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Introduction: As one of the world’s most important oil crops, oil palm plays a
crucial role in meeting global food and industrial demands. However, Basal Stem
Rot (BSR) disease poses a severe threat to oil palm plantations, significantly
reducing yields and shortening plantation lifespans particularly in Southeast Asia.
Effective early detection and monitoring are crucial for mitigating its impact.

Methods: This study presents an integrated approach to BSR disease stage
detection and visualization through a combination of smartphone
applications, deep learning-based classification, and a Web GIS-based
dashboard. A dataset comprising images of oil palm trees in healthy, early
infected, and severely infected stages was collected using a dedicated
smartphone app. Five state-of-the-art convolutional neural network (CNN)
architectures: DenseNet201, InceptionV3, MobileNetV2, NASNetMobile, and
ResNet50 were evaluated for classification performance.

Results: MobileNetV2 emerged as the best-performing architecture, achieving
an overall accuracy of 77% while balancing accuracy with computational
efficiency. This model was subsequently integrated into the smartphone
application “Gano Stage” for real-time disease stage prediction. The app
enables plantation managers and relevant stakeholders to monitor disease
progression, with predictions automatically updated on a Web GIS-based
dashboard for spatial analysis and decision-making.

Discussion: The proposed system demonstrates practical utility, scalability, and
adaptability, particularly in resource-constrained environments. By offering an
accessible and efficient early detection solution, it contributes to the sustainability
of oil palm plantations.
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1 Introduction

Oil palm (Elaeis guineensis) is one of the most important global oil crops,
predominantly cultivated in Asia, Africa, and Latin America. Malaysia and Indonesia
lead global production, contributing more than 85% of the total palm oil output, with other
significant producers including Thailand, Colombia, and Nigeria (Jazuli et al., 2022;
Bentivoglio et al., 2018; Murphy et al., 2021). Globally, approximately 74% of palm oil
is utilized in food products, while 24% is allocated for industrial applications (Haw et al.,
2023a). Oil palm plantations have experienced significant expansion over the years, driven
by increasing global demand for both food and industrial products. This expansion stems
from the crop’s exceptional efficiency, as it produces higher yields compared to other
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agricultural commodities, making it a preferred choice for meeting
diverse demands. Furthermore, palm oil plays a vital economic role,
contributing substantially to the gross domestic product (GDP) of
producing countries, particularly Malaysia and Indonesia (Jazuli
et al., 2022). To ensure consistent production and support its
economic importance, the sustainability of the oil palm industry
is critical (Siddiqui et al., 2021).

Oil palm plantations face significant threats from various plant
diseases and pests, with basal stem rot disease (BSR) caused by the
fungus Ganoderma boninense being the most critical challenge,
particularly in Malaysia and Indonesia (Baharim et al., 2024; Liaghat
et al., 2014). BSR significantly reduces yields, often by 50%–80%, and
can cause mortality rates of up to 80% in mature oil palm stands by
the midpoint of their 25-year lifespan (Murphy et al., 2021). Young
palms typically succumb within 6–24months of showing symptoms,
while mature palms may survive an additional 2–3 years (Siddiqui
et al., 2021). The pathogen infects the trunk’s xylem, disrupting
water and nutrient distribution. This results in symptoms such as
yellowing and necrotic leaves, unopened spears, reduced canopy
size, and a characteristic skirt-like crown shape (Baharim et al.,
2024). However, these foliar symptoms often appear in advanced
stages of infection, making early detection difficult (Baharim et al.,
2024). Minimizing the effects of BSR remains a major challenge for
oil palm-producing countries, especially Malaysia and Indonesia
(Baharim et al., 2024). Early detection of BSR infection enables
timely treatment of infected oil palms, preventing further damage to
the tree (Husin et al., 2020).

BSR detection can be broadly categorized into three approaches:
manual, laboratory-based, and remote techniques (Husin et al., 2020).
The traditional manual approach involves labour-intensive visual
inspections, which are often inefficient for large-scale plantations
(Husin et al., 2020). In contrast, laboratory procedures such as
Ganoderma selection medium (GSM), polymerase chain reaction
(PCR), and enzyme-linked immunosorbent assay with polyclonal
antibodies (ELISA-PABS) are time-consuming, costly, and lack
precision. Additionally, these methods often produce results only
when the disease is already significantly advanced (Bharudin et al.,
2022; Tee et al., 2021). Remote sensing techniques include ground-
basedmethods such as terrestrial laser scanning (Husin et al., 2020) and
electronic nose systems (Abdullah et al., 2012), as well as aerial
approaches like UAV-based imaging (Ahmadi et al., 2023; Baharim
et al., 2023) and satellite platforms (Hashim et al., 2021). However, these
methods often face challenges such as high operational costs, limited
spatial resolution, and difficulty in widespread adoption. This
underscores the critical need for faster and more cost-effective
methods for early detection of BSR (Bharudin et al., 2022).

Advancements in deep learning have achieved remarkable
success in various computer vision tasks, particularly in image
classification (Barman et al., 2024). Convolutional Neural
Networks (CNNs) have emerged as a leading architecture for
visual recognition (Barman et al., 2024). For example, Maeda-
Gutiérrez et al. (2020) evaluated five CNN models, including
AlexNet (Krizhevsky et al., 2012), GoogleNet (Szegedy et al.,
2015), Inception V3 (Szegedy et al., 2016), ResNet 18, and
ResNet 50 (He et al., 2016), for classifying nine types of tomato
diseases, with GoogleNet achieving an AUC score of 99.72%.
Similarly, Ahad et al. (2023) demonstrated the potential of CNNs
for rice disease classification, where an ensemble framework (DEX)

combining DenseNet121 (Huang et al., 2017), EfficientNetB7 (Tan
and Le, 2019), and Xception (Chollet, 2017) achieved 98% accuracy,
outperforming individual models.

In the context of BSR detection, Lee et al. (2022) explored a 1-
dimensional CNN for early BSR detection, achieving an accuracy of
73.33%. Yong et al. (2022) utilizedNIR-hyperspectral imaging and three
different deep learning models, 16-layer CNN, Mask RCNN (He et al.,
2017), and VGG16 (Simonyan and Zisserman, 2014) to detect BSR in
oil palm seedlings during early infection stages, with VGG16 achieving
the highest F1 score of 91.72%. Similarly, Haw et al. (2023b) tested five
CNN architectures, MobileNet (Howard et al., 2017), EfficientNetB0,
VGG16, ResNet50, and DenseNet121 on TLS images to differentiate
between healthy and non-healthy plants, with DenseNet121 providing
the best accuracy of 83.3%.

Although deep learning has demonstrated significant potential in
plant disease detection, its application to BSR identification remains
limited, underscoring the need for further research in this area. This
study aims to utilize CNNs to detect BSR disease stages and leverage
smartphone photos and smartphone-based technology to develop a
cost-effective and scalable solution for field applications. Smartphones
are widely available, easy to use, and capable of capturing high-
resolution images, making them an ideal tool for practical
applications in resource-constrained environments. Specifically, five
state-of-the-art CNN architectures, DenseNet201, InceptionV3,
MobileNetV2 (Sandler et al., 2018), NASNetMobile (Zoph et al.,
2018), and ResNet50, were evaluated to classify BSR disease stages
in oil palm plantations using smartphone-acquired images. The best-
performingmodel was integrated into a smartphone application, “Gano
Stage,” enabling real-time disease detection directly in plantation fields.
Additionally, a Web GIS-based dashboard was developed to visualize
predictions and monitor disease trends, providing an effective tool for
plantation management.

This study introduces a novel framework integrating a smartphone
application, state-of-the-art deep learning-based CNN architectures,
and a Web GIS-based dashboard for BSR disease stage detection. By
combining these technologies, the proposed solution enables real-time
monitoring and management of BSR disease in large-scale oil palm
plantations. Furthermore, this approach addresses the challenges of
resource limitations and scalability, providing a practical and cost-
effective tool for plantation management.

The objectives of this study are,

1. Evaluate five state-of-the-art CNN architectures (DenseNet201,
InceptionV3, MobileNetV2, NASNetMobile, and ResNet50) for
BSR disease stage detection and compare their performance to
identify the best model.

2. Develop a smartphone application for real-time disease
prediction in oil palm plantations using the best
performing model.

3. Design aWebGIS-based dashboard formonitoring and analyzing
disease trends effectively, incorporating real-time updates from
the predictions generated by the smartphone application.

2 Materials and methods

This section describes the development and implementation of
smartphone-based applications and convolutional neural networks
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(CNNs) for the classification of BSR disease stages in oil palm
plantations. The primary objective of this study was to create an
integrated solution combining smartphone applications with deep
learning-based classification for detecting infection stages of BSR
disease. The proposed methodology incorporates two key
smartphone applications and a web-based dashboard.

Firstly, a dataset comprising images of three different BSR
disease infection stages was compiled using a smartphone
application specifically designed for field data collection, named
“Gano Stage – Data Collection.” After basic preprocessing, the
collected images were used to train five state-of-the-art CNN-
based models: MobileNetV2, DenseNet201, NASNetMobile,
InceptionV3, and ResNet50. The best-performing model was
then deployed in a smartphone-based application for real-time
automatic detection of disease stages, named “Gano Stage.”
Furthermore, predictions from the application were updated in
real time on a web-based GIS dashboard, facilitating enhanced
visualization.

Figure 1 illustrates the overall process flow, which is divided into
four main steps: data acquisition, training and classification,
integration of the deep learning model into the “Gano Stage”
application for real-time predictions, and web GIS-based
visualization.

2.1 Data acquisition

The “Gano Stage – Data Collection” Application was developed
to facilitate the collection of field data. This application was used to
capture images of oil palm trees at various stages of BSR disease,
including healthy, early infected, severely infected, and dead. The
collected images served as training data for deep learning model
development. During field testing, it was observed that images
captured using modern smartphones provided sufficient detail to
capture the visual symptoms of the infection stages. For data
collection, Apple iPhone 8, iPhone SE and iPhone 15 were used,
with camera resolutions of 12 MP or higher. These devices
adequately represented the distinct features of each disease stage
for classification. The details of the “Gano Stage–Data Collection”
Application are outlined as follows:

• Platform: Developed using ArcGIS Survey123 to ensure cross-
platform compatibility (iOS and Android).

• Functionality: Collect photos of oil palm trees, tagging images
with relevant metadata, including location, visual symptoms,
and tree health status. The data collected is sent to an ArcGIS
Online cloud storage system and serves as input for deep
learning model training.

• System requirements: Smartphone with camera and GNSS
functionality, Installation of the Survey123 application.

The interface of the smartphone application was shown
in Figure 2.

The data collection process was conducted in oil palm plantations
inMalaysia and Thailand. To label the different stages of the disease, the
visual symptoms listed in prior studies were used as a basis for
classification (Liaghat et al., 2014). Additionally, domain experts in
plant pathology were consulted during data collection to ensure
accurate identification of the disease stages in the field. Table 1
provides detailed information about the field data, including the
number of photos collected and the corresponding visual symptoms
for each disease stage. To ensure consistency across locations, the same
classification criteria were applied during data collection in Malaysia
and Thailand. Collecting data from plantations in both Malaysia and
Thailand was provided an opportunity to capture the diversity of
environmental conditions, tree physiology, and disease presentation
that exists in real-world scenarios. Figure 3 shows healthy, early infected
and severely infected oil palm plants from the field data.

2.2 Model development and evaluation

CNNs have demonstrated significant potential in plant disease
detection, offering improved accuracy and efficiency compared to
conventional methods. Despite limited studies applying CNN
models to BSR detection, their success in detecting other plant
diseases highlights their applicability to this context (Maeda-
Gutiérrez et al., 2020; Ahad et al., 2023).

To evaluate the performance of CNNs in classifying BSR stages,
this study employed five state-of-the-art architectures,
DenseNet201, MobileNetV2, InceptionV3, NASNetMobile, and

FIGURE 1
The overall workflow of the study (QR codes provide access to each application).
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ResNet50. These models were selected due to their established
effectiveness in plant disease classification and broader image
recognition tasks (Maeda-Gutiérrez et al., 2020; Ahad et al.,
2023). The models provide a range of complexity and
computational efficiency, allowing for a comprehensive
assessment of their suitability in distinguishing between healthy,

early infected, and severely infected oil palm trees and integration
with smartphone-based application.

The model development and evaluation were performed using
the Google Colab Pro, leveraging its GPU support for efficient
processing. The models were configured, trained, and evaluated
using the TensorFlow framework and Keras API. The development
of CNN models followed four key stages: data preprocessing, model
initialization, training and performance evaluation. The flow of
CNN based classification is shown in Figure 4.

2.2.1 Data preprocessing
The collected dataset was divided into training and validation

subsets using an 80/20 split to ensure a balanced evaluation. All
images were resized to 224 × 224 pixels to align with the input
dimensions required by the CNN models. Data augmentation
techniques were applied to increase the variance of the training
dataset and enhance the robustness and generalization of the
models. The augmentation parameters included random rotations
(up to 15°), zoom (up to 20%), and horizontal flip.

2.2.2 Model initialization and training
All five CNN architectures (DenseNet201, MobileNetV2,

InceptionV3, NASNetMobile, and ResNet50) were initialized
with ImageNet (Deng et al., 2009) pretrained weights, utilizing
the transfer learning approach to expedite training and
improving accuracy on the limited dataset. The top
classification layers of these architectures were excluded, and
custom layers were added. The hyperparameters used in this
study were selected based on recommendations from prior work
which demonstrated their effectiveness in CNN-based plant
disease classification tasks and additional considerations for
the current dataset’s characteristics (Hassan et al., 2021;
Elfatimi et al., 2022).

A global average pooling (GAP) layer was included, followed
by a dropout layer with a rate of 0.2 (Hassan et al., 2021), to
address overfitting. A fully connected dense layer with softmax
activation was added to produce probabilities for the three
classes: healthy, early infected, and severely infected. All
models were trained for 50 epochs with early stopping
callback (patience = 8) to prevent overfitting. The sparse
categorical cross-entropy was used as the loss function due to
its suitability for multi-class classification tasks with integer-
encoded labels. The Adam optimizer was used with an initial
learning rate of 0.001, and the batch size was set to 32 (Elfatimi
et al., 2022). The training process was monitored using validation
accuracy and loss metrics, which were evaluated at the end of
each epoch to assess model performance and prevent overfitting.

FIGURE 2
Interface of the “GanoStage – Data collection” app.

TABLE 1 Details of the field survey data.

Status Number of photos Visual symptoms

Healthy 106 No foliar symptoms, absence Ganoderma white mycelium and fruiting bodies at the palm base

Early infected 102 1-2 unopened spears fronds, yellowing of leaves, declination of fonds, Ganoderma fruiting body appearing, still producing
fruit.

Severely infected 105 No fruit produced, fractured, dried, rotting at palm base and small canopy with Ganoderma fruiting body appearing.

Frontiers in Remote Sensing frontiersin.org04

Daranagama and Takeuchi 10.3389/frsen.2025.1553844

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1553844


2.2.3 Model evaluation
The performance of the CNN models was assessed using metrics

including accuracy, precision, recall, F1-score, and a confusion matrix.
Based on the evaluation results, the best-performingmodel was selected
for integration with the “Gano Stage” smartphone application.

2.3 Integration into Gano Stage application

The highest accuracy model was converted into LiteRT format
which offers high-performance runtime for on-device AI. The
“Gano Stage” app is designed for real-time detection of BSR
disease infection stages in oil palm trees. When a user captures a
photo, the app predicts and displays the disease stage, providing

immediate feedback (Esri, 2024). The details of the Gano Stage app
are outlined as follows,

• Platform: Developed using ArcGIS Survey123 Connect to
ensure cross-platform compatibility (iOS and Android).

• Functionality:
◦ When a user captures a photo of a tree, the app automatically
detects and displays the stage of Ganoderma infection (healthy,
early infected, severely infected) using the integrated LiteRT
model which runs on device.

◦ The predictions of the application will be automatically
updated in a web GIS based dashboard.

◦ Data collected from the Gano Stage app, including labelled
images and metadata, will be used to further fine-tune the

FIGURE 3
(A) Healthy plant, (B) BSR early infected plant, (C) BSR severely infected plant.

FIGURE 4
CNN based classification workflow.
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deep learning model through transfer learning. This process
updates the model’s weights, improving accuracy and
adapting it to real-world conditions.

• System Requirements: Smartphone with camera and GNSS
functionality, along with the installation of the
Survey123 application.

When users interact with the app to predict disease stages, all
photos captured will be automatically uploaded and stored on the
ArcGIS Online server, along with their associated metadata. These
images, expected to be collected under diverse field conditions and
from various geographical locations, will provide valuable data for
improving the model.

The stored photos can periodically serve as additional training
data for fine-tuning the deep learning model. Fine-tuning will
involve retraining the model using this newly captured data to
enable it to adapt to variations in lighting conditions, image angles,
tree characteristics, and disease presentations. Once retrained, the
improved model will be integrated into the “Gano Stage” application
using Arc GIS Survey123 Connect, seamlessly replacing the previous
version. Notifications will be sent to users, prompting them to
update the app to access the enhanced model for more accurate
real-time predictions.

2.4 Web GIS based visualization

The web GIS based dashboard is a novel feature of this study,
offering a platform for real-time monitoring and spatial
visualization of disease predictions from the “Gano Stage”
app. This interactive tool enables plantation managers and
researchers to track the spread of BSR disease spatially and
analyse data directly from the field, enhancing decision-making
and disease management efforts. The details of the dashboard are
as follows.

• Platform: Built using ArcGIS Online platform, accessible from
both desktop and mobile environments.

• Functionality:
◦ Provides real-time visualization of disease predictions from
the “Gano Stage” app.

◦ The statistics in the dashboard automatically update when
the map extent is adjusted.

◦Clicking on a data point displays the associated images taken
in a popup menu.

◦ High-resolution satellite imagery is set as the default
basemap, which can be changed via the Basemap
Gallery button.

◦ The Measure tool allows users to measure distances, areas,
and obtain the coordinates of any location on the map.

◦ The Print button can be used to generate map layouts at any
extent, including essential map elements.

3 Results

The results of the study are presented in three sections: CNN-
based classification results, model deployment in the “Gano Stage”
application, and web GIS-based dashboard visualization.

3.1 CNN-based classification results

In this study, an evaluation of state-of-the-art pretrained CNN
models was conducted for the classification of BSR disease infection
stages using smartphone photos. The performance of the CNN
models was compared based onmetrics of precision, recall, F1-score,
accuracy, and the confusion matrix. The results are summarized
in Table 2.

Among the models tested, MobileNetV2 demonstrated the best
overall performance, achieving an accuracy of 77%, with balanced
precision, recall, and F1-score across all classes. In particular,
MobileNetV2 outperformed other models in detecting the early
infected stage, a critical category for early intervention, achieving a
recall of 75% and an F1-score of 70%. To better understand the
model’s performance, a confusion matrix for MobileNetV2 is
presented in Figure 5. Some correctly classified images and
misclassification from the MobileNetV2 are shown in Figure 6.
Additionally, the training and validation accuracy and loss curves
for MobileNetV2 are shown in Figure 7.

3.2 Model deployment in the Gano Stage
application

Since the MobileNetV2 model demonstrated the best overall
performance, it was converted into LiteRT format for deployment in
the “Gano Stage” application. LiteRT (formerly TensorFlow Lite) is
Google’s high-performance runtime designed specifically for on-
device machine learning for mobile devices. It optimizes models for
constraints such as latency, privacy, connectivity, size, and power
consumption, making it an ideal solution for mobile AI applications.

Figure 8 shows the “Gano Stage” app functionality for detecting
the BSR infection stage. The app allows users to capture or upload a

FIGURE 5
Confusion matrix of MobileNetV2 for BSR infection stage
classification.
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photo of an oil palm tree canopy. After processing the image, the
predicted disease stage (healthy, early infected, or severely infected)
is displayed. This real-time feedback enables plantation managers to
make informed decisions quickly.

Additionally, the app includes features for correcting
misclassifications, as illustrated in Figure 9. Users can manually
select the correct disease stage and upload supplementary images to
refine the model’s training data, improving its long-term accuracy.
For data submission, the app supports both immediate uploads and
offline storage, making it adaptable to areas with limited
connectivity.

To ensure compatibility and efficiency, the app was tested on a
range of devices, including Apple iPhone 8, iPhone SE, iPhone 11,
iPhone 15, and Samsung Galaxy Tab A9. Testing confirmed that the
app performed efficiently on modern smartphones and tablets without
noticeable latency issues, even during real-time predictions. However,
performance on older or low-end devices may vary.

3.3 Web GIS based dashboard

The Web GIS-based dashboard successfully integrates prediction
data from the “Gano Stage” application. As shown in Figure 10, the
dashboard displays predictions categorized by disease stage (healthy, early
infected, and severely infected) along with their spatial locations. Users
can analyze trends through auto-updated statistics based on map extent
and interact with specific data points to view associated field images.

4 Discussion

This study addresses the critical need for cost-effective and
scalable solutions to detect and monitor BSR disease stages in oil

palm plantations. By leveraging deep learning techniques and
smartphone technology, the study overcomes limitations of
traditional detection methods, such as high costs and accessibility
issues. The objectives included evaluating state-of-the-art CNN
architectures for BSR detection, developing a real-time prediction
app (“Gano Stage”), and integrating aWeb GIS-based dashboard for
spatial visualization. These methods aimed to bridge the gap
between advanced techniques and practical field applications.

4.1 Data acquisition with “Gano Stage - Data
collection” application

The “Gano Stage - Data Collection” application facilitated the
efficient and systematic acquisition of smartphone photos as
training data for the deep learning models. By allowing users to
capture images of oil palm trees at different stages of Ganoderma
disease (healthy, early infected, and severely infected), the
application significantly reduced the time and effort required for
data gathering. The integration of metadata, such as location and
disease stage, further enhanced the dataset’s utility for training and
validation.

The app’s cross-platform compatibility, developed using
ArcGIS Survey123, ensured accessibility on both iOS and
Android devices, while its user-friendly design enabled seamless
use by field staff and plantation managers with minimal technical
expertise. However, one challenge encountered during the data
collection process was the difficulty in capturing isolated canopy
images in densely planted areas. Overlapping tree fonds often
made it challenging to isolate individual trees for clear image
acquisition. Despite this, the app’s functionalities contributed to
the creation of a comprehensive dataset, which was critical to the
DL based classification.

TABLE 2 Performance metrics of the CNN models for classification of BSR infection stage.

CNN model Disease stage Precision Recall F1-score Accuracy

DenseNet201 Healthy 0.82 0.43 0.56 0.71

Early infected 0.53 0.90 0.67

Severely Infected 1.00 0.81 0.89

InceptionV3 Healthy 0.73 0.52 0.61 0.73

Early infected 0.56 0.75 0.64

Severely Infected 0.95 0.90 0.93

MobileNetV2 Healthy 0.73 0.76 0.74 0.77

Early infected 0.65 0.75 0.70

Severely Infected 1.00 0.81 0.89

NASNetMobile Healthy 0.63 0.57 0.60 0.66

Early infected 0.50 0.60 0.55

Severely Infected 0.89 0.81 0.85

ResNet50V2 Healthy 0.68 0.81 0.74 0.76

Early infected 0.69 0.55 0.61

Severely Infected 0.90 0.90 0.90

Frontiers in Remote Sensing frontiersin.org07

Daranagama and Takeuchi 10.3389/frsen.2025.1553844

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1553844


4.2 CNN classification

The classification of Ganoderma disease stages using state-of-
the-art CNN models demonstrated promising results, with
MobileNetV2 emerging as the best-performing model. Its
lightweight architecture balances computational efficiency with
higher accuracy, making it an optimal choice for real-time
deployment in the “Gano Stage” application.

The confusion matrix for MobileNetV2, as shown in Figure 5,
revealed strong performance in detecting severely infected and
healthy stages. However, most misclassifications occurred
between the early-infected and healthy stages due to
overlapping visual symptoms. The misclassified images shown
in Figure 6B confirm that the visual similarities between healthy

and early-infected stages pose a significant challenge for the
model, as symptoms in the early stages, such as such as slight
discoloration or minimal canopy changes, can closely resemble
healthy foliage.

The MobileNetV2 architecture achieved maximum overall
accuracy of 0.77 which is lower than the accuracy reported by
the prior studies using CNN based classification for plant disease
detection (Maeda-Gutiérrez et al., 2020; Ahad et al., 2023; Hassan
et al., 2021; Elfatimi et al., 2022). This discrepancy can be attributed
to several key factors.

First, the dataset used for model training in this study is
relatively small compared to datasets in prior work (Maeda-
Gutiérrez et al., 2020; Ahad et al., 2023; Hassan et al., 2021;
Elfatimi et al., 2022), which often contain thousands of images

FIGURE 6
(A) Correctly classified images from MobileNetV2 model, (B) Incorrectly classified images from MobileNetV2 model.

FIGURE 7
(A) Training and validation accuracy curves (B) Training and validation loss curves.
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specifically prepared for machine learning and deep learning
experiments. To date, no such large-scale publicly available
datasets exist for BSR disease, making it challenging to achieve
comparable accuracy. Instead, this study utilized a dataset of images
captured in diverse field conditions using the designed smartphone
application, reflecting real-world variability.

Second, unlike many studies that focus solely on detecting the
presence of a disease, this study aimed to classify disease stages (healthy,
early-infected, and severely infected) for BSR disease. BSR symptoms
can be subtle and challenging to distinguish, particularly in the early
stages of infection. Distinguishing subtle symptoms of early-stage BSR
disease is inherently challenging, particularly when compared to plant
diseases with more visually distinct features, such as spots or lesions.

4.3 Gano Stage application for real-time
prediction

The “Gano Stage” application serves as an efficient and
accessible tool for detecting BSR disease stages in oil palm
plantations. Designed for ease of use, it allows anyone, including
field workers with minimal technical expertise, to effectively
participate in disease monitoring. The app leverages AI to deliver
real-time predictions directly on smartphones, providing a scalable
solution for large-scale plantations by reducing the need for skilled
personnel in disease identification.

Field workers can seamlessly integrate the app into their daily
routines, capturing photos of oil palm trees during regular activities.

FIGURE 8
“Gano Stage” app functionality for detecting the BSR infection stage.

FIGURE 9
Data submission of the “Gano Stage” app.
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Ground-level photos captured through the app provide the
advantage of detecting symptoms such as declining fonds, skirt-
like crown shapes, and trunk-base necrosis, features that may be
challenging to capture using UAV-based platforms. This approach
ensures that subtle and early-stage symptoms visible at ground level
are included in the disease monitoring process, complementing
other technologies such as UAVs that primarily capture canopy-
level symptoms.

This continuous data collection process not only supports
immediate decision-making but also contributes to ongoing
model improvement. As more data is gathered, the application
progressively enhances its training set, creating a larger and more
diverse dataset of BSR disease instances. An added advantage of this
iterative mapping and recording is its potential to support future
deep learning-based approaches, facilitating the development of
more accurate and robust disease detection models.

By combining efficiency, user-friendliness, and accessibility, the
“Gano Stage” application bridges the gap between advanced DL
based techniques and practical fieldwork. It empowers plantation
managers and workers to take proactive measures against BSR
disease, improving disease control and plantation
management practices.

4.4 Web GIS based visualization

The Web GIS-based dashboard serves as a valuable extension to
the “Gano Stage” application, enabling plantation managers,
researchers, and other relevant stakeholders to visualize and
analyze the spatial distribution of BSR disease stages in real time.
By integrating prediction data from the “Gano Stage” app, the
dashboard provides a centralized platform for monitoring disease
patterns across plantations. This functionality is particularly
beneficial for large-scale plantations, where quick and informed

decision-making is critical to preventing the spread of infection.
Moreover, the dashboard’s tools, such as dynamically adjusting
statistics based on the selected map extent, measurement tools,
and printable map layouts, make it a versatile resource for
operational planning. By providing spatial insights and trend
analyses, the dashboard aids in long-term planning, such as
identifying high-risk areas for focused intervention.

4.5 Limitations and future works

While the proposed system demonstrates practical utility and
scalability for detecting and visualizing BSR disease stages, several
limitations must be addressed. The system’s ability to accurately
classify BSR stages may be compromised when plants exhibit
symptoms caused by other stress factors, such as nutritional
deficiencies, water stress, or infections from other diseases. These
conditions can visually resemble BSR symptoms, leading to potential
misclassifications.

The confusion matrix results further reveal challenges in
distinguishing between healthy and early infected classes, likely
due to overlapping visual symptoms in the early stages of
infection. This limitation highlights the need for additional high-
quality data, particularly images that capture subtle symptoms of
early infection. Expanding the training dataset with images from
diverse plantation environments would enhance the model’s ability
to differentiate between these closely related classes.

Another limitation pertains to real-time processing performance
on resource-constrained mobile devices. Although MobileNetV2 is
computationally efficient, low-end devices may still face latency
issues when processing images due to limited hardware capabilities.
Additionally, the application relies on the smartphone’s GNSS
functionality to plot infected trees on the Web GIS-based
dashboard. However, the accuracy of GNSS data depends on the

FIGURE 10
Web GIS based dashboard to visualize the prediction data of “Gano Stage” app.
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smartphone model, hardware capabilities and external factors such
as signal obstructions caused by oil palm tree canopies.
Consequently, the recorded location of the photo may not always
correspond precisely to the actual position of the infected tree. To
address this issue, the application includes a remark field, allowing
users to input specific information about the tree, such as a tree
number or other identifiable characteristics. This additional
metadata provides a supplementary mechanism for reducing the
risk of misidentification and improving field operations’ accuracy.
While this study does not quantitatively evaluate the GNSS spatial
accuracy, future work should focus on testing the average positional
error of smartphone GNSS data in real-world plantation settings
with higher accuracy positioning devices.

Additionally, successful adoption of the application in large-
scale plantations relies on user training and proper image
acquisition. Field workers may require guidance to ensure
consistent image capturing specially covering the tree canopy
with less obstacles, which is essential for improving prediction
reliability.

To address these limitations, future work should focus on model
enhancement, and extensive field testing under diverse conditions.
Incorporating advanced techniques such as ensemble learning,
attention mechanisms, or hybrid models could further improve
accuracy and generalization. Furthermore, integrating additional
data sources to the visualization dashboard, such as UAV-based
imagery, satellite data, or sensor-based measurements, would
enhance the system’s scalability and robustness for large-scale
plantation monitoring. Additionally, the data captured through
the “Gano Stage” app can serve as ground truth information for
future studies, such as UAV and satellite-based approaches. By
addressing these challenges, the proposed system can be further
refined to provide a more reliable, scalable, and effective solution for
managing BSR disease in oil palm plantations.

5 Conclusion

This study demonstrated an integrated approach to detecting
and visualizing BSR disease stages in oil palm plantations using
smartphone applications, deep learning-based classification, and a
Web GIS-based dashboard. Five state-of-the-art CNN architectures
were evaluated for classifying BSR disease stages. Among these,
MobileNetV2 emerged as the best-performing model, achieving a
balance between high accuracy and computational efficiency,
making it particularly suitable for real-time deployment through
smartphone applications in resource-constrained environments.

This study uniquely integrates deep learning-based disease
detection with user-friendly mobile applications and GIS
visualization, offering a scalable and practical solution for
plantation management. An added advantage of this system is its
ability to continuously expand the training dataset through field use,
contributing to future improvements in model accuracy and the
development of more advanced detection methods. The dynamic
and interactive features of the dashboard underscore the importance
of combining AI and GIS technologies to deliver actionable insights
for agricultural decision-making.

Despite its utility, the system faces limitations, including
potential misclassifications caused by visual overlap with other
stress factors, challenges in distinguishing between healthy and
early infected stages, and spatial inaccuracies arising from
smartphone GNSS limitations. Addressing these challenges
through expanded datasets, enhanced deep learning model
architectures, and improved user training will further strengthen
the system’s accuracy and robustness.

In conclusion, the proposed system provides a practical and
accessible solution for sustainable oil palm plantation management,
contributing to BSR disease mitigation efforts in Southeast Asia
and beyond.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

DD: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Software, Validation, Visualization,
Writing–original draft, Writing–review and editing. WT:
Conceptualization, Funding acquisition, Project administration,
Resources, Supervision, Validation, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in Remote Sensing frontiersin.org11

Daranagama and Takeuchi 10.3389/frsen.2025.1553844

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1553844


References

Abdullah, A. H., Adom, A. H., Shakaff, A. M., Ahmad, M. N., Zakaria, A., Saad, F. S.
A., et al. (2012). “Hand-held electronic nose sensor selection system for basal stem rot
(BSR) disease detection,” in 2012 third international conference on intelligent systems
modelling and simulation, Kota Kinabalu, Malaysia, 08–10 February 2012 (IEEE),
737–742.

Ahad, M. T., Li, Y., Song, B., and Bhuiyan, T. (2023). Comparison of CNN-based deep
learning architectures for rice diseases classification. Artif. Intell. Agric. 9, 22–35. doi:10.
1016/j.aiia.2023.07.001

Ahmadi, P., Mansor, S. B., Ahmadzadeh Araji, H., and Lu, B. (2023).
Convolutional SVM networks for detection of Ganoderma boninense at early
stage in oil palm using UAV and multispectral Pleiades images. ISPRS Ann.
Photogrammetry, Remote Sens. Spatial Inf. Sci. 10, 25–30. doi:10.5194/isprs-
annals-x-4-w1-2022-25-2023

Baharim, M. S. A., Adnan, N. A., Izzuddin, M. A., Laurence, A. L., Karsimen, M. K.,
and Arof, H. (2024). Modelling water use efficiency (WUE) for estimating the severity of
Ganoderma boninense-derived basal stem rot disease in oil palm. J. Plant Pathology.
doi:10.1007/s42161-024-01770-5

Baharim, M. S. A., Adnan, N. A., Mohd, F. A., Seman, I. A., Anuar, M. I., Latif, Z. A.,
et al. (2023). Optimization of machine learning classifier using multispectral data in
assessment of Ganoderma basal stem rot (BSR) disease in oil palm plantation. Int. J. Inf.
Technol. 15 (8), 4259–4273. doi:10.1007/s41870-023-01483-5

Barman, U., Sarma, P., Rahman, M., Deka, V., Lahkar, S., Sharma, V., et al. (2024).
Vit-SmartAgri: vision transformer and smartphone-based plant disease detection for
smart agriculture. Agronomy 14 (2), 327. doi:10.3390/agronomy14020327

Bentivoglio, D., Finco, A., and Bucci, G. (2018). Factors affecting the Indonesian palm
oil market in food and fuel industry: evidence from a time series analysis. Int. J. Energy
Econ. Policy 8 (5), 49–57.

Bharudin, I., Ab Wahab, A. F. F., Abd Samad, M. A., Xin Yie, N., Zairun, M. A., Abu
Bakar, F. D., et al. (2022). Review update on the life cycle, plant–microbe interaction,
genomics, detection and control strategies of the oil palm pathogen Ganoderma
boninense. Biology 11 (2), 251. doi:10.3390/biology11020251

Chollet, F. (2017). “Xception: deep learning with depthwise separable convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
Honolulu, HI, 21–26 July 2017, 1251–1258.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., and Fei-Fei, L. (2009). “Imagenet: a
large-scale hierarchical image database,” in 2009 IEEE conference on computer vision
and pattern recognition, Miami, FL, 20–25 June 2009 (IEEE), 248–255.

Elfatimi, E., Eryigit, R., and Elfatimi, L. (2022). Beans leaf diseases classification using
mobilenet models. IEEE Access 10, 9471–9482. doi:10.1109/access.2022.3142817

Esri (2024). Train a model to identify street signs. ArcGIS Learn. Redlands, CA: Esri
Inc. Available at: https://learn.arcgis.com/en/projects/train-a-model-to-identify-street-
signs/(Accessed September 11, 2024).

Hashim, I. C., Shariff, A. R. M., Bejo, S. K., Muharam, F. M., and Ahmad, K. (2021).
Machine-learning approach using SAR data for the classification of oil palm trees that
are non-infected and infected with the basal stem rot disease. Agronomy 11 (3), 532.
doi:10.3390/agronomy11030532

Hassan, S. M., Maji, A. K., Jasiński, M., Leonowicz, Z., and Jasińska, E. (2021).
Identification of plant-leaf diseases using CNN and transfer-learning approach.
Electronics 10 (12), 1388. doi:10.3390/electronics10121388

Haw, Y. H., Hum, Y. C., Chuah, J. H., Voon, W., Khairunniza-Bejo, S., Husin, N. A.,
et al. (2023b). Detection of basal stem rot disease using deep learning. IEEE Access 11,
49846–49862. doi:10.1109/access.2023.3276763

Haw, Y. H., Lai, K. W., Chuah, J. H., Bejo, S. K., Husin, N. A., Hum, Y. C., et al.
(2023a). Classification of basal stem rot using deep learning: a review of digital data
collection and palm disease classification methods. PeerJ Comput. Sci. 9, e1325. doi:10.
7717/peerj-cs.1325

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). “Mask r-cnn,” in Proceedings
of the IEEE international conference on computer vision, Honolulu, HI, 27–29 October
2017, 2961–2969.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, Las Vegas, NV, 27–30 June 2016, 770–778.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.
(2017). MobileNets: efficient convolutional neural networks for mobile vision
applications (2017). arXiv, 126. doi:10.48550/arXiv.1704.04861

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). “Densely
connected convolutional networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, Las Vegas, NV, 27–30 June 2016, 4700–4708.

Husin, N. A., Khairunniza-Bejo, S., Abdullah, A. F., Kassim, M. S., Ahmad, D., and
Azmi, A. N. (2020). Application of ground-based LiDAR for analysing oil palm canopy
properties on the occurrence of basal stem rot (BSR) disease. Sci. Rep. 10 (1), 6464.
doi:10.1038/s41598-020-62275-6

Jazuli, N. A., Kamu, A., Chong, K. P., Gabda, D., Hassan, A., Abu Seman, I., et al.
(2022). A review of factors affecting Ganoderma basal stem rot disease progress in oil
palm. Plants 11 (2462), 2462. doi:10.3390/plants11192462

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Adv. neural Inf. Process. Syst. 25, 1097–1105.

Lee, C. C., Koo, V. C., Lim, T. S., Lee, Y. P., and Abidin, H. (2022). A multi-layer
perceptron-based approach for early detection of BSR disease in oil palm trees using
hyperspectral images. Heliyon 8 (4), e09252. doi:10.1016/j.heliyon.2022.e09252

Liaghat, S., Ehsani, R., Mansor, S., Shafri, H. Z., Meon, S., Sankaran, S., et al. (2014).
Early detection of basal stem rot disease (Ganoderma) in oil palms based on
hyperspectral reflectance data using pattern recognition algorithms. Int. J. Remote
Sens. 35 (10), 3427–3439. doi:10.1080/01431161.2014.903353

Maeda-Gutiérrez, V., Galvan-Tejada, C. E., Zanella-Calzada, L. A., Celaya-Padilla,
J. M., Galván-Tejada, J. I., Gamboa-Rosales, H., et al. (2020). Comparison of
convolutional neural network architectures for classification of tomato plant
diseases. Appl. Sci. 10 (4), 1245. doi:10.3390/app10041245

Murphy,D. J., Goggin, K., and Paterson, R. R.M. (2021). Oil palm in the 2020s and beyond:
challenges and solutions. CABI Agric. Biosci. 2, 39–22. doi:10.1186/s43170-021-00058-3

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L. C. (2018). “Mobilenetv2:
inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, Salt Lake City, UT, 18–22 June 2018, 4510–4520.

Siddiqui, Y., Surendran, A., Paterson, R. R. M., Ali, A., and Ahmad, K. (2021). Current
strategies and perspectives in detection and control of basal stem rot of oil palm. Saudi
J. Biol. Sci. 28 (5), 2840–2849. doi:10.1016/j.sjbs.2021.02.016

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. arXiv. doi:10.48550/arXiv.1409.1556

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). “Going
deeper with convolutions,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, Boston, MA, 7–12 June 2018, 1–9.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). “Rethinking the
inception architecture for computer vision,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, Las Vegas, NV, June 26–July 1 2016, 2818–2826.

Tan, M., and Le, Q. (2019). “Efficientnet: rethinking model scaling for convolutional
neural networks,” in International conference on machine learning, Long Beach, CA,
10–15 June 2016 (Cambridge, MA: JMLR), 6105–6114.

Tee, C. A. T., Teoh, Y. X., Yee, L., Tan, B. C., and Lai, K. W. (2021). Discovering the
Ganoderma boninense detection methods using machine learning: a review of manual,
laboratory, and remote approaches. IEEE Access 9, 105776–105787. doi:10.1109/access.2021.
3098307

Yong, L. Z., Khairunniza-Bejo, S., Jahari, M., and Muharam, F. M. (2022). Automatic
disease detection of basal stem rot using deep learning and hyperspectral imaging.
Agriculture 13 (1), 69. doi:10.3390/agriculture13010069

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, Salt Lake City, UT, 18–22 June 2016, 8697–8710.

Frontiers in Remote Sensing frontiersin.org12

Daranagama and Takeuchi 10.3389/frsen.2025.1553844

https://doi.org/10.1016/j.aiia.2023.07.001
https://doi.org/10.1016/j.aiia.2023.07.001
https://doi.org/10.5194/isprs-annals-x-4-w1-2022-25-2023
https://doi.org/10.5194/isprs-annals-x-4-w1-2022-25-2023
https://doi.org/10.1007/s42161-024-01770-5
https://doi.org/10.1007/s41870-023-01483-5
https://doi.org/10.3390/agronomy14020327
https://doi.org/10.3390/biology11020251
https://doi.org/10.1109/access.2022.3142817
https://learn.arcgis.com/en/projects/train-a-model-to-identify-street-signs/
https://learn.arcgis.com/en/projects/train-a-model-to-identify-street-signs/
https://doi.org/10.3390/agronomy11030532
https://doi.org/10.3390/electronics10121388
https://doi.org/10.1109/access.2023.3276763
https://doi.org/10.7717/peerj-cs.1325
https://doi.org/10.7717/peerj-cs.1325
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1038/s41598-020-62275-6
https://doi.org/10.3390/plants11192462
https://doi.org/10.1016/j.heliyon.2022.e09252
https://doi.org/10.1080/01431161.2014.903353
https://doi.org/10.3390/app10041245
https://doi.org/10.1186/s43170-021-00058-3
https://doi.org/10.1016/j.sjbs.2021.02.016
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/access.2021.3098307
https://doi.org/10.1109/access.2021.3098307
https://doi.org/10.3390/agriculture13010069
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1553844

	Smartphone application for detecting and visualizing basal stem rot disease stages in oil palm
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition
	2.2 Model development and evaluation
	2.2.1 Data preprocessing
	2.2.2 Model initialization and training
	2.2.3 Model evaluation

	2.3 Integration into Gano Stage application
	2.4 Web GIS based visualization

	3 Results
	3.1 CNN-based classification results
	3.2 Model deployment in the Gano Stage application
	3.3 Web GIS based dashboard

	4 Discussion
	4.1 Data acquisition with “Gano Stage - Data collection” application
	4.2 CNN classification
	4.3 Gano Stage application for real-time prediction
	4.4 Web GIS based visualization
	4.5 Limitations and future works

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


