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The statistical and topological properties of spectral feature spaces are direct
expressions of the populations of spectra they represent. Characterization of the
topology and dimensionality of spectral feature spaces provides both quantitative
and qualitative insight into their information content. Understanding the
characteristics and information content of a spectral feature space is essential
tomodeling and interpretation of the target properties of spectra. The reflectance
of crystalline substrates, specifically sands and evaporites, is of immediate
relevance to remote sensing of the diversity of soils and terrestrial substrates
more generally. The objective of this analysis is to characterize the topology and
spectral dimensionality of spectroscopic feature spaces composed of a diversity
of co-occurring sands and evaporites worldwide. To achieve this, we construct a
composite spectral feature space as a mosaic of 30 desert environments imaged
by NASA’s EMIT spaceborne imaging spectrometer and compare the global and
local structure of the aggregate spectral feature space using a combination of
linear and nonlinear dimensionality reduction. The 3D (>99%) variance partition of
the EMIT mosaic indicates that the spectral diversity of sand and evaporite
reflectances is determined primarily by albedo and spectral
continuum–related to mineralogy, moisture content and illumination
geometry. The spectral feature space defined by the low order principal
components clearly distinguishes low and high albedo sand endmembers with
multiple internal clusters indicating distinct spectral continuum shapes. The same
feature space also contains a continuum of evaporite endmembers with no
apparent clustering but a strong dependence of albedo and continuum curvature
on moisture content. In contrast, 2D and 3D UMAP embeddings of the same
feature space clearly distinguish at least 18 spectrally separable clusters
interspersed amidst two continua of tendrils. One continuum is associated
with multiple sand albedo gradients in the Gobi Desert while the other
corresponds to a variety of low albedo basement outcrops in multiple
granules. Together, these observations indicate that the EMIT spectrometer is
able to clearly distinguish spectrally separable reflectance features in both the
spectral continuum and narrowband absorptions, suggesting that the
geographically distinct crystalline substrates included in the study are
mineralogically distinct and completely spectrally separable.
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Introduction

The statistical and topological properties of spectral feature
spaces are direct expressions of the populations of spectra they
represent. Specifically, the diversity of spectral continuum shapes
and amplitudes and the diversity of absorption features
superimposed on them (Clark and Roush, 1984; Hapke, 2012).
Characterization of the topology and dimensionality of spectral
feature spaces provides both quantitative and qualitative insight
into their information content (Boardman, 1993; 1994). Here we
follow the primary definition of topology as given by the Oxford
English Dictionary; The way in which constituent parts are
interrelated or arranged. The topology of an object is inherently
dependent on its dimensionality. In the case of imaging
spectroscopy, the dimensionality of a spectral feature space is
dependent on both the intrinsic dimensionality of the population
of constituent spectra and on the sampling (both spatial and
spectral) of the imaging sensor, among other factors.

Understanding the characteristics and information content of a
spectral feature space is essential to modeling and interpretation of
the target properties (landscape, water body, atmospheric column,
material surface, etc.). In the context of this analysis, modeling can
include both physically-based continuous models (e.g., spectral
mixture models) and categorically-defined discrete classifications
(e.g., thematic land cover maps). In both cases, the model represents
a lower dimensional depiction of a higher dimensional feature space.
Characterization of the topology and dimensionality of a spectral
feature space can therefore inform the design of appropriate
parsimonious models to represent its information content.

Accurate representation of a spectral feature space often
depends on the statistical variance scale of features contained
within. While the overall “global” scale topology of the full
feature space may be more influenced by the diversity of
continuum shapes and amplitudes of the constituent spectra, the
more subtle “local” scale topology may reflect the diversity of
narrowband absorption features present in the spectra–but
lacking sufficient variance to affect the global structure.
Depending on the application of the model, either or both scales
may be relevant to how the feature space is modeled. Whereas
clustering within the feature space can determine how accurately it
can be categorized with a discrete classification, the number of
distinct spectral endmembers and linearity of the topology can guide
the design of spectral mixture models. The primary focus of this
analysis is on the topology and dimensionality of spectral feature
spaces of reflectance spectra of crystalline substrates. Specifically,
naturally occurring sand dune fields and their associated
evaporite deposits.

The reflectance of crystalline substrates is of immediate
relevance to remote sensing of the diversity of substrates more
generally. Both sands and evaporites represent multiple
mineralogically distinct endmembers within the continuum of
rock, sediment and soil substrates found throughout the Earth
surface. Global studies of both broadband (e.g., (Small and
Milesi, 2013; Small and Sousa, 2022; Sousa and Small, 2019)) and
spectroscopic (e.g., (Small and Sousa, 2024; Sousa and Small, 2018))
substrate mixing spaces identify sands and evaporites as distinct
endmembers on the substrate continuum. The fundamental
question we seek to address is the degree to which high signal-

to-noise spaceborne imaging spectroscopy can resolve diagnostic
spectral features of mineralogically distinct crystalline substrates in
spectral mixtures and whether the spectral features are sufficiently
consistent to allow for accurate mapping of their composition and
spatial extent.

The overall objective of this analysis is to characterize the
topology and spectral dimensionality of spectral feature spaces
composed of a diversity of sands and evaporites worldwide. To
achieve this, we construct a composite spectral feature space as a
mosaic of 30 desert environments imaged by NASA’s EMIT
spaceborne imaging spectrometer. We exploit the frequent co-
occurrence of evaporites within and around sand dune fields to
simplify our sample selection, but acknowledge that larger evaporite
basins like playa lakes and sabkhas are underrepresented. Therefore,
we limit our inference about evaporite reflectance to time static
images of sand-adjacent evaporites which may not represent all
spatiotemporal processes that occur within the temporal continuum
of evaporite hydration and dehydration. Because EMIT’s ~60 m
Ground Instantaneous Field of View (GIFoV) is considerably finer
than the scale of both dune fields and evaporite basins, the
instrument effectively oversamples the targets while maintaining
the potential to resolve compositional gradients within them. The
specific objectives of the analysis are to characterize the differences
and similarities of multiple scales of mixing space topology using
complementary approaches to dimensionality reduction. With
application to continuous spectral mixture models, this
characterization will allow for identification of spectral
endmembers and dimensionality of viable models. With
application to discrete thematic classifications, this
characterization will allow for identification of distinct clusters
within the mixing space and quantify the spectral separability of
such clusters.

Data

The source of data for this analysis is a 30-granule mosaic of
spectroscopic imagery from NASA’s Earth Mineral Dust Source
Investigation (EMIT) mission (Green et al., 2020). The EMIT
instrument is a Dyson imaging spectrometer with an 11° cross-
track field of view. EMIT has an optically fast (F/1.8) and wide-swath
(1,240 samples) optical system achieving roughly 7.4 nm spectral
sampling across the 380–2,500 nm spectral range (Bradley et al.,
2020). EMIT achieves a high signal-to-noise (SNR) > 2x its design
requirement of ~200 in most channels (Thompson et al., 2024). The
ground sampling distance of EMIT pixel spectra is ~40 × 60 m.
EMIT was launched via SpaceX Dragon on 14 July 2022, and
autonomously docked to the forward-facing port of the
International Space Station (ISS) (LP_DAAC, 2023). All EMIT
data used in this study are available from https://search.earthdata.
nasa.gov/ as the standard Level-2A ISOFIT-corrected surface
reflectance product (EMITL2ARFL v001). Cloud and data quality
masks were acquired and spot checked, but not used in the analysis.
Default bad bands lists (bands 128–142 and 188–213) provided with
the data were applied.

Geographic locations of the granules used in the mosaic are
shown in Figure 1, while the full 30 granule mosaic is shown in
Figure 2. The mosaic is displayed with both a common linear stretch
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[0, 0.8] applied to all granules and with individual 2% linear
stretches applied to each granule separately. The former
illustrates the distinction between higher and lower albedo sands,
while the latter illustrates the spectral diversity among different
geographically and mineralogically distinct sand bodies.

Methods

Dimensionality reduction

We use two complementary approaches to dimensionality
reduction to render low dimensional projections of spectral
mixing spaces. Specifically, matrix factorization and neighbor
graph retrieval. The principal component (PC) transformation
(Pearson 1901) is a linear matrix factorization that estimates the
low rank structure of the mixing space by maximizing variance in
the minimum number of orthogonal dimensions in which variance
diminishes monotonically with increasing PC dimension. For this
reason, the low dimensional principal components (PCs) project the
topology of the mixing space in a way that depicts the global
structure resulting from the continuum shape and amplitude of
each spectrum. In contrast, Uniform Manifold Approximation and
Projection (UMAP) (McInnes et al. 2018) constructs an adjacency-
preserving neighbor graph of the high dimensional mixing space
and embeds the graph in a low dimensional embedding space in
which statistically local structure often related to low variance
features, like narrowband absorptions, can be preserved. The

topology of the low dimensional PC projections is physically
interpretable, in part, because these projections reveal the spectral
endmembers that are most distinct on the basis of spectral
continuum shape bounding the feature space of spectral mixtures
of the endmember spectra. The low dimensional embeddings given
by UMAP may also preserve some physically interpretable global
structure of the mixing space but also reveal finer scale clustering
andmixing structure within the mixing space related to low variance
features relegated to higher order PC projections.

For each of the composite mixing spaces described above we
compute a traditional (L2 norm minimization) PC transform,
preceded by a Robust PCA (RPCA) factorization (Candès et al.
2011). RPCA separates the low rank component of the mixing space
from a sparse component containing outliers and transient features
that may bias the projections provided by the traditional L2
transformation. A more detailed explanation of RPCA is given in
Supplementray Appendix A. Subsequent Singular Value
Decomposition of the low rank (L) and sparse (S) components
provides the variance partitions of the orthogonal dimensions of
each. These variance partitions, described in more detail in
Supplementray Appendix A, reveal that the vast majority of
variance is preserved in the low rank component, with the sparse
component containing narrowband anomalies adjacent to water
absorption features, presumably related to the performance of the
atmospheric correction on anomalous spectra. The L2 (non-robust)
PCs of both the raw and low rank mixing spaces of the EMITmosaic
are effectively 3D, with >99% of variance in the three low order
dimensions. In contrast, the sparse component is at least 9D, with

FIGURE 1
Index map showing EMIT granule locations. Index numbers correspond to granule IDs in Table 1 and mosaic tile numbers (L to R, T to B) in Figure 2.
Where multiple adjacent granules are used, only the first of the sequence is numbered for clarity.
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FIGURE 2
(Continued).
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FIGURE 2
(Continued). (a) Visible/NIR/SWIR composite of 30 EMIT granules combined for the spectroscopic mixing space. Each granule contains 1,242 ×
1,280 pixel spectra at ~50 m resolution. In addition to sand dunes, most granules contain significant areas of evaporite, appearing white, cyan or blue,
depending onmineralogy andmoisture content. Exposed crystalline basement is generally low albedomafic rock appearing black or brown. TheMazhur
(#6) and Thar (#9) granules contain significant areas of vegetation and non-photosynthetic vegetation (NPV) appearing green. The Lut (#1) and Al
Jawb (#30) granules contain some clouds and shadows. Granule-specific 2% linear stretches emphasize intra-granule spectral diversity. Granule
numbers increment row-by-row from upper left to lower right. (b) Visible/NIR/SWIR composite of 30 EMIT granules combined for the spectroscopic
mixing space. Same as Figure 2a but with a common linear stretch [0.1, 0.8] applied.
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the 10 low order PC dimensions representing only 91% of total
variance. The distinction is the greater separation of the lower order
dimensions and higher order continuum in the low
rank component.

Both 2D and 3D UMAP embeddings are computed for each of
the composite mixing spaces described above. Because the topology
of the UMAP embedding can be significantly impacted by both the
“nearest neighbor” and “minimum distance” hyperparameters
chosen, we conduct a hyperparameter sweep on both to
determine the sensitivity of the topology and the consistency of
internal structure of the mixing space (Supplementray Appendix B).
Specifics of the PC, RPCA and UMAP computations are given in
Supplementray Appendix C.

Topology, endmembers, mixture modeling

The topology of the low order PC space is a function of the
presence and identity of the spectral endmembers bounding the
mixing space. In addition, the curvature (i.e., linearity, concavity or
convexity) of the convex hull spanning the endmember apexes
reveals the linearity (or lack thereof) of spectral mixing among
boundingmixtures of endmembers within the space. For this reason,
the dimensionality (quantified by the variance partition of the
eigenvalues of the PC factorization) and the topology of the low
dimensional space provide a basis for the design of data-adapted
linear spectral mixture models. In this analysis, we use the
standardized Substrate, Vegetation, Dark (SVD) linear mixture
model developed using the spectrally diverse collection of EMIT
granules described by (Small and Sousa 2024). Inversion of the linear
spectral mixture model yields endmember fraction estimates for
each pixel spectrum within the mixing space. Together, the spatial

maps of spectral endmember fractions provide a low dimensional
physically-based projection of the higher dimensional spectroscopic
mixing space. Because the spectral endmembers on which the
mixture model is based provide a physically meaningful set of
basis vectors, the endmember fractions can be combined with the
UMAP embedding coordinates to yield a Joint Characterization
(Sousa and Small 2021) of the mixing space that represents both the
global structure of the spectral continua with the local structure
related to narrow band absorption features.

Spectral separability

While the PC-derived mixing spaces tend to reflect the global
structure of the continuum shapes of the constituent spectra, the
local scale topology preserved in the UMAP-derived mixing spaces
often shows much greater degrees of clustering related to low
variance features like narrowband absorptions shared by spectra
with otherwise similar continua and amplitudes. This clustering may
take the form of discrete clusters or continuous tendrils within the
mixing space. The presence, or absence, of discrete clusters has
immediate implications for discrete thematic classifications which
require high degrees of spectral separability among classes. Labeling
discrete clusters within UMAP embeddings allows for estimation of
spectral separability with metrics such as Transformed Divergence
(Swain 1973) and Jeffries-Matusita distance (Richards 1999). Even
when fully discrete clusters cannot be identified, distinct continua
within the mixing space can be interpreted by comparison of spectra
corresponding to different continua, or by back-projecting 3D
UMAP coordinates into geographic space as RGB composites to
reveal spatial continuity and geographic distinction of coherent
spatial features with similar color renderings. We use both

TABLE 1 EMIT granule IDs and place names.

1 EMIT_L2A_RFL_001_20220814T114936_2222608_013 Lut
2 EMIT_L2A_RFL_001_20220815T025827_2222702_016 Gurbantunggut
3 EMIT_L2A_RFL_001_20220815T042838_2222703_003 Karakum
4 EMIT_L2A_RFL_001_20220817T140711_2222909_021 Murzuq
5 EMIT_L2A_RFL_001_20220826T083050_2223806_011 Al Nafud
6 EMIT_L2A_RFL_001_20220830T065442_2224205_015 Mazhur
7 EMIT_L2A_RFL_001_20220830T082938_2224206_024 Al Kufrah
8 EMIT_L2A_RFL_001_20220904T043309_2224703_008 Um as Samim
9 EMIT_L2A_RFL_001_20230127T084942_2302706_005 Thar
10 EMIT_L2A_RFL_001_20230129T084459_2302906_019 Rub al ‘Khali
11 EMIT_L2A_RFL_001_20230129T084523_2302906_021 Rub al ‘Khali
12 EMIT_L2A_RFL_001_20230202T054214_2303304_011 Badain Jaran
13 EMIT_L2A_RFL_001_20230205T061730_2303605_004 Al Sabatayn
14 EMIT_L2A_RFL_001_20230206T053518_2303704_029 Rigestan
15 EMIT_L2A_RFL_001_20230216T133701_2304709_016 Grand Erg Oriental
16 EMIT_L2A_RFL_001_20230218T054638_2304904_018 Badain Jaran
17 EMIT_L2A_RFL_001_20230218T054650_2304904_019 Badain Jaran
18 EMIT_L2A_RFL_001_20230223T045732_2305403_010 Taklamakan
19 EMIT_L2A_RFL_001_20230223T045744_2305403_011 Taklamakan
20 EMIT_L2A_RFL_001_20230223T045756_2305403_012 Taklamakan
21 EMIT_L2A_RFL_001_20230226T023751_2305702_004 Tengger
22 EMIT_L2A_RFL_001_20230301T063240_2306004_009 Al Nafud
23 EMIT_L2A_RFL_001_20230303T050058_2306203_008 Wahiba
24 EMIT_L2A_RFL_001_20230303T050110_2306203_009 Wahiba
25 EMIT_L2A_RFL_001_20230303T093955_2306206_009 El Djouf
26 EMIT_L2A_RFL_001_20230306T012254_2306501_009 Simpson
27 EMIT_L2A_RFL_001_20230309T234840_2306815_006 Simpson
28 EMIT_L2A_RFL_001_20230309T234852_2306815_007 Simpson
29 EMIT_L2A_RFL_001_20230323T120625_2308208_014 Rub al ‘Khali
30 EMIT_L2A_RFL_001_20230323T120800_2308208_022 Al Jawb
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approaches with the EMIT mosaic to identify compositional
consistencies in impervious substrates in different urban settings.

Results

Consistent with earlier characterizations of multispectral (Small
2004; Small and Sousa 2022; Sousa and Small 2017) and
spectroscopic (Sousa et al. 2022; Sousa and Small 2023; Sousa
and Small, 2017b) mixing spaces, global variance of the
30 granule EMIT mosaic is effectively 3D, with >99% of spectral
variance contained in three low order PC dimensions of the low rank
component. Also consistent with previous studies, this mixing space

is bounded by Substrate, Vegetation and Dark spectral endmembers
with strongly linear mixing along the binary continua radiating from
the Dark endmember (Figure 3). Both Vegetation and Dark
endmembers have well-defined apexes, while the Substrate
endmembers are more diffuse, each with a relatively well-defined
interior apex and a constellation of higher amplitude exterior
endmembers around the periphery of the apex (Figure 3). In
addition, due to the distinct mineralogy of different sands, there
are a number of distinct clusters within the PCmixing space. Each of
these clusters corresponds to spectrally distinct sands–but not
necessarily geographically distinct granules. This is a limitation of
the variance maximizing PC space in that it comingles spectra with
similar continuum amplitudes and curvatures–despite differences in

FIGURE 3
Spectroscopic mixing space and endmember spectra for the 30 scene EMIT mosaic. The first three low order principal components (PCs) account
for 96.6%, 1.4% and 1.2% (respectively) of total variance. While several dense clusters are apparent within the space, none is geographically specific to any
single EMIT granule, whereas all but one of the endmember apexes correspond to one, or at most two, geographically specific granules. Only the Dark
endmember (e.g., cloud shadow, water, mafic rock) spans several granules. Vegetation, non-photosynthetic vegetation (NPV) and wet evaporites
form a distinct limb from sands and dry evaporites because liquid water absorptions reduce SWIR reflectance relative to NIR. Arrow colors correspond to
spectra colors.
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low variance absorption features that may distinguish different sand
mineralogies. Cluster mean spectra, sampled from the density
maximum of each cluster, are compared with the corresponding
Empirical Orthogonal Function (EOF) of the first principal
component (PC1) in Figure 4. As EOF 1 modulates the overall
amplitude of each individual spectrum, the similarity in continuum
curvature is apparent, while variations in the VNIR shoulder and
SWIR2 absorptions are modulated by the higher order EOFs. In
addition to the clear distinction between the higher and lower albedo
sands, variations in both VNIR and SWIR absorption features are
observed between clusters.

In contrast to the PC space, UMAP spaces for a range of nearest
neighbor hyperparameter settings show consistent topologies over a
range of scales. For nearest neighbor distances greater than 5, the
UMAP embeddings converge to a consistent topology that preserves
the mixing continua spanning a single Dark and multiple sand and
evaporite Substrate endmembers, while also containing multiple
distinct clusters and continua spanning Vegetation and Substrate
endmembers (Figure 5). The UMAP embedding is characterized by
numerous distinct clusters of varying sinuousity, mostly
corresponding to geographically distinct granules dominated by
sands. Evaporites also form distinct clusters and continua, but
are much smaller when dry. When moisture gradients produce a
wider range of evaporite reflectance, the clusters take the form of
thin tendrils extending from sand clusters. With lower minimum
distance settings, evaporite clusters and tendrils are generally
distinct from sand clusters (Supplementray Appendix B). Within
the Dark-Substrate continua shown in Figure 5 are multiple distinct
tendrils and mixing continua, each corresponding to a
geographically distinct granule. Reflectance spectra from all pairs
of distinct clusters and continuum ends within the 3D UMAP space
(discussed below) have Transformed Divergence scores >1.97, with
the vast majority of cluster pairs having scores of 2.0 indicating
unambiguous spectral separability.

Within the UMAP feature space of the mosaic, two sets of
tendrils can be identified. These correspond to a spectral continuum
of sands from the Gobi Desert (Figure 6) and a diversity of basement
rock exposures present in several of the granules. Within the larger
Gobi desert, these granules occur within the Badain Jaran and
Tengger dune fields. Field photos and lab spectra of the diversity
of substrates found in these basins are available from: https://www.
ldeo.columbia.edu/~small/Alashan2005/. We further characterize
the mixing subspace of the four granules from the Gobi Desert
for comparison the full mosaic.

Figure 7 contrasts the topologies of the PC and UMAP spaces,
with corresponding spectral endmembers from both. The spectral
mixing subspace of the Gobi spectra clearly distinguishes both the
higher and lower albedo sands, as well as the continuum of
evaporites at the peripheries and within the dune fields
(Figure 7). The 2D UMAP projection reveals at least six
distinct mixing continua. The joint characterization combining
the Substrate fraction and one of the UMAP dimensions
untangles these mixing continua, revealing gradients in both
mineralogy and moisture content in the reflectance spectra.
There are two distinct continua for evaporites and five for
sand. The evaporite continua show variations in liquid water
absorptions at SWIR wavelengths while the sands appear to be
related to mineralogy.

The clear separation of distinct clusters and continua within the
3D UMAP embedding allows for interactive labeling of individual
clusters. Figure 8 shows an oblique projection of the 3D space
revealing the interspersed nature of the clusters and multi-tendril
continua. Color-coded cluster mean spectra highlight clear
distinctions in both continuum shape and absorption features.

When the 3D UMAP embedding of the EMIT mosaic is back-
projected into geographic space as an RGB composite the
geographic specificity of the embedding is apparent (Figure 9).
While intra-granule land cover variations are apparent as slightly
different hues, inter-granule geographic differences are immediately
apparent as distinctly different hues for different dune fields.

Combining the SVD endmember fractions and UMAP
coordinates for the 30 granule mosaic yields a 6D joint
characterization of the spectral mixing space of all the sands and
evaporites together. The 2D projection of Substrate fraction and
UMAP dimension 1 shown in Figure 10 clearly illustrates the mixing
continua between at least 18 distinct Substrate endmembers
converging to a considerably smaller number of Dark
endmembers. The Substrate endmember spectra vary in
continuum amplitude and curvature as well as narrowband
SWIR absorptions.

Discussion

Spectral dimensionality

The 3D partition of variance of the EMIT mosaic
(Supplementray Appendix A) confirms that the spectral
diversity of sand and evaporite reflectances is controlled
primarily by albedo, and to a lesser extent by continuum
curvature. This is consistent with the fact that the principal
component transformation of substrate spectra is primarily

FIGURE 4
Cluster mean spectra and spectral EOF 1from the 3D PC mixing
space. Two distinct groups of clusters seen in Figure 3 correspond to
higher (yellow) and lower (red) albedo sands seen in Figure 2b. Spectral
EOF 1 is the primary determinant of spectral continuum shape
with amplitude modulated by the corresponding PC 1 values. Hence
the amplitude continuum from the Dark endmember (right) to the
highest albedo sands (left) on Figure 3.
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sensitive to differences in the amplitude and curvature of the
spectral continuum (Small et al. 2009). In contrast, the 3D
UMAP embeddings clearly resolve spectrally distinct clusters
and continua unique to each dune field and their associated
evaporites. The fact that these clusters and continua are
geographically distinct and completely spectrally separable
indicates that EMIT can resolve measurable differences in sand
mineralogy when concentrated in dune fields. From comparison of
the cluster mean spectra (Figures 7, 8, 10), these differences are
manifest primarily as VNIR and SWIR2 absorption features. The
spectral separability of basement rock outcrops is less apparent,
although this diversity is underrepresented in comparison to sands
in the mosaic used for this analysis. Estimates of the intrinsic
spectral dimensionality of nonlinear embeddings like UMAP are
beyond the scope of this study, but the fact that a 3D UMAP
embedding allows for labeling and complete spectral separation of

all geographically distinct sands is consistent with this relatively
low dimensionality.

The use of RPCA to separate low rank and sparse components
isolates some apparent inconsistencies in the atmospheric correction
of column water vapor absorption. The sparse component is limited
to spikes at the edge of water absorption bands, and some noise in
the shortest and longest wavelength bands (Supplementray Figure
A1). Geographically, these sparse component artifacts are limited to
five of the 30 granules in the mosaic. This bodes well for the quality
of both the EMIT radiance measurements and the atmospheric
corrections used to produce the Level 2 reflectance product. The
difference in the spectral standard deviations of the low rank and
sparse components (Supplementray Figure A1) clearly indicates that
the sparse component is dominated by high amplitude spikes
adjacent to the SWIR water absorption bands. It is also worth
noting that we intentionally did not apply the provided

FIGURE 5
2D UMAP embeddings for the 30 granule EMITmosaic. In contrast to the continuous low order PCmixing space in Figure 3, the UMAP spaces are all
clearly segregated into several distinct clusters interspersed among two sets of elongate tendrils. As near neighbor hyperparameter NN is increased, the
clusters and tendrils grow more clearly separated but the topology has converged by NN 50. The embedding for NN:150 (not shown) is almost
indistinguishable from NN 50. The two sets of elongate tendrils correspond to the Gobi desert (Badain Jaran and Tengger) granules and the
basement lithology exposures in several granules.

Frontiers in Remote Sensing frontiersin.org09

Small and Sousa 10.3389/frsen.2025.1551139

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1551139


atmospheric correction masks provided with every EMIT granule.
Nonetheless, the total variance of the sparse component is small
(<4%) compared to the variance of the low rank component. These
observations suggest that RPCA may be useful as an anomaly
detector for EMIT and other spectroscopic image data.

Substrate mixing space topology

In contrast to our parallel analysis of impervious substrates
(Small and Sousa 2023), the topology of the crystalline substrate
feature space is controlled primarily by amplitude and curvature of

FIGURE 6
Gobi Desert index map and Visible/NIR/SWIR composites for Badain Jaran and Tengger EMIT granules. Evaporites appear blue, cyan and white.
Basement rock outcrops appear dark brown. Common 1% linear stretch applied to all composites.
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FIGURE 7
Gobi Desert mixing spaces and spectra. The PC mixing space is continuous and bounded by seven spectral endmembers with two internal clusters
corresponding to spectrally distinct sands and evaporites forming separate continua. In contrast, the 2DUMAP embedding reveals seven distinct continua
bounded by spectral endmembers. The joint characterization (JC) maps these UMAP continua as functions of Substrate fraction. Colors of labels and
arrows on upper spaces correspond to colors of spectral endmembers on plots below.
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FIGURE 8
3D UMAP space of the 30 granule EMIT mosaic with 18 distinct clusters labeled (color) and two multi-tendril continua not labeled (white). Oblique
projection increases cluster separability for clarity. Mean spectra from each labeled cluster show a wide range of absorption features in both VNIR and
SWIR2 wavebands. Transformed divergence of all cluster spectra pairs is >1.996, indicating near complete spectral separability.
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the spectral continuum while the topology of the UMAP embedding
reveals strong clustering corresponding to both broad and
narrowband absorption features specific to sand mineralogy.
Impervious substrate mixing spaces reflect the compositional
heterogeneity and pervasive subpixel mixing that is endemic to
built environments. Specifically, the diversity of substrates, presence
of vegetation and ubiquitous deep shadow. Whereas the sands and
evaporites that comprise the crystalline substrate mixing space are
spectrally and compositionally distinct from each other, the
compositional homogeneity that results from the common
geologic provenance and sedimentologic refinement of sands and
evaporites in each granule produces distinct mixing continua in the
PC space and very distinct clusters in the UMAP space. Both of these
studies’ results stand in strong contrast to our comparative analyses
of soil reflectance using both meter resolution AVIRIS (Sousa and
Small 2018) and decameter resolution EMIT (Small and Sousa 2024)
from a diversity of agricultural basins worldwide. Whereas soils
form a continuous plane of substrates in both PC and UMAPmixing
spaces, the more compositionally homogeneous sands show some
degree of albedo-related clustering in PC spaces and very distinct
clustering in UMAP spaces–with numerous distinct spectral
endmembers in each. Taken together, these results suggest a

spectral convergence in the substrate weathering process, as well
as a homogenizing effect of the non-photosynthetic vegetation
component of many soils.

Additional factors which are particularly important for
spectroscopic imaging of the dune fields and other sand-
dominated landscapes include potentially significant effects of
grain size (mineralogical and sedimentological), BRDF, and
particulate coatings. This highlights the importance of ongoing
work in physical modeling of grain size from imaging
spectroscopy (e.g., (González-Romero et al. 2024),). BRDF effects
on sand dunes can be particularly severe (e.g., (Wise and Mars
2022)) and potentially useful as an additional predictor (e.g.,
(Bachmann et al. 2014; Kimmel and Baranoski, 2007). Particulate
coatings (e.g., (Ben-Dor et al. 2006)) can also be an important driver
of spectroscopic signal in sands where sufficient observations are
available to support model inversion. The approach used for this
analysis does not seek to disentangle the effects of these (and other)
potential geophysical drivers of spectroscopic variance. Rather, the
purpose of the characterization is to empirically evaluate which
spectroscopic signals are (and are not) statistically differentiable in
the data themselves–being intentionally agnostic to the
generative process (es).

FIGURE 9
3D UMAP mixing space embedding mapped onto geographic space. Topologically distinct cluster labels from Figure 8 map onto geographically
distinct EMIT granules (left) with individual colors spanning multiple granules only when geographically adjacent. Cluster labels map as distinct colors
showing no intra-cluster gradients. Unlabeled continua correspond to lower albedo sands, water and basement lithology. Mapping 3DUMAP embedding
coordinates directly onto RGB channels (right) without labels shows distinct color ranges for geographically distinct scenes but preserves intra-
cluster gradients. Discrete label colors are arbitrary whereas continuous embedding colors show relative location within the 3D UMAP space. Hence,
colors are unrelated between the discrete and continuous panels.
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Implications for mapping crystalline
substrates

The results of this analysis are consistent with the findings of
seminal studies of granular media reflectance and mineralogy (e.g.,
(Hunt 1977; Hunt and Salisbury 1970)) based on laboratory
reflectance. Most well-sorted sands, like those found on dunes, are
composed primarily of quartz, although interdune deposits can vary
widely in composition and moisture content (Kocurek 1981). Beyond
themafic-felsic albedo contrast apparent in Figures 2b, 3, EMIT is able
to resolvemore subtle consistencies in both VNIR spectral continuum
shape and narrowband SWIR absorptions that distinguish geographic
differences in sand reflectance among dune fields.

The continuum shapes of the PC feature space clusters and
endmembers (e.g., Figure 5) are consistent with those associated
with lithologically diverse fluvial sands, but lack the mineralogical
diversity of the silts and clays generally associated with fluvial sands
(e.g., (Small et al. 2009)). The varying effect of Fe2+ absorption in the
VNIR continuum suggests provenance-specific impurities or
accessory minerals in several of the dune fields. However, aside
from overall albedo, the most prominent differences among the
distinct sand reflectances are related to narrowband absorption
features in the 2,000–2,500 nm SWIR2 waveband (Figures 8, 10).

The ability of the EMIT spectrometer to distinguish variations in
continuum shape and SWIR absorption features with sufficient
consistency to achieve complete spectral separability among
geographically distinct sand provenances bodes well for the
ability of EMIT and successive spaceborne spectrometers to map
compositional differences among some crystalline substrates. While
dune sands represent a deliberately chosen extreme in mineralogic
homogeneity, the widespread occurrence of sands in soils clearly
contributes to the observed spectral diversity of substrates more

generally. In addition, spectroscopic mapping of mineralogically
distinct crystalline substrates has potential to supplement
complementary multimodal feature extraction approaches, like
those based on deep learning of regional geological context (e.g.,
(Ouyang et al. 2022). The spectral separability of the mineralogic
diversity of eolian sands stands in contrast to the comingling of
multiple spectral continua of impervious substrates found in built
environments (Small and Sousa 2023).
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