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Crop identification and monitoring of crop dynamics are essential for agricultural
planning, environmental monitoring, and ensuring food security. Recent
advancements in remote sensing technology and state-of-the-art machine
learning have enabled large-scale automated crop classification. However,
these methods rely on labeled training data, which requires skilled human
annotators or extensive field campaigns, making the process expensive and
time-consuming. Self-supervised learning techniques have demonstrated
promising results in leveraging large unlabeled datasets across domains. Yet,
self-supervised representation learning for crop classification from remote
sensing time series remains under-explored due to challenges in curating
suitable pretext tasks. While bimodal self-supervised approaches combining
data from Sentinel-2 and Planetscope sensors have facilitated pre-training,
existing methods primarily exploit the distinct spectral properties of these
complementary data sources. In this work, we propose novel self-supervised
pre-training strategies inspired from BERT that leverage both the spectral and
temporal resolution of Sentinel-2 and Planetscope imagery. We carry out
extensive experiments comparing our approach to existing baseline setups
across nine test cases, in which our method outperforms the baselines in
eight instances. This pre-training thus offers an effective representation of
crops for tasks such as crop classification.
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1 Introduction

Crop classification is the process of identifying crops at a particular location based on
the temporal pattern of their spectral signature obtained from satellite missions. The
evolution of the spectral signature, which varies from crop to crop, is influenced by the
crop’s phenological traits such as its life cycle stages (seeding, budding, growing, and
sprouting) (Meier et al., 2009). Thus, temporal information plays a crucial role in crop
classification by capturing these phenological patterns over the growing season. Exploiting
the temporal information will help in various applications such as optimizing farming
practices and increasing crop yields.

Accurate crop classification from satellite imagery is crucial for agricultural monitoring
(Luo et al., 2024), yield estimation (Dell’Acqua et al., 2018), and ensuring food security (Ray
et al., 2022). Satellite missions such as Sentinel-2 (Drusch et al., 2012) have provided large
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amounts of data, but annotating them is costly and laborious.
Conventional approaches like random forest algorithms have
shown limitations in their ability to generalize effectively. These
models struggle to accurately predict outcomes for crop fields at
different locations and even the same crop fields at different time
points, as evidenced by (Račič et al., 2020; Hütt et al., 2020).

Research in land use and land cover classification has been
highly active, with rapid advancements in recent years.
Convolutional Neural Networks (CNNs), including models like
VGG (Simonyan and Zisserman, 2015), DenseNet (Huang et al.,
2016), and ResNet (He et al., 2015), have demonstrated competitive
accuracy in land cover mapping tasks (Cecili et al., 2023). In
addition, Vision Transformer (ViT) (Dosovitskiy et al., 2020)
models have gained popularity for land use and land cover
classification, particularly when utilizing multi-spectral or hyper-
spectral imagery. For instance, Rad (2024) proposed using Swin
Transformer models to achieve accurate land cover classification by
leveraging Landsat 8 data along with meteorological information.
Transformer-based models also offer the advantage of
interpretability through attention maps applied to satellite
imagery (Khan et al., 2024). Their use of discrete tokens and
attention mechanisms enables effective fusion of multiple
modalities or data sources. A notable example is ExViT (Yao
et al., 2023), an advanced transformer model that employs
separable convolution layers to generate initial tokens and utilizes
cross-modality attention to fuse tokens from two data sources at
early, mid, or late stages of processing.

In contrast, the field of remote sensing for crop time-series
analysis has not seen as widespread adoption of diverse models.
Since crops exhibit temporal dynamics, early developments in this
field relied on recurrent neural networks (RNNs). Hybrid models
combining CNNs and LSTMs have been implemented to encode
both spatial and temporal information for agricultural applications
(Bharti et al., 2022). Transformer-based models are also emerging in
this domain. For example, UTAE (Garnot and Landrieu, 2021)
integrates CNNs with temporal attention mechanisms to learn crop
segmentation, while TSViT (Tarasiou et al., 2023) relies solely on
transformer blocks for crop classification. However, these time
series-specific developed networks have been implemented on
labeled datasets, which are expensive and challenging to annotate.

Self-supervised learning offers a promising alternative by
training models on pretext tasks where supervision signals are
derived from the input data itself rather than human-annotated
labels (Gui et al., 2024). Training such pre-text task is termed as pre-
training. Once themodel is pre-trained, it can easily be transferred to
tasks where few annotated samples are available. It is found that such
models have better performance than equivalent-sized models that
are trained from scratch. Recent self-supervised approaches have
shown potential in leveraging unlabeled remote sensing data to learn
meaningful representations for land cover classification
(Scheibenreif et al., 2022). However, developing such models for
crop-related data remains a significant challenge (Patnala
et al., 2024).

Self-supervised learning has shown promising results through
contrastive learning approaches in computer vision (Chen et al.,
2020) and masked language modeling techniques like BERT (Devlin
et al., 2018) and GPT (Brown et al., 2020) in natural language
processing. Contrastive learning aims to learn representations that

bring similar data samples closer while pushing dissimilar ones
apart. Data augmentation generates meaningful similar pairs,
allowing the model to learn the shared signals between them.
However, designing these transformations is critical
(Purushwalkam and Gupta, 2020). This task becomes even
challenging when working with tabular data, such as satellite
reflectance values. One approach to generate more similar pairs
for the tabular data is by employing SCARF (Bahri et al., 2021).
SCARF employs random feature corruption, where parts of the
input data are randomly corrupted to create a noisy “view” that
serves as the positive pair for contrastive learning. Another approach
to generate the required positive samples for remote sensing images
is by using two data sources, i.e. bi-modal contrastive learning
(Patnala et al., 2024). Specifically in the context of crop
classification, this approach leverages the complementary benefits
from the higher spectral information of Sentinel-2 data (Drusch
et al., 2012) and the higher spatial resolution of Planetscope data1.
This bi-modal approach outperformed uni-modal self-supervised
baselines for downstream crop classification. The two sources are
only used during pre-training. This means that inference of crop
types can later be done with open access Sentinel-2 data alone, while
the fine spatial resolution information implicitly learned from
Planetscope is still implicitly available from the model.

In this work, we propose to supplement the idea of exploiting
varying spectral and spatial resolutions (Patnala et al., 2024) by also
leveraging the varying temporal resolutions of Sentinel-2 and
Planetscope. We identified the challenges associated with
extending spectral bi-modal contrastive learning to a spectro-
temporal bi-modal contrastive framework. To address these
challenges, we propose utilizing BERT (Devlin et al., 2018), a
bidirectional transformer model, as an alternative approach to
contrastive self-supervised learning while employing on a
spectro-temporal domain. BERT is widely adopted in natural
language processing but has also been applied, for example, for
pre-training of a generalized weather model (Lessig et al., 2023). Its
bi-directional nature allows capturing context from both preceding
and succeeding time steps, providing a more comprehensive
sequential representation. A key advantage of our bi-modal
BERT approach over contrastive learning setups (Chen et al.,
2020) is that it requires only a single transformer model.
Contrastive methods typically involve separate encoders for
different modalities. Since contrastive approaches require very
large batch sizes for training, requiring two encoders is a strong
limitation.

Recent works have shown that adding auxiliary tasks in parallel
to the main pretext objective can further boost the performance of
the pre-trained model on downstream applications (Ayush et al.,
2020). Here in the context of our tasks, we propose two novel
auxiliary losses alongside our bi-modal BERT approach: seasonal
classifier loss and cloud prediction loss. The seasonal classification
loss enables the model to learn phenological nuances across different
crop growing seasons, and the cloud prediction loss makes the
model aware of atmospheric distortions of the measured satellite
reflectance.

1 https://api.planet.com
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In summary, our contributions are:

1. We introduce a novel bimodal BERT strategy that leverages the
complementary spectral and temporal information from
Sentinel2 and Planetscope data for self-supervised pre-
training of crop classification models.

2. Additionally, we propose two novel auxiliary losses for
seasonal classification and cloud prediction, which
significantly improve the self-supervised learning.

3. We conduct comprehensive experiments comparing the
proposed bi-modal BERT approach to a ResMLP model
Patnala et al. (2024), which relies solely on spectral information.

The structure of this paper is organized as follows: Section 2 outlines
the dataset employed in our experimental framework and emphasizes
the subtle differences in data utilization between our competitive
experimental setup and our standard approach. Section 3 provides a
comprehensive explanation of the BERT methodology and its
application in this study, along with a detailed description of the
auxiliary losses incorporated in our research. Section 4 delves into
the implementation specifics of our experimental setup, while the
ablation study discussed in Section 5 examines the sensitivity and
impact of various parameters. Section 6 presents a comparative analysis
of our experimental setup against the baseline configuration. Finally,
Section 7 explores the implications and potential avenues for future
research, and Section 8 summarizes our findings.

2 Datasets

Before we describe the self-supervised learning method in
Section 3, we briefly describe the datasets that are used for self-

supervised learning and the evaluation on three different
downstream tasks. As in (Patnala et al., 2024), we use data from
the DENETHOR (Kondmann et al., 2021) dataset, which includes
data from Sentinel-2 and Planetscope. As illustrated in Figure 1,
Planetscope has a finer spatial resolution than Sentinel-2. While the
previous work employs ResMLP (Patnala et al., 2024) (skip
connection MLP model) for their contrastive learning approach
that randomly sampled pixels at each time step of Sentinel-2 and
enforced similarity to the corresponding pixels in the Planetscope
data, we propose a spectro-temporal self-supervised method that
leverages the temporal dimension by fixing a set of pixel locations
and collecting the associated time series of Sentinel-2 and
Planetscope reflectance values, as illustrated in Figure 1. For self-
supervised training, we sample 150,000 time series where each time
series consists of 144 points, spanning the whole year.

The downstream evaluation tasks for crop classification are the
same as those used in (Patnala et al., 2024). There are three
downstream tasks in total. The downstream task 1 is from the
same spatial region (Brandenburg, Germany) as the pre-training
dataset from the year 2018. The downstream task 2 is from a
different spatial region, albeit still in Brandenburg, and the
measurements are from the year 2019. Both downstream tasks
1 and 2 consist of a total of 45,000 training data samples and
9,000 validation data samples each with equal distribution across
9 classes of crops. Figure 2 shows the splitting of the crop fields.

In downstream task 3, the measurements are taken from a
different region (Brittany, France) from the year 2018. The dataset
is a subset of the Breizhcrop dataset (Rußwurm et al., 2019). The
dataset provides an aggregated spatial measurement per field parcel.
There are 9 crop types in the original dataset (permanent meadows,
temporary meadows, corn, wheat, rapeseed, barley, orchards,
sunflower, and nuts). The crop fields that contain orchards,

FIGURE 1
Illustration of the sampling of the pre-training dataset (a) in the baseline model and in the (b) spectro-temporal self-supervised method. In the
baseline spectral contrastive method, the spectrally resolved measurements from the same spatial location and the same timestamp are chosen as
complementing pairs as indicated by the red lines connecting the pixels. In our new spectro-temporal self-supervised method, the time series of each
pixel or group of pixels (shown with blue color) are used as corresponding pairs. In both panels, the top part represents Sentinel-2 and the bottom
part represents Planetscope.
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sunflowers, and nuts are discarded as there are fewer field parcels for
these crop types. Our final downstream task 3 contains 54,000 training
data samples and 6,000 validation data samples that are uniformly
distributed across 6 classes. In bothDENETHOR andBreizhcrops, the
crop data provided have a full annual production cycle.

It is important to note that the ratio of training to validation
samples for each downstream task is slightly lower than what’s
typically used in remote sensing. We employed a 70–30 split in
dividing the crop fields, rather than the datasets themselves. For
downstream task 1, the ratio of training crop fields to validation crop
fields is 21:9, primarily because other crop fields were used for pre-

training. For downstream tasks 2 and 3, we maintained the 70:
30 ratio. We opted for a higher proportion of training samples to
include more data. This approach helps the network learn to
recognize and account for pixels located at field borders or
significantly affected by cloud cover.

3 Methods

We propose a novel bi-modal BERT-inspired pre-training
strategy inspired by the original BERT model (Devlin et al.,

FIGURE 2
Dataset for the bi-modal self-supervised learning experiment. The top part of the figure illustrates the splitting of crop fields present in the
DENETHOR’s training set into 3 different non-overlapping crop fields. The first split shown in the blue color are the crop fields used solely for the purpose
of pre-training. The remaining crop fields are used to generate training and validation subset for downstream task 1. Similarly, the bottom row illustrates
the splitting of DENETHOR’s validation region into 2 non-overlapping set of crop fields. The two splits are used to generate a training and validation
subset for downstream task 2. The figure is taken from Patnala et al. (2024).

FIGURE 3
Our model is trained on time series data from Sentinel-2 and PlanetScope. The time series have different spatial and temporal resolutions. In this
case, we only illustrate the temporal resolution. A subset of the Sentinel-2 time series is masked and the model is trained to predict the corresponding
values of the Planetscope time series. Since Planetscope has a higher temporal resolution, the values of 3 timestamps instead of 1 timestamp
are predicted.
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2018) for encoding contextual representations of sequential data like
text. In the original BERT, a tokenized text from a sentence is passed
through the encoder part of a transformer. Before passing it to the
encoder, some tokens are masked. Among these masked tokens,
some are simply replaced by random values, some are replaced by
other values from the distribution, and a few tokens are re-inserted
with their original values. Similar to BERT’s masked language
modeling approach, we randomly mask timestamps in the
Sentinel-2 input sequence before passing it through the
transformer encoder.

Our pre-training objective is to predict the corresponding high-
resolution Planetscope reflectance values at the masked time steps
and spatial locations. For this, the model has to use the contextual

information from the unmasked time steps of the Sentinel-2 data. To
exploit the finer temporal resolution of Planetscope data, we extend
this approach to predict not just the original masked time step, but
also the reflectance values for two preceding time steps. This
multiple timestamp prediction strategy encourages the model to
capture the finer temporal resolution of Planetscope. Since we are
dealing with a regression task, the loss function used is the mean
squared error (MSE) between the predicted and actual Planetscope
reflectance values averaged over the three time steps. Figure 3
illustrates this setup.

We now describe the loss functions that are used for self-
supervised learning more in detail. A Sentinel-2 time series with
12 spectral channels is denoted as xs � (xs1, xs2, xs3 . . . , xst) where
t � 144 and xsi ∈ R12. A Planetscope time series is denoted as xp �
(xp1, xp2, xp3 . . . , xpt) where t � 365 and each time step xpi ∈ R36,
where xpi is the concatenation of 4 spectral channels over 9 pixels.
Note that Planetscope has a higher spatial and temporal resolution
than Sentinel-2 as illustrated in Figure 1. While Patnala et al.
(2024) already demonstrated the benefit of using additional data
from Planetscope for self-supervised learning although the
downstream tasks are only for Sentinel-2 data, we show that
our proposed spectro-temporal model, which considers the
temporal information over an entire year and includes two
novel loss functions that consider seasonal and cloud effects,
outperforms (Patnala et al., 2024). Our BERT model is denoted
by F and it learns a representation z = F(xs) for a Sentinel-2 time
series with 144 timesteps. Each timestep zt ∈ R256 is represented
by a 256 dimensional vector. Out of the 144 timesteps, we
randomly select 90% of the timesteps denoted by ~T. The
selected timestamps are then passed to a linear layer g(zsi) to
obtain ysi ∈ R36. The corresponding timestamp for Planetscope is
denoted as xpi ∈ R36. We then compute the MSE as shown in the
Equation 1.

FIGURE 4
Auxiliary seasonal loss.

FIGURE 5
Auxiliary cloud prediction loss.
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Lbert � 1

2|~T| ∑
i∈ ~T

‖ysi − xpi‖2, (1)

i.e., we aim to reconstruct the values of the spectral channels of the
Planetscope data for the corresponding timestep. Since Planetscope
has a higher temporal resolution than Sentinel2, we reconstruct not
only 1 timestep but 3. In this case, ysi ∈ R3x36 and xpi ∈ R3x36.

To further improve the representation that is learned in our bimodal
BERT model, we incorporate two auxiliary losses in parallel, namely
seasonal loss and cloud loss. A seasonal classification loss is used to
capture phenological nuances across different crop growing seasons. The
transformer outputs z are aggregated by month, i.e., zm for
m ∈ {1, . . . , 12}, and passed through a linear classifier hm to predict
cm, the class probabilities of each month label {1, . . . , 12}. We then use
the cross-entropy as seasonal loss as per Equation 2:

Lseasonal � − 1
12

∑
12

m�1
log cm,m( ), (2)

where cm,m is the predicted probability of the month m for zm. This
encourages the model to implicitly learn seasonal patterns that
influence crop traits. Figure 4 illustrates the seasonal loss.

An additional cloud prediction loss is used to make the model
aware of atmospheric distortions and implicitly learn the effect of
clouds on the measured reflectance. Cloudmeasurements are readily
available in the Sentinel-2 dataset and discretized into 32 cloud
levels. We select a subset of timesteps ~Tcloud to directly predict the
cloud levels for each timestep i ∈ ~Tcloud using a linear layer with
softmax li � h(zsi), where we denote the probability of a cloud level
j at timestep i by li,j and the ground-truth cloud level by cli. As cloud
loss, we then use the cross entropy loss as shown in the Equation 3:

Lcloud � − 1

|~Tcloud|
∑

i∈ ~Tcloud

∑
32

j�1
Ij�cli log li,j( ), (3)

where Ix is the indicator function, which is 1 if x is true and
otherwise 0. The loss is illustrated in Figure 5.

4 Experiments

As a backbone, we used a transformer model (Dosovitskiy et al.,
2020) with 32 layers. Instead of using 2D convolutions in the initial
layer, we used 1D convolutions to process the time series data of
Sentinel-2. The pre-training objective was to minimize the MSE
between the model’s predicted reflectance values and the actual
measurements from the Planetscope sensors. For training, we used
the following masking. 10% of the tokens were masked to predict the
cloud level for the cloud prediction auxiliary task. Another 70% were
masked and replaced with random values, 10% were replaced with
values sampled from the data distribution, and the remaining 10%were
left unchanged. The network was trained for 100 epochs using a batch
size of 64. The initial learning rate was set to 10−3, with awarmup period
of 5 epochs. A cosine annealing scheduler was employed to regulate the
learning rate during training. The self-supervised trained transformer
model provides a contextual time series representation.

For downstream tasks, this contextual time series representation
serves as input to various base models: bi-directional long short term

memory (LSTM), inceptiontime, and transformer as depicted in
Figure 6. To evaluate the effectiveness of our pre-trained model
across different model configurations, we randomly generated
10 network instances for each base model type (LSTM,
inceptiontime, and transformer) using Optuna (Akiba et al.,
2019). For bi-directional LSTM, the hyperparameter space is
defined as follows: dimensions of the hidden layer as one of
{32, 64, 128, 256}, number of layers between 2 and 6, and learning
rate in the range from 10−5 to 10−3. For inceptiontime, the
hyperparameter space is specified as follows: number of layers as
either 2, 4, or 8, dimension of hidden layer as one of
{128, 256, 512, 1024}, kernel size as one of {40, 80, 120, 136}, and
learning rate between 10−5 and 10−3. The hyperparameter space for
position encoded transformers is defined as follows: the dimension
of the model is either of {32, 64, 128}, the number of attention heads
as one of {2, 4, 8}, the number of layers between 2 and 6, and the
learning rate ranges between 10−5 and 10−3.

5 Ablation studies

This section presents an ablation analysis investigating how
various parameters affect the performance of both the ResMLP and
BERT pre-trained models. We explore the following aspects: impact
of number of layers in the ResMLP model (Section 5.1), effect of
number of layers in the BERT model (Section 5.2), influence of
masking rate on BERT (Section 5.3), comparison between BERT and
the spectro-temporal contrastive approach (Section 5.4), and an
analysis of the impact of the auxiliary losses for the BERT model,
specifically the seasonal classification and cloud prediction losses.
Further, in the same subsection, we analyzed the effect of predicting
multiple timestamps (Section 5.5). Finally, we examined the effects
of different auxiliary losses (Section 5.6).

For all case studies, we report the mean classification accuracy
and standard deviation across 10 models with varying
hyperparameters (see Section 6). Our results focus on
downstream task 2, as described in Section 2. We limit our
ablation studies to LSTM and transformer architectures due to
the inferior performance observed in inception models.

FIGURE 6
Experiment setup of the crop classification downstream tasks
using the pre-trained transformer network. Each pixel is selected and
the corresponding time series is then passed to the pre-trained
Sentinel transformer. The output of the transformer model is an
encoded representation of the time series, which is then passed to the
base model for multi-class time series classification.
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5.1 Number of layers on ResMLP model

Figure 7 illustrates the effect of increasing the number of layers on
the ResMLP model’s performance for both LSTM and Transformer
architectures. Themean accuracy increases by increasing the number of
layers. Notably, for LSTM models, there is a marginal increment
observed when transitioning from 32 to 64 layers.

5.2 Effect of number of layers on
BERT model

Figure 8 illustrates the effect of increasing the number of layers
for the BERT model. We observe improvement for both LSTM and
transformer architectures upon increasing the number of layers. To
accommodate the larger models on a single GPU, a batch size of

FIGURE 7
Effect of number of layers for ResMLP model. Plot (a) corresponds to LSTM and plot (b) corresponds to the transformer. The orange dashed line
represents the maximum accuracy achieved across varying numbers of layers.

FIGURE 8
Effect of the number of layers for BERT model. Plot (a) corresponds to LSTM and plot (b) corresponds to transformer. The orange dashed line
represents the maximum accuracy achieved across varying numbers of layers.
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128 was used for the transformer with 16 layers, while a batch size of
64 was used for 32 layers.

It is important to note that for the rest of the BERT ablation
experiments, a 16-layer transformer architecture was used as the
benchmark model for comparing the effects of other parameters and
design choices.

5.3 Effect of masking rate on BERT model

Figure 9 illustrates a relationship between the masking rate and
its effect on accuracy. For LSTM architectures, we observe an
increasing trend in performance as the masking rate is increased
from 15% to 90%. In the case of Transformer models, the accuracy

FIGURE 9
Effect of masking rate for BERTmodel. Plot (a) corresponds to LSTM and plot (b) corresponds to transformer. The orange dashed line represents the
maximum accuracy achieved across different masking rates.

FIGURE 10
Spectro-temporal contrastive method.
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improves from a 15%masking rate up to 60%, after which it plateaus
with no significant gains observed at the 90% masking level. The
mean difference in accuracy between the 15% and 90% masking
rates is approximately 11.01% for LSTM models and 6.84% for
transformer models.

5.4 Comparison between BERT and spectro-
temporal contrastive

Spectro-temporal contrastive learning should have been a
natural extension of the spectral contrastive method. Instead of
utilizing spectral pairs from the same timestamp as
complementary views, the spectro-temporal contrastive
strategy uses the time series of spectral measurements for each

pixel location as the corresponding complementary pair.
Figure 10 provides a visual description of our spectro-
temporal contrastive method.

The spectro-temporal contrastive approach has certain
drawbacks. This method uses two separate transformer models,
which poses a constraint on the maximum batch size. Consequently,
we conducted a comparative evaluation between our proposed
BERT method and the spectro-temporal contrastive strategy
using a smaller transformer architecture, specifically one with
4 layers and an embedding dimension of 64.

Table 1 demonstrates the superiority of BERT over the spectro-
temporal contrastive method for both LSTM and transformer. For
LSTM, there is a mean overall difference of 15.05% and it is 10.55%
for transformer.

5.5 Contribution of auxiliary losses and
multiple timestamps

As demonstrated in Table 2, the inclusion of the cloud prediction
auxiliary loss results in an overall increase inmean accuracy of 3.88% for
LSTM and 2.14% for Transformer models, highlighting the effectiveness
of this auxiliary task. Similarly, the addition of the seasonal classifier as an
auxiliary loss during pre-training leads to an overall increase in mean
accuracy of 6.99% for LSTM and 4.65% for Transformer models,
showing the benefits of including seasonal information.

Furthermore, Table 3 highlights the advantages of predicting
three future time steps during pre-training over predicting a single
time step. This results in an overall increase in mean accuracy of
6.27% for LSTM and 3.74% for Transformer models.

5.6 Comparison between different types of
auxiliary loss functions

We compared our proposed cross-entropy loss for the auxiliary
task to the mean square loss. Table 4 demonstrates the superiority of
the cross-entropy loss over the use of the MSE loss for the auxiliary
task. For LSTM, there is a mean overall difference of 3.62% and it is
3.55% for transformer.

6 Results

We compare our proposed spectro-temporal BERT model with
a contrastive learning baseline that uses datasets with different
spatial resolutions, but does not rely on temporal information for
self-supervised learning, as illustrated in Figure 1. The baseline
ResMLP (Patnala et al., 2024) consists of 64 layers and was
trained with a batch size of 2048. For comparison, we use
comparison plots and absolute gain in performance. In the
comparison plot, the x-axis presents the accuracy of the ResMLP
model and the y-axis represents the accuracy of the BERT model for
self-supervised learning. The dotted line across the plot represents a
break-even line. Points above the diagonal break-even line, plotted
in red, indicate BERT’s superiority over ResMLP, while green points
below the line indicate inferior performance. In the plot, we also
report the fractional win score (Equation 4), calculated as the

TABLE 1 Comparison of BERT and spectro-temporal contrastive method
when evaluated on LSTM and transformer base models.

Pre-trained model Accuracy (mean ± std)

LSTM Transformer

BERT 73.94 ± 1.21 79.51 ± 1.05

Spectro-temporal contrastive 58.89 ± 1.53 68.96 ± 2.21

TABLE 2 Impact of seasonal loss and cloud loss.

Loss Accuracy (mean ± std)

LSTM Transformer

BERT (proposed) 73.94 ± 1.21 79.51 ± 1.05

BERT without cloud prediction loss 70.06 ± 1.41 77.37 ± 1.98

BERT without seasonal classifier loss 66.95 ± 1.20 74.86 ± 3.90

TABLE 3 Impact of the number of predicted timestamps.

Predicted timestamps Accuracy (mean ± std)

LSTM Transformer

3 (proposed) 73.94 ± 1.21 79.51 ± 1.05

1 67.67 ± 1.96 75.77 ± 2.98

TABLE 4 Comparison between different losses for the auxiliary task on
BERT model when evaluated on LSTM and transformer base model.

Pre-trained model Accuracy (mean ± std)

LSTM Transformer

BERT (Cross-entropy) 73.94 ± 1.21 79.51 ± 1.05

BERT (MSE) 70.32 ± 1.99 75.96 ± 1.97
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FIGURE 11
Comparison and box plot for all pre-trained models on downstream task 1. Plots (a,c,e) show the comparison plots for LSTM, inception, and
transformer, respectively. Panels (b,d,f) correspond to box plots showing an absolute gain for our proposed BERT model over the ResMLP pre-
trained model.
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FIGURE 12
Comparison plot and box plot for all pre-trained models on downstream task 2. Plots (a,c,e) show the comparison plots for LSTM, inception, and
transformer, respectively. Panels (b,d,f) correspond to box plots showing absolute gain for our proposed BERT model over the ResMLP pre-
trained model.
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FIGURE 13
Win-matrix and box plot for all pre-trained models on downstream task 3. Plots (a,c,e) show the win-matrix for LSTM, inception, and
transformer, respectively. Panels (b,d,f) correspond to box plots showing an absolute gain for our proposed BERT model over the ResMLP pre-
trained model.

Frontiers in Remote Sensing frontiersin.org12

Patnala et al. 10.3389/frsen.2025.1555887

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1555887


number of times out of 10 experiments that BERT surpassed the
ResMLP model, i.e.,

Win_score � ∑N
i�1I accBERT > accResMLP( )

N
. (4)

Figures 11–13 present the comparison plots evaluating the
competitive pre-trained models across downstream tasks 1, 2,
and 3, respectively. A separate evaluation is done for each base
model, i.e., LSTM, inception, and transformer. Since 10 different
hyperparameter configurations are employed for each base model,
the number of experiments is 10.

Figure 11 presents the comparison and box plots comparing the
performance of our proposed BERT model against the ResMLP
baseline for downstream task 1. The win-ratios, indicating the
number of times (out of 10 experiments) BERT surpassed
ResMLP, are 10/10 for LSTM, 9/10 for inception, and 7/10 for
transformer models. The mean classification accuracies achieved by
ResMLP models are 64.43% ± 3.06% for LSTM, 23.41% ± 6.18%
for inception, and 75.20% ± 4.76% for transformer models. For
LSTM, the mean gain of BERT over the ResMLP is 7.04% (min:
3.02%, max: 14.46%). In the case of inception, the mean gain is
3.57% (−0.62%, 8.49%). For transformers, the mean gain is 1.44%
(−1.21%, 9.18%).

Figure 12 presents the comparing results for downstream task 2.
The win-ratios are 10/10, 10/10, and 6/10 for LSTM, inception, and
transformer, respectively. The mean classification accuracies
achieved by ResMLP models are 62.88% ± 2.86% for LSTM,
22.01% ± 4.28% for inception, and 77.80% ± 5.92% for
transformer. For LSTM, the mean gain of BERT over the
ResMLP is 12.24% (8.68%, 19.75%). In the case of inception, the
mean gain is 12.28% (9.05%, 15.98%). For transformers, the mean
gain is 2.26% (−3.27%, 13.54%).

Figure 13 presents the results for downstream task 3. The win-
ratios are 3/10 for LSTM, 9/10 for inception, and 6/10 for transformer.
The mean classification accuracy achieved by the ResMLP models is
56.32% ± 0.47% for LSTM, 16.37% ± 5.97% for inception, and
53.87% ± 2.82% for transformer. For LSTM, the mean gain of
BERT over the ResMLP is −0.11% (−0.70%, 0.56%). It is the only
setting where BERT performs on average worse than ResMLP. In the
case of inception, the mean gain is 5.91% (−3.47%, 18.59%). For
transformers, the mean gain is 1.15% (−2.05%, 6.93%) for BERT.

Table 5 presents the classification accuracy achieved by
models trained using the representations learned from the
ResMLP self-supervised approach and our proposed BERT
bimodal method across all three downstream crop
classification tasks.

Based on the experimental results presented, the proposed bi-modal
BERT approach demonstrates consistent performance gains over the
baseline ResMLP method across the three downstream crop
classification tasks and different base model architectures (LSTM,
InceptionTime, Transformer). For LSTM architectures, the BERT
approach is clearly superior on downstream tasks 1 and 2. On task
3, there is no improvement and the performance is comparable to
ResMLP, with most model configurations lying close to the break-even
line as shown in Figure 13. In the case of transformermodels, the BERT
method consistently outperforms ResMLP across all tasks. Figures 14,
15 present maps that compare the performance of the BERT model
against the ResMLP baseline model. These maps specifically illustrate
the results for one configuration on downstream task 2. The plots from
different configurations showed similar results.We present results from
downstream task 2 because its data is relatively similar to the data used
for pre-training, unlike the data in downstream task 3. Also, the data for
downstream task 1 is from the same region and time, so it does not
provide enough variability.

In summary, the proposed spectro-temporal BERT method
outperforms the ResMLP baselines in 8 out of 9 cases and it is on
par in one case. By using very different architectures for the time series
classification with 10 different hyper-parameters each, we showed that
the results generalize across different architectures. The results show the
advantage of a temporal model compared to a contrastive learning
approach. Note that both the proposed spectro-temporal BERT model
and ResMLP utilize data from different sources with different spatial
and temporal resolutions, namely Sentinel-2 and Planetscope, but only
our approach leverages the higher temporal resolution of Planetscope.

7 Discussion

We have demonstrated the advantages of employing spectro-
temporal self-supervised methods over those that solely utilize spectral
components. The BERT approach offers a key benefit over its spectro-
temporal contrastive counterpart: it requires only one transformer model

TABLE 5 Accuracy of the models for both pre-trained ResMLP self-supervised model and our proposed BERT model in three different downstream tasks.

Downstream Tasks Downstream Network ResMLP (mean +/− std) Proposed BERT model (mean +/− std)

Task 1 LSTM 64.43% +/−3.06% 71.47% +/−0.77%

InceptionTime 23.41% +/−6.18% 26.97% +/−6.95%

Transformer 75.20% +/−4.76% 76.64% +/−2.09%

Task 2 LSTM 62.88% +/ 2.86% 75.12% +/−1.11%

InceptionTime 22.01% +/−4.28% 34.29% +/−3.68%

Transformer 77.78% +/−5.90% 80.04% +/−1.26%

Task 3 LSTM 56.32% +/−0.47% 56.21% +/−0.24%

InceptionTime 16.37% +/−5.97% 22.28% +/−7.13%

Transformer 53.87% +/−2.82% 55.02% +/−0.81%
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FIGURE 14
Visualization of the crop classification map for both spectral-temporal BERT and ResMLP pre-trained model. Dark violet points indicate where the
predictions are correct, and red points show where predictions are wrong. The results are from the LSTM model evaluated on the validation set of
downstream task 2. Out of 10 available hyperparameter configurations, these results were obtained using hyperparameters corresponding to model
number 5.
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FIGURE 15
Visualization of the crop classification map for both spectral-temporal BERT and ResMLP pre-trained model. Dark violet points indicate where the
predictions are correct, and red points show where predictions are wrong. The results are from the transformer model evaluated on the validation set of
downstream task 2. Out of 10 available hyperparameter configurations, these results were obtained using hyperparameters corresponding to model
number 5.
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during training and can be easily scaled acrossmultiple devices using data-
distributed parallelism techniques (Li et al., 2020). While alternative loss
functions to contrastive loss exist, such as Barlow twins (Zbontar et al.,
2021), studies like (Bahri et al., 2021; Patnala et al., 2024) have shown that
these alternatives fail to yield superior representations for tabular data.
Other loss functions, includingMoCo (He et al., 2019),DiNo (Caron et al.,
2021), andBYOL (Grill et al., 2020), employmomentum-based distillation
techniques, thus making them less adaptable to multi-modal setups. Our
transformer model takes roughly 20 h to train for 100 epochs on
V100 GPUs, mainly due to our selection of a higher number of layers
and a large dimension for the intermediate MLP layer. However, the
ResMLP model, with an equivalent number of layers and hidden
dimensions, exhibits similar training times. It is worth noting that the
transformer has a computational complexity of O(N2). In our
experimental setup, we use 144 time stamps as tokens, which mitigates
the impact of this complexity. Emerging state space models likeMAMBA
(Gu and Dao, 2024) show promise in competing with transformers,
offering both convolutional and recurrent setups for faster training and
inference, respectively. Such models are beginning to gain traction in the
remote sensing community (Huang et al., 2024). The limitations of our
approach are as follows: Our pre-training process uses a regional dataset
that focuses specifically on croplands in a small area of Brandenburg. This
limited geographical scope restricts the model’s ability to generalize to
other regions, particularly in developing areas where labeled data is scarce.
Themodel’s performance can be improved by expanding the pre-training
dataset to include samples from a wider range of geographic locations.
This expansionwould allow themodel to learnmore diverse crop patterns
and potentially make it more suitable for use in developing countries
where fewer labeled examples are available. In fact, it would be highly
beneficial, if a large multi-sensor dataset encompassing several world
regions were made available to the community so that larger, more
powerful unsupervised machine learning models can be trained and
evaluated. Such community datasets were very influential in several
other domains. In this study, we utilized data from DENETHOR and
Breizhcrop, where the crop data covers a complete annual production
cycle. However, if crops with varying annual cycles are involved,
systematic batching or modern GPUs equipped with flash attention
would be required. Flash attention enables efficient processing of
variable-length data within a single batch, making it suitable for such
scenarios. Additionally, our current approach uses a 3 × 3 set of pixels for
Planetscope without considering larger spatial contexts. Recent works like
UBARN (Dumeur et al., 2024b) and ALISE (Dumeur et al., 2024a) have
explored BERT-style training in the spatio-spectro-temporal domain,
albeit using a single source. A promising future direction would be to
investigate howourmulti-modal strategy could be applied to suchmodels.

8 Conclusion

In this study, we extended the work of Patnala et al. (2024) by
introducing an innovative bi-modal approach that combines spectral and
temporal data from two satellites for self-supervised pre-training and by
adopting a BERT-style training strategy. We tested this method on three
distinct downstream tasks related to crop classification. Our methodology
draws inspiration from the BERT model, but it is adapted to predict
Planetscope reflectance values from Sentinel-2 data. Our model leverages
the higher spectral information of Sentinel-2 data andPlanetscope’s higher
spatial and temporal resolution.We also developed twonew loss functions

for self-supervised learning. The seasonal classifier loss enhances the
model’s ability to differentiate between seasons, while the cloud
prediction task utilizes metadata to inform the model about cloud
coverage in pixels at specific times, allowing it to implicitly understand
cloud-related distortions in reflectance readings. As evidenced by the
results in Section 6, our BERT bi-modal model consistently outperformed
the ResMLP model across most test scenarios, and it performed
comparably in the other test scenarios. This suggests that our BERT
approach, pre-trained on combined spectro-temporal information and
enhanced with auxiliary seasonal and cloud prediction losses, learns
representations that are highly effective for crop classification. We
anticipate that this approach is scalable and that the model’s
performance could further improve with larger training datasets.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/lukaskondmann/DENETHOR.

Author contributions

AP: Conceptualization, Data curation, Methodology, Project
administration, Software, Writing – original draft, Writing – review
and editing. MS: Supervision, Validation, Writing – review and editing.
JG: Supervision, Validation, Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. The research was funded
by German Federal Ministry for the Environment, Nature
Conservation, and Nuclear Safety under grant no 67KI 2043
(KISTE). Computing time for this study was kindly provided by the
Juelich Supercomputing Centre under project DeepACF. JG is
supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - SFB 1502/1-2022 - Projektnummer:450058266.

Acknowledgments

We acknowledge the support from Michael Langguth in
proofreading the paper.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that Generative AI was used in the
creation of this manuscript. The perplexity standard version was
used to rephrase the text and look into grammatical errors.

Frontiers in Remote Sensing frontiersin.org16

Patnala et al. 10.3389/frsen.2025.1555887

https://github.com/lukaskondmann/DENETHOR
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1555887


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: a next-
generation hyperparameter optimization framework. Corr. abs/1907, 10902. doi:10.
1145/3292500.3330701

Ayush, K., Uzkent, B., Meng, C., Tanmay, K., Burke, M., Lobell, D. B., et al. (2020).
Geography-aware self-supervised learning. Corr. abs/2011, 09980. doi:10.48550/arXiv.
2011.09980

Bahri, D., Jiang, H., Tay, Y., and Metzler, D. (2021). SCARF: self-supervised
contrastive learning using random feature corruption. Corr. abs/2106 (15147).
doi:10.48550/arXiv.2106.15147

Bharti, S., Kaur, P., Singh, P., Madhu, C., and Garg, N. (2022). “Crop yield prediction
using cnn-lstm model,” in 2022 IEEE conference on interdisciplinary approaches in
technology and management for social innovation (IATMSI), 1–5. doi:10.1109/
IATMSI56455.2022.10119308

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al. (2020).
Language models are few-shot learners. Corr. abs/2005, 14165. doi:10.48550/arXiv.2005.
14165

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., et al. (2021).
Emerging properties in self-supervised vision transformers. Corr. abs/2104 (14294).
doi:10.1109/ICCV48922.2021.00951

Cecili, G., De Fioravante, P., Dichicco, P., Congedo, L., Marchetti, M., andMunafò, M.
(2023). Land cover mapping with convolutional neural networks using sentinel-2
images: case study of rome. Land 12, 879. doi:10.3390/land12040879

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. E. (2020). A simple framework
for contrastive learning of visual representations. CoRR, 05709. doi:10.48550/arXiv.
2002.05709

Lessig, C., Luise, I., Gong, B., Langguth, M., Stadtler, S., and Schultz, M. (2023).
Atmorep: a stochastic model of atmosphere dynamics using large scale representation
learning.

Dell’Acqua, F., Iannelli, G. C., Torres, M. A., and Martina, M. L. (2018). A novel
strategy for very-large-scale cash-crop mapping in the context of weather-related risk
assessment, combining global satellite multispectral datasets, environmental
constraints, and in situ acquisition of geospatial data. Sensors 18, 591. doi:10.3390/
s18020591

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: pre-training of deep
bidirectional transformers for language understanding. Corr. abs/1810, 04805. doi:10.
48550/arXiv.1810.04805

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
et al. (2020). An image is worth 16x16 words: transformers for image recognition at
scale. Corr. abs/2010, 11929. doi:10.48550/arXiv.2010.11929

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., et al. (2012).
Sentinel-2: esa’s optical high-resolution mission for gmes operational services. Remote
Sens. Environ. 120, 25–36. doi:10.1016/j.rse.2011.11.026

Dumeur, I., Valero, S., and Inglada, J. (2024a). Paving the way toward foundation
models for irregular and unaligned Satellite Image Time Series.

Dumeur, I., Valero, S., and Inglada, J. (2024b). Self-supervised spatio-temporal
representation learning of satellite image time series. IEEE J. Sel. Top. Appl. Earth
Observations Remote Sens. 17, 4350–4367. doi:10.1109/JSTARS.2024.3358066

Garnot, V. S. F., and Landrieu, L. (2021). Panoptic segmentation of satellite image
time series with convolutional temporal attention networks. Corr. abs/2107, 07933.
doi:10.48550/arXiv.2107.07933

Grill, J., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., et al.
(2020). Bootstrap your own latent: a new approach to self-supervised learning. Corr.
abs/2006 (07733). doi:10.48550/arXiv.2006.07733

Gu, A., and Dao, T. (2024). Mamba: linear-time sequence modeling with selective
state spaces

Gui, J., Chen, T., Zhang, J., Cao, Q., Sun, Z., Luo, H., et al. (2024). A survey on self-
supervised learning: algorithms, applications, and future trends. IEEE Trans. Pattern
Analysis and Mach. Intell. 46, 9052–9071. doi:10.1109/TPAMI.2024.3415112

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. B. (2019). Momentum contrast for
unsupervised visual representation learning. Corr. abs/1911, 05722. doi:10.48550/arXiv.
1911.05722

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image
recognition. Corr. abs/1512, 03385. doi:10.48550/arXiv.1512.03385

Huang, G., Liu, Z., and Weinberger, K. Q. (2016). Densely connected convolutional
networks. Corr. abs/1608, 06993. doi:10.48550/arXiv.1608.06993

Huang, L., Chen, Y., and He, X. (2024). Spectral-spatial mamba for hyperspectral
image classification. Remote Sens. 16, 2449. doi:10.3390/rs16132449

Hütt, C., Waldhoff, G., and Bareth, G. (2020). Fusion of sentinel-1 with official
topographic and cadastral geodata for crop-type enriched lulc mapping using foss and
open data. ISPRS Int. J. Geo-Information 9, 120. doi:10.3390/ijgi9020120

Khan, M., Hanan, A., Kenzhebay, M., Gazzea, M., and Arghandeh, R. (2024).
Transformer-based land use and land cover classification with explainability using
satellite imagery. Sci. Rep. 14, 16744. doi:10.1038/s41598-024-67186-4

Kondmann, L., Toker, A., Rußwurm, M., Camero, A., Peressuti, D., Milcinski, G.,
et al. (2021). “DENETHOR: the dynamicearthNET dataset for harmonized, inter-
operable, analysis-ready, daily crop monitoring from space,” in Thirty-fifth conference
on neural information processing systems datasets and benchmarks track (round 2).

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li, T., et al. (2020). Pytorch
distributed: experiences on accelerating data parallel training. Corr. abs/2006, 15704.
doi:10.48550/arXiv.2006.15704

Luo, J., Xie, M., Wu, Q., Luo, J., Gao, Q., Shao, X., et al. (2024). Early crop
identification study based on sentinel-1/2 images with feature optimization strategy.
Agriculture 14, 990. doi:10.3390/agriculture14070990

Meier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Heß,M., et al. (2009). The bbch
system to coding the phenological growth stages of plants-history and publications.
J. für Kulturpflanzen 61, 41–52. doi:10.5073/JfK.2009.02.01

Patnala, A., Stadtler, S., Schultz, M. G., and Gall, J. (2024). Bi-modal contrastive
learning for crop classification using Sentinel-2 and Planetscope. Front. Remote Sens. 5,
1480101. doi:10.3389/frsen.2024.1480101

Purushwalkam, S., and Gupta, A. (2020). “Demystifying contrastive self-supervised
learning: invariances, augmentations and dataset biases,” in Advances in neural
information processing systems 33: annual conference on neural information
processing systems 2020, NeurIPS 2020, december 6-12, 2020, virtual.

Račič, M., Oštir, K., Peressutti, D., Zupanc, A., and Čehovin Zajc, L. (2020). Application of
temporal convolutional neural network for the classification of crops on sentinel-2 time series.
ISPRS - Int. Archives Photogrammetry, Remote Sens. Spatial Inf. Sci. XLIII-B2-2020,
1337–1342. doi:10.5194/isprs-archives-XLIII-B2-2020-1337-2020

Rad, R. (2024). “Vision transformer for multispectral satellite imagery: advancing
landcover classification,” in Proceedings of the IEEE/CVF winter conference on
applications of computer vision (WACV), 8176–8183.

Ray, D. K., Sloat, L. L., Garcia, A. S., Davis, K. F., Ali, T., and Xie, W. (2022). Crop
harvests for direct food use insufficient to meet the un’s food security goal. Nat. Food 3,
367–374. doi:10.1038/s43016-022-00504-z

Rußwurm,M., Lefèvre, S., andKörner,M. (2019). Breizhcrops: a satellite time series dataset
for crop type identification. Corr. abs/1905, 11893. doi:10.48550/arXiv.1905.11893

Scheibenreif, L., Hanna, J., Mommert, M., and Borth, D. (2022). “Self-supervised
vision transformers for land-cover segmentation and classification,” in IEEE/CVF
conference on computer vision and pattern recognition workshops, CVPR workshops
2022, New Orleans, LA, USA, june 19-20, 2022 (IEEE), 1421–1430. doi:10.1109/
CVPRW56347.2022.00148

Simonyan, K., and Zisserman, A. (2015). Very deep convolutional networks for large-
scale image recognition

Tarasiou, M., Chavez, E., and Zafeiriou, S. (2023). “Vits for sits: vision transformers
for satellite image time series,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (CVPR), 10418–10428.

Yao, J., Zhang, B., Li, C., Hong, D., and Chanussot, J. (2023). Extended vision
transformer (exvit) for land use and land cover classification: a multimodal deep
learning framework. IEEE Trans. Geoscience Remote Sens. 61, 1–15. doi:10.1109/TGRS.
2023.3284671

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. (2021). Barlow twins: self-
supervised learning via redundancy reduction. Corr. abs/2103, 03230. doi:10.48550/
arXiv.2103.03230

Frontiers in Remote Sensing frontiersin.org17

Patnala et al. 10.3389/frsen.2025.1555887

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.48550/arXiv.2011.09980
https://doi.org/10.48550/arXiv.2011.09980
https://doi.org/10.48550/arXiv.2106.15147
https://doi.org/10.1109/IATMSI56455.2022.10119308
https://doi.org/10.1109/IATMSI56455.2022.10119308
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1109/ICCV48922.2021.00951
https://doi.org/10.3390/land12040879
https://doi.org/10.48550/arXiv.2002.05709
https://doi.org/10.48550/arXiv.2002.05709
https://doi.org/10.3390/s18020591
https://doi.org/10.3390/s18020591
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1109/JSTARS.2024.3358066
https://doi.org/10.48550/arXiv.2107.07933
https://doi.org/10.48550/arXiv.2006.07733
https://doi.org/10.1109/TPAMI.2024.3415112
https://doi.org/10.48550/arXiv.1911.05722
https://doi.org/10.48550/arXiv.1911.05722
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1608.06993
https://doi.org/10.3390/rs16132449
https://doi.org/10.3390/ijgi9020120
https://doi.org/10.1038/s41598-024-67186-4
https://doi.org/10.48550/arXiv.2006.15704
https://doi.org/10.3390/agriculture14070990
https://doi.org/10.5073/JfK.2009.02.01
https://doi.org/10.3389/frsen.2024.1480101
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1337-2020
https://doi.org/10.1038/s43016-022-00504-z
https://doi.org/10.48550/arXiv.1905.11893
https://doi.org/10.1109/CVPRW56347.2022.00148
https://doi.org/10.1109/CVPRW56347.2022.00148
https://doi.org/10.1109/TGRS.2023.3284671
https://doi.org/10.1109/TGRS.2023.3284671
https://doi.org/10.48550/arXiv.2103.03230
https://doi.org/10.48550/arXiv.2103.03230
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1555887

	BERT Bi-modal self-supervised learning for crop classification using Sentinel-2 and Planetscope
	1 Introduction
	2 Datasets
	3 Methods
	4 Experiments
	5 Ablation studies
	5.1 Number of layers on ResMLP model
	5.2 Effect of number of layers on BERT model
	5.3 Effect of masking rate on BERT model
	5.4 Comparison between BERT and spectro-temporal contrastive
	5.5 Contribution of auxiliary losses and multiple timestamps
	5.6 Comparison between different types of auxiliary loss functions

	6 Results
	7 Discussion
	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


