branches, with
fully connected layers used to calculate attention weights for
spectral and spatial domains. DBMA Ma et al. (2019) proposes a
dual-branch multi-attention mechanism network that also
incorporates both channel and spatial attention. The dual-
attention network based on self-attention mechanism (DANet)
Fu et al. (2019) combines local features and global dependencies.
The spectral-spatial attention block in RSSAN Zhu MH. et al.
(2021), similar to the CBAM Woo et al. (2018), directly operates
on the hyperspectral raw image and extracts spectral and spatial
features from it. The Central Attention Network (CAN) Liu et al.
(2022) employs a dense strategy to extract spectral-spatial
information based on the similarity weights obtained from the
query pixel and its surrounding pixels.

2.3 Multi-scale feature extraction

Hyperspectral image classification is commonly regarded as a
multi-classification task in high-altitude remote sensing, which
requires the extraction of features from objects of different sizes,
making multi-scale fusion increasingly significant in computer
vision and remote sensing. Furthermore, the process of
hyperspectral image classification involves classifying datasets
that have a significant difference in size. Hence, it is essential to
design a multi-scale fusion framework that can classify objects
with varying sizes to improve classification performance. MSSN
Wu et al. (2019) employs a dual-branch structure to jointly
extract spectral and spatial features in a multi-scale spectral-
spatial domain. However, MSSN separately extracts spectral and
spatial information in the dual-branch structure, neglecting the
interaction between spectral and spatial information. Pooja et al.
Pooja et al. (2019) propose a multi-scale residual convolutional
neural network (MSR-CNN) that combines multi-scale, extended
convolutional kernels, and residual connections based on the
CNN framework. Nevertheless, the multi-scale feature extraction
module in MSR-CNN fails to consider the importance of
different features in classification performance during
information fusion. CSMS-SSRN Lu et al. (2020) introduces a
three-branch structure, where each branch extracts spectral and
spatial features of different sizes, followed by multi-scale fusion.
However, this approach only extracts spectral features of one size
and spatial features of another size from a single branch, resulting
in insufficient feature fusion. Subsequently, MSF-MIF Yang L.
et al. (2022) proposes a more comprehensive fusion approach
based on CSMS-SSRN that achieves multi-scale fusion at the
spectral level and fully considers the fusion of different scale
features from a spatial perspective.

3 Proposed method

Figure 1 illustrates the pipeline of the proposed GLNet,
including the feature encoder module and the feature decoder
module. In the following, we first introduce the basic network
structure of the proposed GLNet in Section 3.1. Then, we
describe the details of the proposed LRFC block and MSA block
in Section 3.2 and Section 3.3, respectively.
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3.1 Overview of GLNet

Inspired by the global learning strategies of FPGA [50] and
SSDGL [51], we propose a novel GLNet for high-dimensional image
classification, as shown in Figure 1, which utilizes a fully
convolutional encoder-decoder network as the basic structure,
and combines shallow feature information captured through
effective large receptive fields with multi-scale deep feature
extraction techniques to improve feature representation. In
addition, it considers the spectral relationships between different
bands and the spatial correlations among individual pixels to
enhance classification performance.

For each down-sampling section in the encoder, we adopt a
basic structure consisting of 3 × 3 convolutional layers, followed
by a batch normalization (BN) layer and a rectified linear unit
(ReLU) activation layer. While 3 × 3 convolutional layers are
commonly used for feature extraction in deep convolutional
networks, they are sensitive to rotation in high-spectral
images. In order to extract robust spectral and spatial features,
we propose the large receptive field context (LRFC) block, which
adopts multi-level large-scale convolution kernels and
incorporates spatially separable convolution and dilated

convolution to balance performance and efficiency. As a
result, the LRFC block can obtain a larger spectral-spatial
receptive field and extract richer contextual information.

In the decoder, we propose a multi-scale simple attention
(MSA) block to further extract three-dimensional information of
spectral and spatial features by using multi-scale convolution
kernels and SimAM. This enables rich extraction of deep features
for hyperspectral images. For the up-sampling section, a
transposed convolution operation of 3 × 3 is used in each up-
sampling, followed by a group normalization (GN) layer and a
ReLU activation layer, similar to the down-sampling section.
Furthermore, the deep features obtained by the hyperspectral
image after passing through the encoder serve as the input of the
bottom layer. The features upsampled from the previous layer in
the decoder are fused with the features from each layer of the
encoder through skip connections to obtain enhanced features as
the input of the next layer in the decoder. This fusion method
combines strong semantic information with more detailed spatial
information. Finally, the features are gradually restored to the
original spatial size of the hyperspectral image, and a
classification probability map of the same spatial size as the
input image is output.

FIGURE 1
The pipeline of the proposed GLNet. The proposed GLNet primarily comprises two parts: the encoder and the decoder. The encoder includes the
down-sampling and LRFC blocks, while the decoder consists of the MSA block and up-sampling.
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3.2 LRFC block

To obtain multi-level contextual information, three main
methods have been widely used, including using large
convolutional kernels, stacking small convolutional kernels, and
using dilated convolutions. The core idea of these three methods
is to expand the receptive field to extract contextual information.
Among these methods, stacking multiple layers of small
convolutional kernels as done in Unet Ronneberger et al. (2015)
and ResNet He KM. et al. (2016), is a common way to extract
contextual information. Using large convolutional kernels allows for
directly obtaining a large receptive field, but it can increase
computational complexity and memory consumption, requiring
certain device requirements. Dilated convolution is a sparse
sampling method, but it can also lead to information loss of
small-scale objects due to the varying sizes of objects in remote
sensing images. Using a larger dilation rate to obtain a larger field of
view can also result in the loss of contextual information of small-
scale objects.

To address the challenge of balancing efficiency and
performance in contextual information extraction, this paper
proposes the large receptive field contextual (LRFC) block to
expand the field of view while maintaining computational
efficiency and memory utilization and avoiding the problem of
losing information of small-scale objects. The LRFC module
significantly enlarges the receptive field of the network by
integrating three strategies—large-kernel convolution, dilated
convolution, and spatially separable convolution—without
substantially increasing computational cost. Specifically, large-
kernel convolutions directly cover broader regions, enabling the
capture of long-range dependencies between distant pixels. Dilated
convolutions further allow the network to sample more contextual

information across multiple scales. Meanwhile, spatially separable
convolutions offer a balance between a large receptive field and
reduced computational overhead.

Through a multi-branch structure, the module performs parallel
extraction of multi-scale features and subsequently fuses them,
achieving a balance between local detail preservation and global
structural representation. This design effectively enhances the
expression of spectral–spatial collaborative features in
hyperspectral images, enabling the network to better capture
global contextual information. Consequently, it allows for more
accurate discrimination between categories that are spectrally
similar but spatially distinct. As shown in Figure 2, the LRFC
block consists of two parts, the spatially separable convolutional
context exploration (SSCE) module and the dilated convolutional
context exploration (DCCE) module.

In the LRFC block, the upper part comprises a branch structure
that preserves information from the upper layer and four cascaded
branch structures with different scales of kernels. The branch
structure that preserves information from the upper layer
includes a 1 × 1 convolutional layer, a BN layer, and a ReLU
activation function. The DCCE module is used in the minimum
scale branch of the four cascaded branch structures to extract small-
scale features in the image. In the other three large-scale branch
structures, the SSCE module is used to expand the field of view and
improve feature extraction performance. To combine information
from different receptive fields, information flow is added between
adjacent SSCE blocks, further expanding the effective receptive field
of the SSCE module to capture information across the entire feature
region. The output information from the current block is then fused
with the original feature information and used as input for the next
block. This method can share features of different scales and enable
the output information of the current SSCE module to be better

FIGURE 2
The structure diagram of LRFC block. The proposed LRFC block mainly consists of five branches, including the spatially separated convolution for
context exploration (SSCE) module and the dilated convolution for context exploration (DCCE) module.
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utilized by the next SSCE module. As a result, it improves the ability
to perceive a wider context compared to simple parallel branch
structures.

To enable the context extraction block to have a larger receptive
field while being efficient and effective, we adopt the SSCE block,
shown as the yellow dashed box in Figure 2. The SSCE block utilizes
multi-scale large kernels combined with spatially separable
convolutions to extract context information. First, for a given
input feature, a k � 1 convolution layer is used to reduce the
number of channels. Then, we use two parallel spatially separable
convolutions 1 × ki, ki × 1{ } and ki × 1, 1 × ki{ } to extract context
features. In this method, we use a large-scale kernel (k1 � 27, k2 �
29, k3 � 31) to further increase the effective receptive field when
combined with spatially separable convolutions, making the context
information extracted more rich and diverse. We adopt parallel
spatially separable convolutions to approximate the feature
extraction effect of standard convolutions, achieving a better
balance between performance and efficiency. When a standard
convolution layer and a spatially separable convolution have the
same input tensor shape (W × H × Cin) and output tensor shape
(W × H × Cout) and use the same convolution kernel size (k × k),
the number of parameters and computations of the standard
convolution are as Formulas 1, 2:

Pstd � k2 × Cin × Cout (1)
Cstd � k2 × W × H × Cin × Cout (2)

The number of parameters and computational cost of spatially
separable convolution are as Formulas 3, 4 respectively

Pssc � 2 × k × Cin + Cin × Cout (3)
Cssc � 2 × k × W × H × Cin +W × H × Cin × Cout (4)

From the equation above, we can see that, for standard
convolution, the kernel size k and the number of parameters
have a quadratic relationship, while for spatially separable
convolution, it exhibits a simple linear relationship. Therefore,
when extracting features using large-scale kernels, the difference
in parameter and computational complexity between regular
convolutional and spatially separable convolutional operations is
substantial. In other words, spatially separable convolutional
operations are more efficient while maintaining comparable
classification performance.

After obtaining the features from two parallel spatially separable
convolutions, we combine them using a k � 1 convolutional layer to
restore the original channel dimension. To capture non-linear
features in the contextual information more effectively, we
include BN and ReLU activation functions between each
convolutional layer. BN helps normalize the input data, making
the network easier to train and decreasing the risk of overfitting.
ReLU activation functions can introduce non-linearities into the
network and improve its feature extraction ability.

In order to increase the receptive field of small-scale convolution
operations, we propose the DCCE block, as shown in the purple
dashed box in Figure 2, which leverages dilated convolutions to
extract contextual features from small-scale information.
Specifically, compared with the SSCE block, the DCCE block
performs a relatively simple operation, which is to apply dilated
convolution on the given input information. Given that the DCCE

block mainly focuses on small-scale information, we set the value of
k to three and the dilation rate to 3. The down-sampling operation
using dilated convolution can preserve more detailed information
and enlarge the effective receptive field, which is beneficial for
processing local features and fine details, and ultimately improve
the learning ability of the network. It is worth noting that a dilated
convolutional layer with a dilation rate can achieve a receptive field
comparable to that of a standard convolutional layer with smaller
parameter sizes (Formula 5)

η � k − 1( ) × r + 1, (5)
where η represents the receptive field, and k and r represent the
kernel size and dilation rate, respectively. After the dilated
convolution operation, BN and ReLU activation function are also
used for non-linear operation.

3.3 MSA block

To further extract deep information, we propose a multi-scale
simple attention (MSA) block in the decoder, as shown in Figure 3.
The MSA module further enhances the acquisition of global
contextual information by combining multi-scale convolutions
with lightweight attention mechanisms. Specifically, parallel
convolutional kernels of different scales are employed to capture
multi-level features ranging from fine-grained local details to global
structural patterns. Subsequently, lightweight attention mechanisms
such as SimAM are used to assign point-wise adaptive weights,
emphasizing pixel positions that are more relevant to
discrimination. By adopting this “multi-scale feature extraction +
adaptive attention” strategy, the MSA module effectively integrates
deep semantic information with shallow details, while fully
leveraging both the spectral and spatial dimensions of
hyperspectral imagery. This facilitates precise modeling of global
contextual relationships in complex scenes. The MSA block is
employed to extract deep abstract semantic information. As the
network deepens, the overlapping areas between receptive fields
increase, which leads to the acquisition of more coarse-grained
abstract information and global image information.

The MSA block employs a multi-scale triplet branching
structure to improve the network’s ability to extract high-
resolution information from hyperspectral remote sensing
images, as shown in the diagram. To extract feature information
at different levels of abstraction, multi-scale convolution structures
with k � 3, 5, and seven are used in this block. BN layers and ReLU
activation functions are employed after the convolution layers to
obtain non-linear feature information. In the fusion part, in addition
to using 1 × 1 convolution layers to transform channels, we also
introduce the SimAM to better fuse different multi-scale
information.

SimAM is an attention module based on neuroscience theory
that exploits the importance of each neuron by optimizing an energy
function. Unlike 1-D or 2-D weight attention modules, which treat
every neuron in a channel or spatial position equally and may have
limitations in learning distinctive features. SimAM estimates the
importance of individual neurons based on the energy function and
generates three-dimensional weights while achieving a lightweight
implementation.
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SimAM generates effective three-dimensional weights by
estimating the importance of each neuron. A smaller energy
function value indicates greater differences between the neuron
and its surrounding neurons, resulting in stronger
discriminability and richer information content, both of which
are crucial in visual processing. Consequently, the importance of
a single neuron is determined as Formula 6:

Ei � xi − μ( )
2

4 σ2 + λ( ) +
1
2
, (6)

where xi is the input feature value of the neuron, μ and σ2 are the
mean and variance of all input feature values of neurons in the
channel, respectively. λ is a smoothing term used to avoid division by
a variance less than zero, thus ensuring the stability of the energy
function calculation. All neurons in the channel share the same
mean and variance. The first term (xi−μ)2

4(σ2+λ) in the equation represents
the degree of difference between the neuron and other neurons in
the channel. A smaller energy function value for a neuron, in
comparison to other neurons, implies less similarity, which
indicates greater importance. The second term 1

2 is a constant

FIGURE 3
The structure diagram of MSA block.

FIGURE 4
IP data visualization. (a) Three-band false color composite. (b) Ground-truth map (c) Legend.
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bias that does not affect the value of the energy function but is crucial
for gradient calculations.

Finally, the output of the SimAM can be represented as the dot
product of the input feature X and the importance of each neuron Ei,
expressed as Formula 7:

Y � X × σ Ei( ), (7)
where σ(·) represents the activation function used to map the
importance of each neuron to a value between 0 and 1.

4 Experimental results

In this section, we first introduce the dataset, evaluation
indicators, and experimental parameter settings in Section 4.1,
Then, we present quantitative comparison and qualitative
analysis in Section 4.2. Finally, we show the results of ablation
experiments conducted under different modules in Section 4.3.

4.1 Data description and evaluation index
introduction

IndianPines (IP): This is a hyperspectral image dataset acquired
by the AVIRIS airborne sensor over northwest Indiana in the
United States in 1992. The spectral range of the spectrometer is
400–2500nm, and after removing the zero and water absorption
bands, a total of 200 bands were used for classification. The dataset
includes 16 classes, 10249 labeled pixels, and a spatial size of
145 × 145 pixels with a spatial resolution of 20mpp. The

visualization of this dataset is shown in Figure 4 and Table 1
provides the names of each class, the division of the training and
testing data, and the number of labeled samples in each class.

Pavia University (PU):This is a hyperspectral image dataset
captured by the ROSIS sensor in 2002, covering the Pavia region
in the north of Italy. It contains a large amount of plant category data
and it mainly includes urban image data such as roads, buildings,
and urban landscape vegetation, with a total of nine categories and
42,776 labeled pixels. After removing the noisy bands, there are still
103 bands left, and the dataset has a spatial resolution and size of
1.3mpp. The visualization of this dataset is shown in Figure 5 and
Table 2 provides the name of each category, the split of training and
test sets, and the number of labeled samples. DFC Houston 2018
(HOS18): It is an open high-spectral-image dataset consisting of
48 bands with a resolution of 1 m. Additionally, it includes three
bands of LiDAR data with a resolution of 0.5 m and high-resolution
image data with a resolution of 0.05 m. The dataset contains
20 categories and was first introduced in the 2018 IEEE GRSS
Data Fusion Contest1. It has been used for research in high-spectral-
image classification. The visualization of this dataset is shown in
Figure 6 and Table 3 provides the name of each category, the split of
training and test sets, and the number of labeled samples.

To quantitatively evaluate the classification performance of
different models, we adopt the overall accuracy (OA), average
accuracy (AA), per-class accuracy, and Kappa coefficient as
evaluation metrics for model classification.

4.2 Comparisons with state-of-the-
art methods

To ensure the accuracy and reproducibility of our experiments,
we employ high-performance hardware and state-of-the-art
software frameworks. Our experimental platform consists of a
12th generation Intel(R) Core(TM) i9-12900K processor with
16 cores, 24 threads, 12M cache, and a processing speed of
3.19 GHz, as well as an NVIDIA GeForce RTX 3090 graphics
card with 24G VRAM. For the development environment, we
select Python 3.8 and conduct experiments using the PyTorch
framework. We adopt the parameter settings in SSDGL and train
the IP and PU datasets for 600 epochs and the HOS18 dataset for
1000 epochs, respectively. For optimization, we use SGD, with the
momentum set to 0.9, weight decay set to 0.001, and an initial
learning rate of 0.005, which is multiplied by (1 − iter

max _iter)power
with the iteration number, where power = 0.8 and max_iter = 1000.

We compare GLNet with nine high-spectral image classification
methods, including M3D-CNN He et al. (2017), 3DDLA-CNN
Hamida et al. (2018), PResNet Paoletti et al. (2019), MS3A-Net
Dai et al. (2022), DBSSAN Zhao J. et al. (2024), MTMSD Zhou et al.
(2024),U2ConvFormer Zhan et al. (2024) FPGA Zheng et al. (2020),
and SSDGL Zhu Q. et al. (2021),which is our benchmark model. We
conduct a detailed analysis of the classification performance of the
proposed GLNet and employ three evaluation metrics (OA, AA, and
Kappa coefficient) to quantify its classification performance. The

TABLE 1 The number of training and testing samples in the IP dataset.

No. Class Train Test Total

1 Alfalfa 5 41 46

2 Corn-notill 72 1356 1428

3 Corn-mintill 42 788 830

4 Corn 12 225 237

5 Grass-pasture 25 458 483

6 Grass-trees 37 693 730

7 Grass-pasture-mowed 5 23 28

8 Hay-windrowed 24 454 478

9 Oats 5 15 20

10 Soybean-notill 49 923 972

11 Soybean-mintill 123 2,332 2,455

12 Soybean-clean 30 563 593

13 Wheat 11 194 205

14 Woods 64 1201 1265

15 Building-grass-trees-drives 20 366 386

16 Stone-steal-towers 5 88 93

Total 529 9,720 10249

1 https://hyperspectral.ee.uh.edu/2018IEEEDocs/DataReport.pdf
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best results are highlighted in bold. The benchmark model is
underlined.

The classification performance of different methods on the IP
dataset is shown in Table 4. FCN-based methods achieve better
classification accuracy, with an overall accuracy (OA) of over 90%.
Among the 16 categories, the proposed GLNet achieves the highest
accuracy, which can be attributed to its use of global learning that
leverages global spatial context information at the bottom level.
GLNet achieves an improvement of 2%–5% compared to FPGA and
1%–2% compared to SSDGL. In particular, GLNet shows a 5%–7%
improvement in corn classification compared to FPGA and a slight
improvement over SSDGL. The performance enhancement of
GLNet can be primarily attributed to the LRFC block, which
provides a larger receptive field and richer contextual feature
information. The LRFC block enables the model to better capture
both local and global information, particularly in a limited dataset.

Additionally, its hierarchical balanced sampling strategy helps
mitigate the issues posed by insufficient and imbalanced data.
Consequently, GLNet achieves robust classification performance
even when the dataset is small or imbalanced. As shown in
Table 4, FCN-based methods also yield higher accuracy in OA,
AA, and Kappa coefficients. GLNet outperforms several state-of-
the-art methods in terms of overall accuracy (OA), average accuracy
(AA), and Kappa coefficient. Specifically, for land cover types with
blurred boundaries and similar spectral characteristics—such as
Grass-pasture vs Grass-trees and Soybean-notill vs Soybean-min
till—traditional methods often suffer from misclassification. In
contrast, GLNet effectively captures long-range contextual
information through its large receptive field module, significantly
improving classification accuracy for these challenging categories.
Moreover, for classes with very limited training samples, such as
Alfalfa, GLNet leverages its multi-scale attention mechanism to
better extract discriminative features, maintaining a high
recognition rate. These results demonstrate that GLNet exhibits
greater robustness and discriminative capability when dealing with
typical challenges in the IP dataset, including small sample sizes,
spectrally similar classes, and complex scene structures.

The PU dataset comprises a substantial number of samples and
exhibits exceptional spatial resolution, making spatial information
crucial for discerning difficult-to-classify categories in hyperspectral
imagery. As depicted in Table 5, among the nine categories, the
proposed GLNet achieves the highest accuracy. This is because the
integration of an LRFC block in GLNet enables the acquisition of
global spatial context information and the extraction of
interdependencies between spectral channels. Notably, the FCN-
based approach significantly outperforms the CNN-based approach
in the categories of “Gravel”, “Bitumen”, and “Self-blocking bricks”.
The proposed GLNet achieves the highest accuracy in terms of OA,
AA, and kappa coefficient. Compared to MS3A-Net, the proposed
method achieves an improvement of approximately 5% in

FIGURE 5
PU data visualization. (a) Three-band false color composite (b) Ground-truth map (c) Legend.

TABLE 2 The number of training and testing samples in the PU dataset.

No. Class Train Test Total

1 Asphalt 67 6,564 6,631

2 Meadows 187 18462 18649

3 Gravel 21 2078 2099

4 Trees 31 3,033 3,064

5 Painted metal sheets 14 1331 1345

6 Bare soil 51 4,978 5,029

7 Bitumen 14 1316 1330

8 Self-blocking bricks 37 3,645 3,682

9 Shadows 10 937 947

Total 432 42344 42776
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classification performance, and an improvement of approximately
1% compared to the FPGA method. Furthermore, the proposed
method demonstrates improved classification performance
compared to SSDGL. In particular, for categories such as
Asphalt, Gravel, and Bitumen, which exhibit high spectral
similarity and are often misclassified by traditional models,
GLNet significantly improves class separability and reduces
confusion by incorporating multi-scale attention mechanisms and
global context modeling. Moreover, for small-area classes with
irregular boundaries—such as Self-Blocking Bricks and
Shadows—GLNet leverages its multi-scale feature fusion
capability to more accurately restore spatial details and boundary
information, thereby enhancing classification completeness and
continuity. Overall, the results demonstrate that GLNet exhibits
stronger adaptability and robustness in handling the challenges of
the PU dataset.

The HOS18 dataset has a large spatial scale and an uneven
distribution of samples across different categories. For instance,
while the “Non-residential buildings” category has 223,752 samples,
the “Unpaved parking lots” category contains only 146 samples.
CNN-based networks, which primarily learn local features, typically

require a larger number of training samples compared to FCN-based
networks. However, in HOS18, only 5% of the samples are selected
as training data for CNN-based networks, while FCN-based
networks use only 10 samples per category for training, leaving
the rest for testing. As shown in Table 6, methods like M3D-CNN
and SSDGL perform poorly in the “Unpaved parking lot” category,
while FPGA shows relatively low accuracy in the “Crosswalks”
category. Although methods like 3DDLA-CNN, PResNet, and
MS3A-Net outperform the aforementioned methods in certain
categories, they still struggle with accurate classification in the
“Crosswalks” category. In contrast, the proposed GLN-LRF excels
in all 20 categories, achieving high accuracy across the board. This
remarkable performance can be attributed to the LRFC and MSA
blocks, which are key components of GLN-LRF. These blocks
address the challenge of imbalanced samples, particularly in
categories with fewer samples, by capturing rich spatial and
spectral context. The LRFC block enables the model to capture
larger receptive fields, improving the classification of both small and
large categories. Additionally, the MSA block enhances the model’s
ability to integrate multi-scale semantic information, further
improving its performance on imbalanced datasets. Overall,

FIGURE 6
HOS18 data visualization. (a) Three-band false color composite (b) Ground-truth map (c) Legend.
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GLN-LRF achieves the highest accuracy in terms of OA, AA, and
Kappa coefficient among the seven methods, with scores of 98.72%,
98.63%, and 98.3%, respectively. These results highlight GLN-LRF’s
superior ability to handle imbalanced datasets and achieve robust
classification across diverse categories.

To ensure a fair comparison among different classification
methods, we randomly select 5% of the samples as the training set
and the remaining samples as the test set for all classification
methods in the HOS18 dataset. The comparison results are
shown in Table 7. As shown in the table, it can be observed
that the number of training samples has little effect on the FCN-
based classification methods. The proposed GLNet method
outperforms the other methods in terms of different training
sample sizes and achieves the highest scores in the three
classification evaluation metrics.

To further qualitatively analyze the classification
performance of different hyperspectral image classification
methods, we compare the classification results of M3D-CNN,
3DDLA-CNN, PResNet, MS3A-Net, FPGA, SSDGL, and GLNet
on the IP, PU, and HOS18 datasets using visualization graphs.
Figure 7 shows the classification results visualization of different
classification methods on the IP dataset. It can be observed that
the FCN-based classification method exhibits superior visual
performance compared to the CNN-based method, with

smoother images and fewer noisy points. This is because the
FCN-based method can effectively leverage global contextual
information to obtain a complete surface cover structure,
extract the most discriminative spatial features, and attain
category boundaries closer to the real image. Compared to
CNN-based methods, FCN-based methods perform better in
classifying categories with similar features, such as corn and
soybeans, and possess better generalization ability. Our proposed
GLNet outperforms the FPGA method in the classification of the
“Soybean-mintill” and “Soybean-notill” categories.

The visualization of the classification results of different
hyperspectral image classification methods on the PU dataset
is shown in Figure 8. It can be observed that both CNN-based and
FCN-based classification methods perform well on the PU
dataset, owing to its high spatial resolution of 1.3mpp and
large sample size. In particular, based on the classification
results of the “Meadows” class in the middle of the image, it
can be seen that the FCN-based exhibits advantages and does not
exhibit salt-and-pepper noise. This is likely due to the fact that
the grassland area in the middle of the image is relatively large,
and FCN is a global learning method that can effectively utilize
surrounding information. Additionally, the LRFC block
proposed in this paper has a larger receptive field, which
allows it to obtain more surrounding information, and the
MSA block can better extract deep semantic information.
Therefore, the proposed GLNet in this paper can obtain clear
class boundaries and complete road structures. The visualization
of the classification results using different classification methods
on the HOS18 dataset is shown in Figure 9, indicating significant
visual differences between the methods. A zoomed-in box in the
upper right corner of the figure exposes notable misclassification
in the “Non-residential buildings” category for the CNN-based
classification method. Notably, although the MS3A-Net method
is a CNN-based method, it demonstrates evident improvement
compared to other CNN-based methods, including M3D-CNN,
3DDLA-CNN, and PResNet, and even performs better in
classifying deciduous trees and roads in the zoomed-in box,
compared to the two FCN-based classification methods, FPGA
and SSDGL. The proposed GLNet yields the best visual effects on
the classification of “Non-residential buildings,” “Deciduous
trees,” and “Roads” compared to other methods, with clear
boundaries between different categories and no obvious noise
points within the same category. Furthermore, the “Sidewalks”
category is more detailed, and the proposed GLNet also exhibits
good performance in this category, which is likely because the
LRFC block has a large receptive field that can explore long-
distance contextual information, and the MSA block has the
ability to extract and integrate deep semantic information. The
results suggest that GLNet outperforms other methods in terms
of fine details and boundary clarity on the HOS18 dataset.

4.3 Ablation studies

In this section, we conduct ablation studies on the blocks and
comparative experiments on classification performance using
different convolution kernels to further verify the effectiveness of
LRFC and MSA blocks in GLNet. The training and test set splits for

TABLE 3 The number of training and testing samples in the HOS18 dataset.

No. Class Train Test Total

1 Healthy grass 10 9,789 9,799

2 Stressed grass 10 32492 32502

3 Artificial turf 10 674 684

4 Evergreen trees 10 13585 13595

5 Deciduous trees 10 5,011 5,021

6 Bare earth 10 4,506 4,516

7 Water 10 256 266

8 Residential buildings 10 39762 39772

9 Non-residential buildings 10 223742 223752

10 Roads 10 45856 45866

11 Sidewalks 10 34019 34029

12 Crosswalks 10 1508 1518

13 Major thoroughfares 10 46338 46348

14 Highways 10 9,855 9,865

15 Railways 10 6,927 6,937

16 Paved parking lots 10 11490 11500

17 Unpaved parking lots 10 136 146

18 Cars 10 6,537 6,547

19 Trains 10 5,359 5,369

20 Stadium seats 10 6,814 6,824

Total 200 504656 504856
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TABLE 4 Comparison of classification accuracy (%) and Kappa measure of different classification methods on the IP dataset (5% training set).

Classes CNN-based Transformer-
based

FCN-based

M3D-
CNN

3DDLA-
CNN

PResNet MS3A-Net DBSSAN MTMSD U2ConvFormer FPGA SSDGL GLNet

1 40.48 45.24 46.51 44.19 100.00 100.00 100.00 92.68 100.00 100.00

2 72.53 64.99 86.54 91.65 97.73 99.52 98.57 98.82 99.78 99.93

3 52.10 41.10 91.98 91.72 99.06 99.01 97.28 94.54 99.49 99.87

4 52.29 40.83 77.27 67.73 97.75 99.62 99.69 100.00 100.00 100.00

5 86.26 78.15 91.78 82.67 100.00 98.62 99.08 83.62 99.78 100.00

6 99.11 96.13 96.17 96.76 100.00 99.97 99.54 97.98 100.00 100.00

7 30.77 3.85 65.38 15.38 100.00 99.20 94.67 100.00 100.00 100.00

8 99.77 99.55 93.48 100.00 100.00 100.00 100.00 100.00 100.00 100.00

9 44.44 27.78 73.68 89.47 100.00 100.00 100.00 100.00 100.00 100.00

10 82.44 47.65 87.40 91.93 99.53 98.79 99.58 94.15 99.78 100.00

11 56.71 72.64 93.48 95.71 99.00 99.67 99.82 95.97 98.54 99.74

12 61.36 25.64 80.62 86.41 94.09 98.84 98.32 97.87 99.29 99.64

13 100.00 90.48 100.00 94.24 100.00 99.78 97.84 96.91 100.00 100.00

14 97.08 95.36 93.80 97.79 100.00 99.86 99.76 99.67 100.00 100.00

15 54.37 42.82 94.44 84.72 100.00 99.42 99.14 99.73 100.00 100.00

16 60.00 89.41 95.35 94.19 92.41 98.10 95.64 100.00 100.00 100.00

OA 73.19 68.18 90.71 92.28 98.75 99.45 99.16 96.69 99.51 99.90

AA 68.11 60.10 85.49 82.79 98.01 99.40 98.68 97.00 99.79 99.95

Kappa 69.75 63.48 89.41 91.19 98.66 99.37 99.04 96.23 99.44 99.88

TABLE 5 Comparison of classification accuracy (%) and Kappa measure of different classification methods on the PU dataset (1% training set).

Classes CNN-based Transformer-
based

FCN-based

M3D-
CNN

3DDLA-
CNN

PResNet MS3A-Net DBSSAN MTMSD U2ConvFormer FPGA SSDGL GLNet

1 93.82 92.11 96.33 90.67 99.78 100.00 99.92 99.58 100.00 100.00

2 90.31 89.85 96.72 98.75 99.93 100.00 99.97 99.87 99.99 100.00

3 48.12 2.55 69.61 84.00 100.00 100.00 99.92 99.95 100.00 100.00

4 89.12 72.50 97.21 95.56 99.72 99.59 98.47 99.27 99.34 100.00

5 95.72 99.55 100.00 99.62 100.00 100.00 99.92 100.00 100.00 100.00

6 43.28 28.32 87.15 97.46 99.56 100.00 100.00 100.00 100.00 100.00

7 62.41 0.00 67.54 84.74 100.00 100.00 99.52 100.00 100.00 100.00

8 80.99 85.68 80.4 93.42 99.66 99.87 99.53 99.83 100.00 100.00

9 97.12 0.00 97.6 100 100.00 99.79 98.56 100.00 100.00 100.00

OA 81.82 72.60 92.05 95.55 99.83 99.95 99.76 99.81 99.95 100.00

AA 77.88 52.28 88.06 93.80 99.75 99.92 99.53 99.83 99.93 100.00

Kappa 75.66 62.50 89.45 94.11 99.78 99.94 99.70 99.74 99.93 100.00
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the IP, PU, and HOS18 datasets are shown in Tables 1–3,
respectively.

To investigate the effectiveness of large-scale spatially separable
convolution kernels in expanding the effective receptive field, we
varied the spatially separable scales in the SSCE module to [3, 5, 7],
[9, 11, 13], [15, 17, 19], [21, 23, 25], and [27, 29, 31], while
maintaining all other conditions constant. The classification
results on the HOS18, IP, and PU datasets with different kernel
scales are shown in Figure 10. As the IP dataset has a smaller spatial
scale, there is no significant difference between the large and small
scales of the kernel. However, the classification accuracy achieved
using the large-scale kernel was nearly identical to that of the small-
scale kernel, with an OA value exceeding 99.9%, indicating
outstanding classification performance. The HOS18 dataset has a
larger spatial size, which makes the large-scale kernel more
advantageous compared to the small-scale kernel. This advantage

becomes more pronounced as the kernel size increases. Thus, the
results indicate that large-scale kernels can capture information
from a larger range, which is beneficial for high-dimensional
hyperspectral image classification tasks, particularly for
hyperspectral data with large spatial dimensions. This approach
can further improve the classification performance of the network.

We added the LRFC block after each down-sampling operation
in the encoder and used the MSA block in the decoder of the GLNet.
To analyze and verify the effectiveness of these two blocks in the
network, we designed an experiment. Specifically, we compared
three cases using the basic encoder-decoder structure as the baseline.
The first case was to only add the LRFC block in the encoder’s down-
sampling operation, the second case was to only add the MSA block
in the decoder, and the third case was to add both LRFC and MSA
blocks in the encoder and decoder (referred to as GLNet). Table 8
shows the three classification metrics (OA, AA, and Kappa) on the

TABLE 6 Comparison of classification accuracy (%) and Kappameasure of different classificationmethods onHOS18 dataset. The training set is 5% for CNN-
based networks and 10 samples for each class for FCN-based networks.

Classes CNN-based Transformer-
based

FCN-based

M3D-
CNN

3DDLA-
CNN

PResNet MS3A-Net DBSSAN MTMSD U2ConvFormer FPGA SSDGL GLNet

1 89.06 89.85 83.53 88.00 90.73 88.87 87.26 50.75 70.75 89.88

2 95.26 94.97 96.20 96.81 95.63 96.29 90.11 96.08 91.53 95.32

3 82.62 82.93 100.00 100.00 100.00 99.93 99.33 16.48 100.00 100.00

4 96.35 97.29 98.83 98.51 94.66 99.32 98.87 90.34 96.27 99.72

5 74.38 91.53 95.04 94.59 90.86 97.01 95.74 0.00 12.93 99.54

6 93.22 98.14 99.90 99.52 97.83 100.00 99.97 0.62 93.92 100.00

7 95.65 88.54 97.98 100.00 100.00 97.40 99.87 75.39 99.61 100.00

8 85.40 89.37 97.80 97.23 96.64 99.81 99.75 93.63 97.57 99.98

9 94.62 93.58 99.12 99.12 96.64 99.72 99.53 98.55 99.20 99.95

10 61.44 76.00 86.74 87.20 90.6 96.63 94.92 61.32 69.14 97.21

11 64.12 68.10 82.30 81.02 78.84 93.96 90.16 37.75 51.00 95.17

12 0.00 15.11 24.98 23.00 26.65 55.30 52.94 0.00 0.13 98.41

13 77.11 74.43 94.72 95.17 84.99 97.87 97.85 76.29 86.81 98.36

14 75.22 92.82 98.86 98.33 91.8 99.27 99.45 64.77 96.38 99.99

15 98.13 99.92 100.00 99.60 98.64 99.92 99.98 70.26 96.78 100.00

16 89.16 97.38 97.62 97.21 95.91 99.84 99.45 62.39 87.83 99.76

17 0.00 95.68 60.29 86.76 98.65 100.00 97.60 0.00 100.00 100.00

18 78.12 83.76 96.60 96.18 92.17 99.60 98.92 59.59 73.96 99.28

19 92.63 90.49 99.98 99.66 98.58 99.99 99.93 83.30 87.16 99.96

20 92.15 96.53 99.12 99.81 99.58 100.00 99.97 87.11 99.74 100.00

OA 85.93 88.09 95.54 95.57 92.94 98.29 97.70 81.96 88.84 98.72

AA 76.73 85.78 90.48 91.89 90.56 96.04 95.38 55.95 80.54 98.63

Kappa 81.71 84.64 94.19 94.23 90.70 97.77 97.01 76.26 85.35 98.33
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HOS18 dataset under different block combinations. From Table 8,
we can clearly observe that adding either LRFC or MSA block in a
single subnetwork, compared to the baseline, resulted in significant
improvements in all three metrics. Compared with the baseline, the
LRFC subnetwork improved all three metrics by 10%, with an
increase of 19% in AA metric, and the MSA subnetwork
improved all three metrics by approximately 6%–12%.
Furthermore, the GLNet network, which included both LRFC
and MSA blocks, showed significant improvements in all
classification metrics compared to the baseline. This indicates
that the LRFC and MSA blocks are effective in extracting
contextual features in hyperspectral image classification and that
their combination can complement each other, further improving
the network’s classification performance.

To further validate the effectiveness of different blocks, we
compare the feature maps generated by the ablation studies.
Figure 11 clearly shows the differences among them. It is evident
that both LRFC subnetwork and MSA subnetwork display

significant improvements over Baseline, particularly for the
“Cars” and “Paved parking lots” categories in the gray box on
the left side of the figure. Baseline’s feature maps produce messy
and disordered classification results for these two categories. On the
contrary, the “Cars” and “Paved parking lots” feature maps
generated by the LRFC and MSA subnetworks are neatly
arranged, yielding well-defined classification results. Furthermore,
the feature maps of the proposed GLNet also exhibit significant
changes compared to the other three feature maps, as illustrated in
the gray box on the right of Figure 11, where “Trains” and
“Railways” are represented as straight and well-defined borders
with their surrounding classes. Overall, the addition of the LRFC
and MSA blocks significantly mitigates noise points in classification
maps, making the boundaries between different categories more
distinct and recognizable. This highlights the effectiveness of these
two blocks to extract contextual features from hyperspectral images
in a complementary manner, enhancing the classification
performance of the network.

TABLE 7 Comparison of classification accuracy (%) and Kappa measure of different classification methods on the HOS18 dataset (5% training set).

Classes CNN-based Transformer-
based

FCN-based

M3D-
CNN

3DDLA-
CNN

PResNet MS3A-Net DBSSAN MTMSD U2ConvFormer FPGA SSDGL GLNet

1 89.06 89.85 83.53 88.00 90.73 88.87 87.26 50.65 73.32 88.80

2 95.26 94.97 96.20 96.81 95.63 96.29 96.08 90.07 88.80 95.23

3 82.62 82.93 100.00 100.00 100.00 99.93 99.33 16.02 100.00 100.00

4 96.35 97.29 98.83 98.51 94.66 99.32 98.87 90.37 93.70 99.88

5 74.38 91.53 95.04 94.59 90.86 97.01 95.74 0.00 60.35 99.39

6 93.22 98.14 99.90 99.52 97.83 100.00 99.97 0.61 99.32 100.00

7 95.65 88.54 97.98 100.00 100.00 97.40 99.87 74.60 98.41 100.00

8 85.40 89.37 97.80 97.23 96.64 99.81 99.75 93.64 98.64 99.98

9 94.62 93.58 99.12 99.12 96.64 99.72 98.53 98.55 99.57 99.96

10 61.44 76.00 86.74 87.20 90.6 96.63 94.92 61.29 80.71 96.94

11 64.12 68.10 82.30 81.02 78.84 93.96 90.16 37.80 43.95 89.87

12 0.00 15.11 24.98 23.00 26.65 55.30 52.94 0.00 0.00 98.68

13 77.11 74.43 94.72 95.17 84.99 97.87 97.85 76.25 95.87 98.36

14 75.22 92.82 98.86 98.33 91.8 99.27 99.45 64.70 99.18 99.99

15 98.13 99.92 100.00 99.60 98.64 99.92 99.98 70.49 96.45 100.00

16 89.16 97.38 97.62 97.21 95.91 99.84 99.45 62.43 92.45 99.76

17 0.00 95.68 60.29 86.76 98.65 100.00 97.60 0.00 100.00 100.00

18 78.12 83.76 96.60 96.18 92.17 99.60 98.92 59.91 80.54 99.41

19 92.63 90.49 99.98 99.66 98.58 99.99 99.93 83.33 89.73 99.96

20 92.15 96.53 99.12 99.81 99.58 100.00 99.97 87.07 99.86 99.98

OA 85.93 88.09 95.54 95.57 92.94 98.29 97.70 81.95 91.03 98.32

AA 76.73 85.78 90.48 91.89 90.56 96.04 95.38 55.89 84.50 98.31

Kappa 81.71 84.64 94.19 94.23 90.70 97.77 97.01 76.24 88.24 97.81

Frontiers in Remote Sensing frontiersin.org15

Dai et al. 10.3389/frsen.2025.1545983

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1545983


5 Conclusion

This paper alleviates the challenge of CNN-based classification
methods failing to learn global spectral-spatial information. We
propose a GLNet based on an encoder-decoder network structure.
Firstly, in the encoder, LRFC block is proposed to extract contextual

information of a large receptive field in the spectral space. Secondly,
in the decoder, a new MSA block is proposed to further extract deep
semantic information, enhancing the feature learning capability of
the network. In the experimental section, we compare various state-
of-the-art classification methods quantitatively and qualitatively on
three commonly used datasets. The results demonstrate that the

FIGURE 7
Color classificationmaps of four different algorithms on the IP dataset. (a)Ground truth (b)M3D-CNN (c) 3DDLA-CNN (d) PResNet (e)MS3A-Net (f)
FPGA (g) SSDGL (h) GLNet.

FIGURE 8
Color classification maps of four different algorithms on the PU data. (a) Ground truth (b)M3D-CNN (c) 3DDLA-CNN (d) PResNet (e) MS3A-Net (f)
FPGA (g) SSDGL (h) GLNet.

Frontiers in Remote Sensing frontiersin.org16

Dai et al. 10.3389/frsen.2025.1545983

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1545983


proposed GLNet has a competitive advantage in hyperspectrkal
image classification. The GLNet model proposed in this study
demonstrates excellent performance in hyperspectral image
classification; however, it has some limitations. First, its high
computational complexity and reliance on high-performance
hardware may restrict its applicability in real-time or resource-
constrained environments. Second, while the model shows strong
results on the datasets tested, its performance is still dependent on
the dataset’s characteristics, and it may not perform well with small
sample sizes or in cases of class imbalance. Furthermore, the
complexity of the deep learning architecture reduces its

FIGURE 9
Color classification maps of four different algorithms on the HOS18 dataset. (a) Ground truth (b) M3D-CNN (c) 3DDLA-CNN (d) PResNet (e)
MS3A-Net (f) FPGA (g) SSDGL (h) GLNet.

FIGURE 10
The impact of different scales of convolution kernels in the LRFC block on OA.

TABLE 8 Classification results of different blocks in GLNet under
HOS18 dataset.

Module LRFC MSA HOS18

OA AA Kappa

Baseline × × 88.39 79.42 84.76

LRFC ✓ × 98.50 98.43 98.05

MSA × ✓ 94.39 91.80 92.67

GLNet ✓ ✓ 98.72 98.63 98.33
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interpretability, which could pose challenges in practical
applications. Future work should focus on improving
computational efficiency, enhancing the model’s generalization
across diverse datasets, and exploring integration with other
advanced models. Additionally, addressing challenges such as
small sample learning and transfer learning will help expand the
model’s applicability and further boost its performance.

Overall, the proposed GLNet model demonstrates promising
performance in improving the classification accuracy of
hyperspectral images. Future research may further explore the
application of GLNet to other types of remote sensing data, such
as multispectral imagery and synthetic aperture radar (SAR)
data, in order to evaluate its generalizability and effectiveness
across different data modalities. Additionally, attention should
be given to assessing the robustness of GLNet under varying
environmental conditions, including changes in illumination,
seasonal variations, and geographical diversity, which may
affect classification accuracy. These investigations will not only
expand the potential applications of GLNet but also further
validate its effectiveness and reliability in complex and diverse
real-world scenarios.
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