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Remote sensing is an important tool for monitoring species habitat spatially and
temporally. Species distribution models (SDM) often rely on remotely-sensed
geospatial datasets to predict probability of occurrence and infer habitat
preferences. Lidar measurements from the Global Ecosystem Dynamics
Investigation (GEDI) are shedding light on three dimensional forest structure in
regions of the world where this aspect of species habitat has previously been
poorly quantified. Here we combine a large camera trap dataset of mammal
species in Borneo and Sumatra with a diverse set of geospatial data to predict the
probability of occurrence of 47 species. Multi-temporal GEDI predictors were
created through fusion with Landsat time series, extending back to the year 2001.
The availability of these GEDI-based forest structure predictors and other
temporally-resolved predictor variables enabled temporal matching of species
occurrences and hindcast predictions of species probability of occurrence at
years 2001 and 2021. Our GEDI-Landsat fusion approach worked well for forest
structure metrics related to canopy height (relative height of the 95th percentile
of returned energy R2 = 0.62 and relative RMSE = 41%) but, not surprisingly, was
less accurate for metrics related to interior canopy vegetation structure (e.g.,
plant area volume density from 0 to 5 m above the ground R2 = 0.05 and relative
RMSE = 85%). For the SDM analyses, we tested several combinations of predictor
sets and found that when considering a large pool of multiscale predictors, the
exact composition, and whether GEDI Fusion predictors were included, didn’t
have a large impact on generalized linear modeling (GLM) and Random Forest
(RF) model performance. Adding GEDI Fusion predictors to a baseline set only
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meaningfully improved performance for some species (n = 4 for RF and n = 3 for
GLM). However, when GEDI Fusion predictors were used in a smaller predictor set
that is more suitable for hindcasting species probability of occurrence, more SDMs
showedmeaningful performance improvements relative to the baselinemodel (n =
9 for RF and n = 4 for GLM) and the relative importance of GEDI-based canopy
structure predictors increased relative to when they were combined with the
baseline predictor set. Moreover, as we examined predictor importance and
partial dependence, the utility of GEDI Fusion predictors in hindcast models was
evident in regards to ecological interpretability. We produced a catalog of
probability of occurrence maps for all 47 mammals species at 90 m spatial
resolution for years 2001 and 2021, enabling subsequent ecological
interpretation and conservation analyses.
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1 Introduction

Global terrestrial biodiversity loss over the last several decades
has been driven primarily by land use change (urbanization and
conversion to agriculture), forest degradation and deforestation,
direct exploitation (hunting and wildlife trade), and to a lesser
degree by pollution, climate change, and invasive alien species
(Jaureguiberry et al., 2022). Currently, approximately 28% of all
species are threatened with extinction (IUCN, 2024), which includes
relatively well-studied vertebrates (~21%) and mammals (~26%).
Many of these threatened and endangered species are experiencing
declining population trends due to decreasing forest structural
condition and the impacts of human pressure (Pillay et al.,
2024). Understanding spatiotemporal species distributions in the
context of the drivers of biodiversity collapse is particularly
important for monitoring and conservation of key habitats.
Species distributions are influenced by a variety of interacting
and often related factors, including, but not limited to,
availability of food/water, (micro)climate, geomorphology,
anthropogenic influence/disturbance (e.g., hunting, pollution,
land conversion), as well as vegetation composition and three-
dimensional (3D) structure. Many of these factors can be
represented by remotely-sensed geospatial datasets (Turner et al.,
2003; He et al., 2015). Such data can be coupled with species
observations in various statistical or machine learning modeling
frameworks, commonly referred to as environmental niche or
species distribution models (SDMs). SDMs are widely applied to
make inferences about species habitat preferences and to predict
species occurrence spatially and temporally (Elith and Leathwick,
2009; Dormann et al., 2012).

Geospatial datasets derived from remote sensing have played an
important role in SDMs because they represent ecologically relevant
features of the landscape (e.g., climate, geomorphology, vegetation
type/structure), often in a spatially and temporally continuous
manner (Randin et al., 2020). Two-dimensional imagery recorded
by passive optical instruments (e.g., Landsat) has been very useful for
mapping vegetation extent and species habitats (Valerio et al., 2020;
Crego et al., 2024), especially when considering changes in habitat
due to forest degradation or loss (Betts et al., 2022). Unfortunately,
in dense forests these passive optical observations only correspond
to reflectance of the upper portion of the canopy. However, the

entire vertical dimension of forests, which may be characterized by
metrics like canopy height, foliage height diversity (MacArthur and
MacArthur, 1961), canopy cover and leaf/plant area index (LAI/
PAI) profiles, often influences habitat selection, especially for
arboreal species (Davies and Asner, 2014). These relationships
arise because vertical forest structure is linked to available niche
space (Deere et al., 2020), light and water availability (Montgomery
and Chazdon, 2001; Wüest et al., 2020), as well as microclimate
(Hardwick et al., 2015; Zellweger et al., 2019). Furthermore, high
forest integrity, which incorporates canopy structure as well as
human pressure, is associated with a lower likelihood of species
being threatened and having declining populations versus canopy
cover alone (Pillay et al., 2022).

The Global Ecosystem Dynamics Investigation (GEDI)
(Dubayah et al., 2020), a current spaceborne NASA mission,
provides an opportunity to characterize the vertical dimension of
forests across the tropics and mid-latitudes using lidar. The
instrument acquired data from April 2019 to March 2023, and
then resumed lidar waveform acquisition in April 2024. Several
studies have already demonstrated the utility of the unique data
GEDI provides in understanding animal-habitat associations,
including species occupancy (Killion et al., 2023; Martins et al.,
2024) and distribution models (Burns et al., 2020; Smith et al., 2022;
Vogeler et al., 2023). Thus far, the GEDI mission has
provided >7 billion high-quality vertical vegetation structure
measurements between the latitudes of 52° North and South.
Importantly, the sensor is capable of accurately measuring
various structural properties of dense tropical forests at a
sampled spatial resolution of 25 m. Lidar waveforms are acquired
below the path of the International Space Station orbit and are
spaced by about 60 m along track and 600 m across track. The
observation strategy of GEDI and the resulting gaps at fine spatial
resolutions (<1 km) have implications for applied studies making
use of GEDI data. One common method for converting lidar
observations (i.e., points) to continuous layers (i.e., rasters) which
are more convenient for use in SDMs is gridding, that is, lidar
observations in a pixel are summarized using statistics, like the mean
and standard deviation. Currently, in most parts of the tropics
gridding is not a viable option since many 1 km spatial resolution
pixels have fewer than 10 high-quality GEDI observations (Burns
et al., 2024). Gap-free, fine-resolution maps are necessary for
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associating vegetation structure with in situ data (e.g., forest plots,
camera traps, acoustic recording units) and understanding
ecological patterns across broad landscapes. Fortunately, several
previous studies have demonstrated the capability of machine
and deep learning for fusing GEDI and optical satellite imagery
(i.e., using 2D imagery to predict 3D structure) from Landsat,
Sentinel-1, and Sentinel-2 for achieving continuous maps of
forest structure across entire landscapes. Several studies have
produced global fusion maps of canopy height (Potapov et al.,
2021; Lang et al., 2023), while relatively few studies have
explored the efficacy of fusion for mapping sub-canopy metrics
such as the height of median returned energy or the amount of foliar
material in different layers of the canopy (Vogeler et al., 2023). With
the exception of canopy cover (Sexton et al., 2013), stand-clearing
disturbances (Hansen et al., 2013), and degradation (Vancutsem
et al., 2021), the temporal dynamics of forest structure have also
been challenging to represent over large extents in the tropics since
lidar data in the region were sparse or non-existant prior to the
GEDI mission.

In this study we explore the utility of GEDI lidar fusion for
SDMs, focusing on the equatorial islands of Sumatra and Borneo
which are part of the Sundaland biodiversity hotspot - a region home
to an estimated 1,800 vertebrate species, of which 701 are endemic
(Myers et al., 2000). Of the 1241 terrestrial bird, reptile, amphibian
and mammal species cataloged by the IUCN Red List in Borneo and
Sumatra, 91% use forest habitat to some degree. Mammal species
(n = 277), the taxonomic focus of this study, are even more closely
linked to forest habitat in this region, with 97% of them using forest
habitats (IUCN, 2024). The forests of Sundaland are characterized
by extremely high floristic and structural diversity, and include the
tallest known tropical forest trees (Shenkin et al., 2019; Milodowski
et al., 2021). This region has experienced some of the highest rates of
deforestation and degradation in the world - 48.5% (Malaysia) and
38.7% (Indonesia) of undisturbed tropical moist forest area
disappeared since 1990 from continuous deforestation and forest
degradation (Vancutsem et al., 2021). Considering the magnitude of
forest loss and degradation and the number of species that use forest
habitat in this region, various groups have advanced data-driven
ecological modeling and conservation design optimization over the
past decade in the Sundaland region, facilitated by coupling data
from camera trap networks (Hearn et al., 2018; Macdonald et al.,
2019a; Ke and Luskin 2019; Brodie et al., 2023) with multiscale
statistical modeling (Chiaverini et al., 2022; 2023) and scenario
optimization (Kaszta et al., 2019; 2020; 2024; Macdonald et al.,
2024). These studies have evaluated habitat relationships of focal
species of conservation concern (Amir et al., 2022; Mohd-Azlan
et al., 2023; Honda et al., 2024; Panjang et al., 2024), mapped and
optimized networks of protected areas (Scriven et al., 2020; Williams
et al., 2020; Macdonald et al., 2024) and ecological connectivity
(Brodieet al., 2016; Hearn et al., 2019; Kaszta et al., 2019; 2024),
assessed impacts of climate change (Brodie et al., 2017), hunting
(Brodie et al., 2015), and logging (Wall et al., 2021; Yi et al., 2022),
and evaluated multiple scenarios of conservation design and
development impact (Williams et al., 2020; Kaszta et al., 2020;
2024). With the exception of Brodie et al. (2023), none of this
past work considered vertical vegetation structure metrics. The
extreme gradients of vegetation diversity and structure in
Sundaland, and the strong association of the resident wildlife

species to forested environments of varying characteristics, justify
a critical evaluation of the extent to which remotely-sensed vertical
forest structure information can improve predictions of species
distributions and provide novel ecological insights about habitat
preferences.

Here we incorporate multiple dimensions of forest structure
(horizontal, height above ground, and time) to better understand
and dynamically map the distribution of mammal species in Borneo
and Sumatra. Integrating the temporal dimension is possible
through fusion of GEDI lidar metrics with Landsat continuous
change detection and classification (CCDC) (Zhu and Woodcock,
2014) time series, enabling the prediction of forest structure metrics
continuously at relatively fine spatial resolution (hereafter referred
to as “GEDI Fusion”), both during the time of the GEDI mission and
back to the year 2001 (i.e., hindcasting). The species occurrence data
used in this work originate from an extensive compilation of camera
trap sites over nearly 2 decades (2003-2022). Considering the years
of species occurrence observations and the area of forest lost in this
region, hindcasting is a vital method for temporally-matching forest
structure with species occurrence. We also make use of other
multitemporal, multiscale geospatial predictors characterizing
geomorphology, climate, productivity, disturbance, and human
influence. Furthermore, we compare and contrast different model
scenarios, which make use of different groups of predictors, for
understanding the utility of GEDI Fusion metrics and changes in
species probability of occurrence over time.

The three specific objectives of this study are to 1) develop and
validate continuous forest structure maps derived from fusion of
GEDI lidar metrics and Landsat CCDC, 2) assess the utility of GEDI
Fusion predictors in SDMs, in terms of model performance,
predictor importance, and general interpretability, and 3) map
the predicted probability of occurrence for 47 mammal species at
two time periods, 2001 and 2021.

2 Materials and methods

2.1 Study region

We focus on the islands of Sumatra and Borneo, part of the
Sundaland biodiversity hotspot. The islands are divided among
Indonesia, Malaysia, and Brunei, and are home to over
60 million people. Importantly, we treat each island as a separate
modeling domain considering potential differences in human
influence and species composition, as well as camera trap survey
effort. The approximate locations of camera traps and recent,
modeled forest structure dynamics are shown in Figure 1.

2.2 Species occurrence dataset

The species occurrence records used in this study were acquired
using camera traps. Camera traps were deployed and processed by
several teams (Macdonald et al., 2018; 2019b; Williams et al., 2022;
Brodie et al., 2023; Luskin et al., 2023; Mohd-Azlan et al., 2023). We
merged these datasets and harmonized species names, focusing on
47 mammal species (Table 1). Based on the IUCN Red List, 11 of the
species modeled in this study are endangered (IUCN, 2024). Three
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species, the Bornean orangutan, Sunda pangolin, and Sumatran
tiger, are critically endangered (Luskinet al., 2017; Amir et al., 2022;
Voigt et al., 2022; Nursamsi et al., 2023). The subspecies of the Asian
elephant in Sumatra (Elephas maximus sumatranus) are also
critically endangered, but there were insufficient observations to
model this species. Five species have stable populations, while
40 have declining populations, and for two species’ population
trends are unknown.

Following the merging of camera trap datasets, there were
2,023 sites in Borneo and 879 sites in Sumatra. The survey effort,
or median number of camera trap nights, was higher in Borneo
(56) than Sumatra (34) (Supplementary Figures S1, S2). A
species was considered present at a site if it was manually
identified in at least one photograph. Absences are more
challenging to establish due to the imperfect detectability of
species in dense forests and the placement of cameras near the
ground. We use a threshold of 30 camera trap nights to establish
absence. The lowest number of presences was for moonrats in
Sumatra (n = 19), while the highest was for pig-tailed macaques
in Borneo (n = 1,439). In Table 1 we quantify presences and
absences for each species considering all camera trap sites in
each region and considering only sites within IUCN
species range maps.

2.3 Geospatial datasets used as
predictors SDMs

We prepared multi-scale and multi-temporal predictor variable
rasters in Google Earth Engine (GEE) (Gorelick et al., 2017) and
extracted values at camera trap locations. These predictors were used
to inform two predictive modeling algorithms: logistic regression

with generalized linear modeling (GLM) and machine learning with
Random Forest (RF) (Breiman, 2001). The complete list of
predictors is provided in Supplementary Table S1, and below we
provide a brief overview of the different predictor groups and
associated datasets.

2.3.1 Climate
Climate predictors are spatial and temporal aggregations of

meteorological observations or outputs from climate models.
These types of predictors are not readily available at spatial
resolutions finer than approximately 1 km and therefore this set
of predictors does not characterize microclimate (Lembrechts et al.,
2019). Furthermore, while climate predictors are becoming
increasingly available at finer temporal resolutions, it is still
common practice to make use of long term climate averages
(climatologies) in SDMs. The majority of climate predictors we
used in this study are from the CHELSA Bioclim + dataset (Karger
et al., 2017; 2018). We also included cloud cover (Wilson and Jetz,
2016) and land surface temperature predictors derived fromMODIS
(Zhang et al., 2022).

2.3.2 Geomorphology
Geomorphology predictors are selected to represent features of

the Earth’s surface, like ground elevation, slope, landform types,
hydrology, and soil properties. Most features associated with
topography are mapped at approximately 100 m spatial
resolution (Theobald et al., 2015; Amatulli et al., 2020), while soil
properties have been modeled globally at 250 m spatial resolution
(Poggio et al., 2021). Surface water has been mapped annually at
30 m spatial resolution using Landsat, but some small extent water
features may be obscured under/in the proximity of dense tropical
forests (Pickens et al., 2022).

FIGURE 1
Map of study region, including multi-temporal GEDI Fusion canopy height (RH95) as the background. GEDI Fusion RH95 from 3 years (2000, 2012,
2021) is displayed in the red, green, and blue channels of the background image. Hence, colors correspond to areas of canopy height change. For
example, red represents the presence of relatively tall forests in 2000, but not in 2012 or 2021. Hence loss of tall forest occurred some time between
2000 and 2011. Black and white correspond to consistent low and high canopy height, respectively. Camera trap clusters are shown as magenta
circles with white text corresponding to site count. The inset image is zoomed in on a cluster of individual camera trap sites.
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TABLE 1 List of all species considered, IUCN status and population trend, and number of presences and absences considering all camera trap sites in each
region and considering only sites within IUCN species range maps (extant and possibly extant; version 6.3).

IUCN status and
population trend

Species common
(and Latin) name

Borneo
presences (in
range)

Borneo
absences (in
range)

Sumatra
presences (in
range)

Sumatra
absences (in
range)

EN/D Asian elephant (Elephas
maximus)

140 (122) 1340 (318) ND

LC/D Common palm civet
(Paradoxurus hermaphroditus)

315 (312) 1179 (1178) 64 (64) 442 (442)

NT/D Asiatic golden cat (Catopuma
temminckii)

OOR 120 (87) 398 (273)

LC/D * Banded linsang (Prionodon
linsang)

118 (118) 1364 (1360) 66 (66) 434 (434)

NT/D * Banded civet (Hemigalus
derbyanus)

634 (634) 876 (872) 34 (34) 457 (457)

EN/D Banteng (Bos javanicus) 44 (36) 1436 (578) OOR

EN/D * Borneo bay cat (Catopuma
badia)

46 (39) 1432 (680) OOR

VU/D * Bearded pig (Sus barbatus) 1321 (918) 315 (140) 160 (92) 379 (180)

VU/D Binturong (Arctictis binturong) 137 (137) 1345 (1341) 34 (34) 457 (457)

EN/D * Black crested sumatran langur
(Presbytis melalophos)

OOR 26 (26) 474 (333)

CR/D * Bornean orangutan (Pongo
pygmaeus)

258 (258) 1274 (697) OOR

NT/D Bornean yellow muntjac
(Muntiacus atherodes)

614 (614) 931 (927) OOR

NT/D * Collared mongoose (Urva
semitorquatus)

135 (135) 1346 (1346) ND

EN/D Dhole (Cuon alpinus) OOR 43 (43) 462 (446)

EN/D Flat-headed cat (Prionailurus
planiceps)

22 (NA) 1459 (NA) ND

VU/D * Hoogerwerfs rat (Rattus
hoogerwerfi)

ND 73 (0) 439 (0)

NT/D * Horse-tailed squirrel
(Sundasciurus hippurus)

38 (38) 1442 (1438) ND

VU/D * Hoses civet (Diplogale hosei) 85 (66) 1396 (182) OOR

LC/S Leopard cats (Prionailurus
bengalensis, Prionailurus
javanensis)

552 (552) 982 (982) 46 (46) 449 (449)

EN/D Long-tailed macaque (Macaca
fascicularis)

447 (443) 1099 (1099) 36 (36) 456 (456)

LC/S * Long-tailed porcupine
(Trichys fasciculata)

465 (465) 1037 (1033) ND

LC/S Malayan civet (Viverra
tangalunga)

898 (898) 635 (631) ND

LC/D Malayan porcupine (Hystrix
brachyura)

674 (674) 868 (864) 202 (202) 361 (361)

EN/D Malayan tapir (Tapirus indicus) OOR 191 (NA) 361 (NA)

LC/D Malayan weasel (Mustela
nudipes)

45 (45) 1435 (1431) ND

NT/D 185 (149) 1300 (689) 56 (50) 444 (385)

(Continued on following page)
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2.3.3 Human influence
There are a variety of human pressures that influence species

distributions in this region of the world, such as urbanization,

conversion of forest to agriculture, and hunting. We used 1 km
spatial resolution gridded world population, 1 km gross domestic
product (GDP) (Chen and Gao, 2021), and an index of human

TABLE 1 (Continued) List of all species considered, IUCN status and population trend, and number of presences and absences considering all camera trap
sites in each region and considering only sites within IUCN species range maps (extant and possibly extant; version 6.3).

IUCN status and
population trend

Species common
(and Latin) name

Borneo
presences (in
range)

Borneo
absences (in
range)

Sumatra
presences (in
range)

Sumatra
absences (in
range)

* Marbled cat (Pardofelis
marmorata)

LC/D Masked palm civet (Paguma
larvata)

185 (185) 1302 (1224) 38 (38) 455 (455)

LC/U Moonrat (Echinosorex
gymnura)

280 (279) 1210 (1207) 19 (19) 468 (468)

EN/D Otter civet (Cynogale bennettii) 41 (41) 1438 (1273) ND

EN/D Pig-tailed macaque (Macaca
nemestrina)

1439 (1438) 292 (289) 666 (666) 65 (65)

EN/D * Proboscis monkey (Nasalis
larvatus)

36 (33) 1447 (1060) OOR

VU/D * Red leaf monkey (Presbytis
rubicunda)

82 (69) 1414 (963) OOR

LC/D Red muntjac (Muntiacus
muntjak)

430 (430) 1123 (1119) 533 (533) 146 (146)

VU/D Sambar (Rusa unicolor) 734 (734) 795 (791) 163 (163) 354 (354)

NT/D * Short-tailed mongoose
(Herpestes brachyurus)

369 (369) 1119 (1119) ND

LC/D * Small-toothed palm civet
(Arctogalidia trivirgata)

47 (47) 1442 (1438) ND

VU/D Sumatran serow (Capricornis
sumatraensis)

OOR 52 (51) 457 (430)

VU/D Sun bear (Helarctos malayanus) 606 (460) 951 (446) 300 (259) 273 (199)

VU/D * Sunda clouded leopard
(Neofelis diardi)

269 (212) 1228 (999) 127 (98) 416 (253)

CR/D Sunda pangolin (Manis
javanica)

276 (274) 1219 (1217) 20 (20) 467 (467)

LC/S Sunda stink badger (Mydaus
javanensis)

158 (158) 1327 (634) OOR

LC/S * Thick-spined porcupine
(Hystrix crassispinis)

435 (435) 1074 (1070) OOR

LC/D * Three-striped ground squirrel
(Lariscus insignis)

40 (38) 1442 (645) ND

CR/D Tiger (Panthera tigris) OOR 171 (145) 360 (267)

VU/D * Tufted ground squirrel
(Rheithrosciurus macrotis)

207 (207) 1277 (1273) OOR

LC/U Wild boar (Sus scrofa) OOR 479 (479) 171 (171)

LC/D Yellow-throated marten (Martes
flavigula)

309 (309) 1190 (1186) 64 (64) 438 (438)

Abundance was not considered, so multiple observations at the same camera were counted only as “present.” For IUCN status, abbreviations are least concern (LC), near threatened (NT),

vulnerable (VU), endangered (EN), and critically endangered (CR). For IUCN population trends, abbreviations are increasing (I), decreasing (D), stable (S) or unknown (U). Asterisks next to

the species common name indicate that a species only has “forest” as its suitable level 1 IUCN habitat. Presences and absences are summarized for the entire extent of Borneo and Sumatra, as

well as only within the IUCN range. In some cases a species occurs only on one island, and we indicate that the species is out of range (OOR) on the other island. Species which could possibly

occur in either Sumatra or Borneo but were not detected, or data deficient, are labeled ND. The range maps for two species were not available, and the corresponding presence/absence count is

marked NA.
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modification at 300 m spatial resolution (Theobald et al., 2023) as
general proxies for human influence. Potential hunting pressure is
characterized using a human accessibility map developed
specifically for this region at 1 km spatial resolution (Deith
and Brodie, 2020; Brodie et al., 2023). Lastly, we used three
separate binary datasets to represent croplands other than oil
palm plantations at 30 m spatial resolution (Potapov et al., 2022),
oil palm plantations at 30 m spatial resolution (Descals et al.,
2021), and protected areas (UNEP-WCMC and IUCN, 2024)
rasterized to 90 m spatial resolution.

2.3.4 Vegetation productivity
Like many of the other predictors, vegetation productivity

cannot be measured directly from space. Instead, different
algorithms and remote sensing products are used to model either
gross or net primary productivity. We used modeled net primary
productivity from the CHELSA dataset (Karger et al., 2017; 2018) at
1 km spatial resolution. We also incorporated three dynamic habitat
indices (DHI) based on gross primary productivity modeled from
MODIS (Radeloff et al., 2019).

2.3.5 Vegetation spectral indices
Vegetation spectral indices are related to plant species

community composition, as well as plant chemical traits (e.g.,
water content, chlorophyll absorption) and density. We used four
visible to shortwave (VSWIR) spectral indices derived from Landsat
Collection 2 CCDC (Zhu andWoodcock, 2014) synthetic imagery to
characterize different vegetation characteristics. Following Landsat
cloud-masking, the CCDC algorithm fits harmonic regression
equations to a time series of Landsat band/index values.
Importantly, CCDC is capable of detecting change points and
separating time series segments which may correspond to
vegetation stability or regrowth after a disturbance, for example.
After fitting CCDC models from 2000 to 2022, we used the
harmonic regression equations to generate synthetic images every
3 years (2000, 2003, . . . ,2021) so that species occurrences could be
temporally associated with Landsat spectral indices. Three year
intervals are a reasonable choice considering cloud-free Landsat
availability and storage volume. We selected a set of spectral indices
which make use of spectral bands across the VSWIR spectrum and
are less susceptible to variability in illumination, specifically:
normalized difference vegetation index (NDVI), normalized burn
ratio (NBR), normalized difference moisture index (NDMI), and
spectral variability vegetation index (SVVI).

2.3.6 Forest structure derived from GEDI
Landsat fusion

Geolocated GEDI waveforms (L1A; Dubayah, Luthcke, et al.,
2021) are initially processed to extract ground elevation, vegetation
height, relative height (RH) (L2A; Dubayah, Hofton, et al., 2021),
and several vertical vegetation profile metrics, such as cover and PAI
(L2B; Dubayah, Tang, et al., 2021). We downloaded all available
GEDI L2A, L2B, and L4A granules covering Borneo and Sumatra
from 17 April 2019 to 13 April 2022. We applied the quality-filtering
steps described by Burns et al. (2024) to select the highest quality
observations for the region. We selected the following metrics to
model: RH50 (Height of Median Energy), RH95 (Canopy Height),
Plant Area Index (PAI), Above Ground Biomass Density (AGBD),

Foliage Height Diversity (FHD), Cover, and the number of modes in
the returned waveform.

Following the quality-filtering, we had millions of GEDI
observations to use for fusion with the fit Landsat CCDC time
series. However, preliminary testing suggested that this was an
excessive number of observations to use for model training.
Furthermore, we observed some GEDI clustering due to cloud
cover dynamics and ISS orbital resonance patterns. For these
reasons we developed a subsampling routine to reduce the
number of observations used for model training and validation.
Furthermore, we sought to account for spatial autocorrelation when
assessing model error by incorporating a 30 × 30 km grid for
separating GEDI observations for training and validation of the
model. We randomly partitioned 70% of the 30 km grids for training
and 30% for validation. Next, we examined semivariograms of
several GEDI structure metrics to estimate an approximate range
(distance in meters) at which GEDI metrics were not autocorrelated;
we estimated this range to be 10 km (see Supplementary Figure S3).
To ensure that no validation observations fell within the spatial
autocorrelation range (distance) of training observations, we
inversely buffered testing grids by 10 km and only selected GEDI
observations within the resulting 10 × 10 km grids. To calculate the
subsampling threshold per grid, we computed the 10th percentile of
the number of observations in grids (minimum of 100 observations).
We applied this subsampling threshold to the grids in order to
reduce spatial bias (associated with orbit clustering) in the model.
We added a random number field and combined all of the
subsampled observations into one table and uploaded the
table to GEE.

Within GEE we made several adjustments to the previously
quality-filtered and subsampled GEDI observations. First, for the
GEDI metric relative height of the 95th percentile of returned
energy (RH95; proxy for vegetation height) we followed the
method of Potapov et al. (2021) and set RH95 to 0 when the
measured value is less than or equal to 3 m. Due to the long pulse
width of the instrument, GEDI struggles to accurately measure
vegetation height less than 3 m tall. Also similar to Potapov et al.
(2021), we applied preferential sampling towards the low end of
each GEDI metric based on prior knowledge that model
predictions based on optical imagery saturate at higher values
of most metrics (Gao et al., 2023), especially in dense tropical
forests. In other words, we knew it would be unlikely to accurately
predict the height of very tall trees, for example, so we emphasized
improving the prediction of low values which are often
overestimated (Lang et al., 2023). In this vein, we defined five
bins using the 20th, 40th, 60th, and 80th percentiles of GEDI
metric values as breaks. We specified that 60% of the data should
randomly be selected from the first bin, while 10% should be
selected from the other 4 bins. The held-out validation data, in
contrast, were not preferentially sampled in order to get unbiased
error estimates. For each metric, we used approximately 100,000
(75%) observations for training and 33,333 (25%) observations for
validation.

Next, we prepared the stack of predictors to be associated with
GEDI vertical profiles. The full list is detailed in Supplementary
Table S2, but to summarize we used terrain elevation, years since
forest loss (fromHansen et al., 2013), and several layers derived from
the Landsat CCDC time series. We used the CCDC algorithm in
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GEE to fit harmonic models to Landsat Collection 2 spectral bands
and indices for Borneo and Sumatra. The harmonic model
coefficients (offset, t, sin [ωt]), as well as synthetic spectral/index
values and texture of select indices, were associated with GEDI
observations from Borneo and Sumatra. We created synthetic
images every 0.25 years and extracted spectral/index values at
GEDI observations when the date of the GEDI shot fell within
that quarter year window. Gray level co-occurrence matrix (GLCM)
texture metrics were generated from the temporally-matched
synthetic images using a 1 pixel radius. The resulting full
predictor stack included 48 predictors.

We used the RF algorithm to make spatially-continuous
predictions of several GEDI forest structure metrics. To
identify the best set of predictors and RF tuning parameters
per metric and region we randomly sampled 20,000 observations
and extracted values of the predictors described above at 25 m
spatial resolution. We then passed these data through the
minimum redundancy maximum relevance algorithm
(MRMR) (De Jay et al., 2013) feature selection routine in R (R
Core Team, 2024) to select a maximum of 20 predictors for each
GEDI metric and region. We then used the Ranger (Wright and
Ziegler, 2017) implementation of RF via the caret package to tune
the RF parameters minimum node size and number of predictors
randomly selected at each split (mtry). We passed the best
predictors and optimal RF tuning parameters back to GEE
and fit RF models with 200 trees for each GEDI metric and
region using ~100,000 observations for training. The fit RF
models were then used to make spatial predictions at 90 m
resolution for each metric and region.

The spatially-continuous predictions of GEDI Fusion forest
structure metrics were evaluated in two ways: using held-out
GEDI data and airborne laser scanning (ALS) data. First, we
evaluated the predictions at the nominal spatial resolution of
GEDI (25 m; i.e., using the validation feature collection) during
the original GEDI mission (2019–2022). We computed the root
mean square error (RMSE), relative RMSE, as well as mean and
median absolute error for each metric. We also computed the R2 of a
linear model fit to observed vs. predicted metric values where the
predicted values were sampled from a raster at the spatial resolution
used in SDMs (90 m). Next, since the CCDC algorithm provides
harmonic regression equations which can be used to generate
synthetic images, the model predictions can either be made
during the period of GEDI observation (2019–2022) or
hindcasted to previous years that overlap the CCDC harmonic
model (2000–2022). A similar methodology for hindcasting forest
structure derived from airborne lidar was described by Bell et al.
(2024). Since the vast majority of our species occurrence records are
from before GEDI began acquiring data, we made GEDI Fusion
predictions for the following years, each at January 1: 2000, 2003,
2006, 2009, 2012, 2015, 2018, 2021. As described below, this allowed
us to temporally match species occurrences with a set of hindcast
GEDI Fusion structure metrics (e.g., an occurrence in 2010 is
associated with 2009-01-01). There is limited ALS data in this
region to use for assessment of our hindcasted GEDI Fusion
predictions, but we were able to compare two high resolution
ALS canopy height maps collected in late 2014 (Melendy et al.,
2017; Swinfield et al., 2020) with GEDI Fusion
RH95 predictions from 2015.

2.4 SDM temporally-matched, multi-scale
variable extraction

We developed a workflow in GEE to extract the focal mean, and
in some cases standard deviation (see Supplementary Table S1), of
predictor variables at multiple spatial scales, to enable multiscale
SDM optimization (sensu McGarigal et al., 2016). We used a
Gaussian kernel with the GEE reduceNeighborhood method to
compute focal mean and standard deviation at seven scales,
specified by these radii: 150, 300, 600, 1200, 2400, 4800, and
9600 m to enable multi-scale optimization of habitat selection.
Focal statistics are only computed at scales which are coarser
than the nominal resolution of the predictor variable. For
example, CHELSA climate predictors have a nominal resolution
of 1,000 m, so we compute focal statistics at 1,200, 2,400, 4,800, and
9,600 m. Furthermore, and if a predictor variable was temporally-
resolved, we temporally-matched the years of species presence/
absence with predictor variables (Crego et al., 2021). We created
two stacks of multi-scale rasters corresponding to the predictor
variables that are temporally-static (e.g., Climate, Geomorphology)
or temporally-matchable (e.g., GEDI Fusion). For temporally-static
predictors, we simply extracted the multiscale focal values of each
predictor at each camera trap location. For the temporally-matched
predictors, we filtered predictors which correspond to the species
year(s) of occurrence or years in which the camera trap was active in
the case of absence, and then computed the temporal mean of those
rasters before extracting multi-scale focal values at each camera trap
location. Finally, we standardized each multi-scale focal predictor by
subtracting the mean and dividing by the standard deviation.

2.5 SDM scenarios

One of the overarching goals of this study was to compare the
predictive performance of models built with GEDI Fusion structure
metrics to those built without them, as well as other relevant sets
which include climate, disturbance, geomorphology, human
influence, and productivity predictors. To enable these
comparisons we fit models for each species using different
subsets of predictor variables (Table 2; Figure 2). Note that when
“GEDI Fusion” is included in the name of the predictor set, it refers
to GEDI metrics derived from fusion with Landsat CCDC. Also note
that all scenarios used the number of camera trap nights at a site as a
predictor that represents survey effort. The first, and smallest, set of
predictors is “GEDI Fusion.” As the name suggests, this scenario
only considers the GEDI structure metrics derived from fusion with
Landsat CCDC. The second scenario is “Base,” which is short for
baseline, considers all predictors except Landsat CCDC spectral
indices and GEDI Fusion metrics. The third scenario is “Base +
CCDC Spectral.” Temporally-matched spectral indices derived from
Landsat CCDC are added to the Base set of predictors. The fourth
scenario, “Base + GEDI Fusion,” swaps GEDI fusion metrics for
Landsat CCDC spectral indices, enabling a direct comparison
between scenarios three and four. The fifth and final scenario,
“Hindcast with GEDI Fusion,” focuses on the highest resolution
geomorphology, human influence, disturbance, and GEDI Fusion
predictors (marked with asterisks in Supplementary Table S1). For
this scenario, we selected predictors which had either high temporal
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and/or spatial resolution and would be suitable for hindcasting in
this region. In this scenario, we notably excluded climate predictors
due to their relatively coarse spatial resolution and temporal
aggregation over ~30 years.

2.6 SDM variable selection

Model interpretation can be challenging when there are
hundreds of potential predictors, many of which are correlated
with each other. The variance inflation factor (VIF) is a commonly
used variable selection technique which seeks to remove highly-
correlated predictors. We included the option to pre-rank predictors

based on a preference order column so that a priori knowledge
related to the model outcome (i.e., species absence/presence) could
be used to select between pairs of highly-correlated predictors. For
each model scenario and predictor we fit univariate GLM and RF
models. We chose to use the average of scaled (0–1) GLM Akaike
information criterion (AIC) and RF true skill statistic (TSS) for
preference order; values are associated with the fit GLM and RF
models (i.e., the metrics only consider training data), respectively.
We also included the option to compute groupwise VIF (GVIF).
Similar to the approach described by Quinn et al. (2024) we used
progressively less strict VIF thresholds when moving between the
following predictor levels: scale of a single predictor (threshold =
2.5), predictor group (threshold = 5), and full remaining set

TABLE 2 Description of the variable composition of different model scenarios and the number of possible predictors (N) considered in each.

Scenario name Description N

1. GEDI Fusion only GEDI Fusion metrics and survey effort 121

2. Base climate, disturbance, geomorphology, human influence, productivity, and survey effort 237

3. Base + CCDC Spectral Base + CCDC Spectral Indices 297

4. Base + GEDI Fusion Base + GEDI Fusion metrics 357

5. Hindcast with GEDI Fusion high temporal and/or spatial resolution geomorphology, human influence, disturbance, GEDI Fusion metrics, and survey effort 243

FIGURE 2
Overview of the workflow for associating species occurrence data from camera traps with multi-scale andmulti-temporal geospatial predictors for
use in SDMs. The different model scenarios (S1 to S5) make use of different subsets of predictors. Major steps in the workflow are underlined.
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(threshold = 10). If the GVIF routine resulted in more than
15 selected predictors, we used the average scaled (0–1)
univariate AIC/TSS and RF/GLM permutation importance from
the R package vip (Greenwell and Boehmke, 2020) to rank the top
15 predictors. Next, for each variable selection method we “dredged”
every combination of the top 15 predictors in order to select the
10 best predictors, ideally leading to a more parsimonious model.
For each combination of predictor variables from the top 15 reduced
by GVIF, we calculated the mean area under the curve (AUC) of RF
and GLMmodels. We then looked at the top 1% of models (based on
mean RF and GLM AUC) to compute the relative frequency of
predictors in those best dredge models. We selected the 10 most
frequent predictors, and for each model run we used the same set of
predictors for GLM and RF.

2.7 SDM evaluation and interpretation

We fit, evaluated, and interpreted RF and GLM models using R.
We randomly selected 75% of presences and absences for training,
and the remaining observations for validation. We ran 10 bootstraps
per species in each region, shuffling the training and validation data
in each bootstrap. RF models included 500 trees and we used the
default number of variables per split for classification. To decrease
RF model complexity and reduce overfitting, we required a
minimum node size of 5 observations and used balanced
sampling within each tree using the sampsize argument (Evans
and Cushman, 2009; Valavi et al., 2021; Benkendorf et al., 2023). We
did not balance presence and absences for GLM since this algorithm
is not as sensitive to class imbalance (Barbet-Massin et al., 2012). For
model validation, we focus primarily on the area under the receiver
operator characteristic curve (AUC). The baseline score for AUC is
0.5 (no better than random), while the maximum possible score is 1.
We compared the distribution of AUC for the different
combinations of species models and model scenarios to
determine whether RF or GLM performs better and which model
scenario yields the best performance overall.

Regarding model interpretation and the utility of different
predictor groups, we use the R package vip to compute variable
importance (Greenwell and Boehmke, 2020). We used the function
vi to compute permutation importance for RF and GLM models,
resulting in themean decrease in AUCwhen a predictor variable was
randomly perturbed (“permutation mean decrease”). We compared
variable importance for the different combinations of species models
and model scenarios from a group-wise perspective (i.e., GEDI
Fusion predictors vs. geomorphology) in order to assess the high-
level influence of different predictor groups on model performance.

2.8 SDM prediction maps

We uploaded the fit RF and GLM models to GEE for spatial
prediction. In the case of GLMmodels, we uploaded a table with the
predictor variables, coefficients, and intercepts. For RF models, we
uploaded a text file of decision tree strings. This ensured that the
GEE predictions matched the models fit in R exactly. We predicted
the probability of occurrence (the “1” class) for the entire area of
interest (i.e., Borneo and Sumatra, separately). Since we ran

10 bootstraps for each species we produced maps with per-pixel
mean and standard deviation of probability of occurrence for each
species. We demonstrate the capability of the Hindcast with GEDI
Fusion scenario to hindcast probability of occurrence in 2001.

SDM methods are summarized in Figure 2.

3 Results

3.1 GEDI fusion assessment

We evaluated the GEDI Fusion metrics predicted during the
original mission time period, specifically for the year 2021 (Table 3)
at 25 m spatial resolution, using held-out, spatially-independent
GEDI observations. Metrics measuring height, or closely related to
the measurement of height, like AGBD, FHD, number of modes,
RH50, and RH95 had the best relative performance. L2B metrics
which characterize total foliar density or cover had the worst
performance. PAVD from 0 to 5 m had the highest Relative
RMSE and lowest R2.

We also evaluated a GEDI Fusion hindcast (2015) prediction
map of vegetation height (RH95) at 90 m spatial resolution using
ALS data acquired across a large portion of Borneo. The linear
relationship between the GEDI Fusion prediction of RH95 and ALS
vegetation height from approximately the same time is shown in
Figure 3. The overall trend is close to the 1:1 line, but has
considerable noise on either side. Notably, GEDI Fusion height
predictions are overestimated when ALS vegetation height is low,
and tend to be underestimated when ALS vegetation height is greater
than about 25 m. GEDI-CCDC Fusion height predictions saturate
around 35 m, consistent with the saturation of photosynthetically
active radiation in the Landsat absorption bands and near infrared
reflectance as canopy cover closes.

3.2 SDM performance

For each species of interest in a region (hereafter “cases”) we
ran 10 bootstraps and considered five different model scenarios,
resulting in 3,250 total RF and GLM models. In terms of model
performance, there are several facets to consider. First, we focus
on model performance as it relates to the algorithm (RF vs. GLM)
and the five different model scenarios listed in Table 2. We
calculated the mean AUC from 10 bootstraps per case in
order to quantify which modeling algorithm and scenario
yielded meaningfully better performance, which we specify
using a threshold of 0.01 AUC. When comparing the
performance of the two model algorithms used, RF
consistently outperformed GLM (Table 4), having a
meaningfully higher mean AUC in approximately 75% of
cases aggregated over both islands. With this in mind, most of
the subsequently reported results focus on RF models.

There are several comparisons to examine when summarizing
performance by model scenario. The mean performance for all
species in both regions was very similar for all model scenarios,
except GEDI Fusion (Table 5). Mean AUC of the GEDI Fusion
scenario was approximately 0.04 and 0.09 less for RF and GLM,
respectively.
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When examining individual species and comparing mean AUC
associated with different model scenarios, there were only a few
cases (species in a region) where one model scenario performed
meaningfully better than others regardless of the modeling
algorithm, that is the AUC of one model scenario is more than
0.01 higher than the next best performing scenario for that species
and algorithm (RF in Table 6; GLM in Supplementary Table S3).

Therefore there was not usually a single model scenario which
clearly performs best when a large number of diverse, somewhat
correlated predictors are considered.

Other interesting scenario performance comparisons to
consider related to the utility of GEDI Fusion variables are 1)
Base + GEDI Fusion versus Base, 2) Base + GEDI Fusion versus
Base + CCDC Spectral, and 3) Hindcast with GEDI Fusion versus

TABLE 3 Validation statistics for GEDI Fusion 2021 predictions using held-out GEDI observations.

Borneo Sumatra

GEDI metric R2 RMSE Rel. RMSE (%) Mean AE Med. AE R2 RMSE Rel. RMSE (%) Mean AE Med. AE

AGBD 0.54 118 61 77 44 0.49 109 75 67 36

Cover 0.43 0.28 41 0.20 0.14 0.38 0.30 50 0.22 0.15

FHD 0.58 0.44 16 0.31 0.20 0.50 0.49 19 0.36 0.26

Num. Modes 0.57 3.3 49 2.4 1.7 0.51 3.1 57 2.2 1.4

PAI 0.35 2.0 57 1.4 0.8 0.29 2.1 71 1.5 1.0

PAVD 0–5 m 0.05 0.10 85 0.07 0.05 0.05 0.11 95 0.07 0.05

RH50 0.56 7.2 53 5.3 3.9 0.50 7.0 68 5.0 3.8

RH95 0.62 9.9 41 7.2 5.2 0.56 9.8 49 6.9 4.7

All metrics, except for R2 are computed at 25 m spatial resolution. R2 is based on a linear fit of observed vs. predicted map metric values (at 90 m spatial resolution) and was estimated in GEE

using 5000 random samples. Relative RMSE is RMSE divided by the mean observed value. Mean and median absolute error (AE) is also included.

FIGURE 3
Comparison of GEDI Fusion predicted vegetation height (RH95) at 90 m spatial resolution vs. airborne laser scanning (ALS) vegetation height,
resampled to 90 m spatial resolution. GEDI Fusion predictions correspond to the year 2015 while ALS vegetation height was measured in October 2014.
The dashed line shows a linear fit and the associated equation is displayed in a dashed box.
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Base. First, with the RFmodel algorithm there were only 4 cases where
the Base + GEDI Fusion scenario showed meaningful improvement
(>0.01 AUC) relative to the Base scenario: Southern pig-tailed
macaque (Borneo and Sumatra), Asiatic golden cat (Sumatra), and
Binturong (Sumatra). Surprisingly, there were 10 cases where the Base
scenario had meaningfully higher AUC than the corresponding Base
+ GEDI Fusion scenario despite the fact that Base + GEDI Fusion
considers a larger pool of potential predictors. With the GLM
algorithm there were only 3 cases where the Base + GEDI Fusion
scenario showed meaningful improvement (>0.01 AUC) relative to
the Base scenario: Bornean yellow muntjac (Borneo), Horse-tailed
squirrel (Borneo), and common palm civet (Sumatra). Similar to RF,
there were 11 cases where the Base scenario had meaningfully higher
AUC than the corresponding Base + GEDI Fusion scenario.

For the second comparison between Base + GEDI Fusion vs.
Base + CCDC Spectral with the RF model algorithm, both
comparisons yielded 6 cases that had meaningfully higher AUC
than the alternative scenario. With the GLM algorithm, there were

8 cases where the Base + CCDC Spectral scenario had meaningfully
higher AUC than the Base + GEDI Fusion scenario, while there were
7 cases for the alternative comparison.

For the third comparison between Hindcast with GEDI Fusion
and Base with the RF model algorithm, there were 9 cases where the
Hindcast scenario had meaningfully higher mean AUC than the Base
scenario, compared with 13 cases for the alternative comparison.With
the GLM algorithm, there were only 4 cases where the Hindcast
scenario had meaningfully higher mean AUC than the Base scenario,
whereas there were 36 cases where themean AUC of the Base scenario
was meaningfully higher. Hence the Hindcast with GEDI Fusion
scenario coupled with RF yielded similar performance relative to the
Base model scenario. The same cannot be said for GLM, which very
often had meaningfully higher performance when coupled with the
Base model scenario.

We highlight one visualization comparing AUC of the Base,
Base + GEDI Fusion, and Hindcast with GEDI Fusion model
scenarios (Figure 4) per case, focusing on the RF model

TABLE 4 Comparing mean AUC by model algorithm for species in Borneo and Sumatra. Comparisons are between model algorithms, separately for each
region (i.e., across rows).

Borneo (n = 39 species) Sumatra (n = 26 species)

Model scenario RF GLM ND RF GLM ND

GEDI Fusion 35 1 3 22 3 1

Base 32 1 6 17 7 2

Base + CCDC Spectral 30 2 5 16 5 5

Base + GEDI Fusion 30 2 5 15 6 5

Hindcast with GEDI Fusion 32 0 5 17 3 6

Values are the number of cases that the mean AUC associated with a model algorithm is at least more than 0.01 AUC higher than the alternative. The ND column includes the number of cases

where there is no meaningful difference (<0.01) between algorithms.

TABLE 5 Mean (standard deviation) model performance (AUC) for all species in both regions, grouped by model algorithm and scenario.

Model scenario

Model algorithm GEDI Fusion Base Base + CCDC spectral Base + GEDI fusion Hindcast with GEDI fusion

RF 0.818 (0.077) 0.861 (0.078) 0.859 (0.078) 0.859 (0.076) 0.860 (0.076)

GLM 0.741 (0.088) 0.833 (0.082) 0.833 (0.082) 0.831 (0.082) 0.817 (0.081)

TABLE 6 Comparing mean RF AUC by model scenario for species in Borneo and Sumatra. Comparisons are between model scenarios (i.e., across rows) and
per region.

Number of cases where model scenario is meaningfully better than
alternative scenarios

Number of cases where No
single scenario prevails

Region GEDI
Fusion

Base Base + CCDC
spectral

Base + GEDI
fusion

Hindcast with
GEDI fusion

Borneo (n =
39 species)

0 1 0 0 2 36

Sumatra (n =
26 species)

3 1 2 2 1 17

Values are the number of cases that the mean RFAUC associated with amodel scenario is more than 0.01 AUC higher than the second best performing scenario (i.e., one scenario clearly prevails

in terms of mean AUC). The last column includes the number of cases where there is not a single best-performing scenario.

Frontiers in Remote Sensing frontiersin.org12

Burns et al. 10.3389/frsen.2025.1563430

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1563430


algorithm (see Supplementary Figure S4 for GLM). Figure 4 conveys
several relevant outcomes. First, model performance was typically
better for Borneo species models, relative to Sumatra species models.
Furthermore, the variability of AUC was typically smaller for
Borneo species models compared to Sumatra species models.
Second, nearly all region and species models had good quality
AUC values (>~0.7). Depending on the scenario of interest,
approximately 15 cases had excellent mean performance

(>~0.9 AUC). Third, the difference in performance between these
three model scenarios was relatively small.

3.3 SDM predictor importance

We assessed predictor importance in several ways, all of which
examined the permutation mean decrease in AUC. We highlight

FIGURE 4
Boxplot summaries of AUC associated with random forest (RF) models for 10 bootstraps per region and species. The area under the curve (AUC)
measures the ability of the model to distinguish between presence and absence, with higher values indicating better models. Species are ordered by
mean AUCof Borneo and Sumatramodels. Boxplot colors correspond to differentmodel scenarios. Asterisks indicate that a species only has “forest” as its
suitable level 1 IUCN habitat.
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results from RF models since they performed best for the vast
majority of species. First, across all cases we computed the
frequency of each predictor group’s relative ranked importance
(Figure 5; see Supplementary Figure S5 for GLM). For every
scenario, Survey Effort (number of camera trap nights) was most
frequently ranked as the top predictor. Climate or Geomorphology
were the next most frequently ranked top predictors, followed by
Human Influence. GEDI Fusion Structure metrics were not
frequently selected or frequently ranked in the top 3 for the Base
+ GEDI Fusion scenario. They were more frequently selected in the
Hindcast with GEDI Fusion scenario, but still not near the top of the
groupwise importance rankings. CCDC Spectral Indices were more
commonly selected in the Base + CCDC Spectral scenario relative to
GEDI Fusion Structure metrics in the Base + GEDI Fusion scenario.
The only difference between these two scenarios was the swapping of
Spectral Indices and GEDI Fusion Structure metrics, which were
themselves partly derived from spectral indices. In other words,
when considering all cases the CCDC spectral indices are relatively

more important than GEDI Fusion structure metrics when added to
the Base model scenario.

Second, we considered the percentage of models where at least
one GEDI Fusion metric ranked in the top 5 for each case and
bootstrap, considering both the Base + GEDI Fusion and Hindcast
with GEDI Fusion scenarios (Figure 6). Overall, the majority of Base
+ GEDI Fusion species models do not include GEDI metrics ranked
in the top 5, but there are several exceptions, such as the marbled cat
and banded linsang. The Hindcast with GEDI Fusion scenario yields
a higher percentage of GEDI Fusion metrics in the Top 5, with
approximately half of the cases having at least one GEDI Fusion
metric which ranks in the Top 5 for at least 50% of bootstraps.

Third, for every case we computed the permutation mean
decrease in AUC for each bootstrap. We aggregated the mean
decrease in AUC from each bootstrap and for each predictor
group, allowing us to visualize the cumulative importance of
predictor groups for each species, as well as the frequency of
variable selection. An example is shown below in Figure 7 for

FIGURE 5
The frequency of each predictor group’s relative ranked importance (in terms of permutation mean decrease in AUC) across all region and species
RF models for four different scenarios. A rank of 1 corresponds to the highest importance (i.e., largest mean decrease in AUC when the variable is
excluded), while a rank of 10 corresponds to lowest importance. Note that only mean decrease in importance values greater than 0.001 are used for
aggregating variables from the different groups. Hence there are lower counts for the higher ranks.
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Bearded pig. This example illustrates how the relative importance of
variable groups varies across regions and model scenarios. For the
Bearded pig, GEDI Fusion Structure is relatively more important in
Sumatra than in Borneo. Furthermore, we see that the relative
importance of GEDI Fusion Structure is noticeably higher in the
Hindcast with GEDI Fusion scenario.

3.4 SDM prediction maps

Based on our workflow, there are numerous ways to visualize
predicted species distribution maps. One approach is to visualize the
prediction from a single bootstrap from a particular model scenario.
The individual prediction could be associated with a particular
evaluation metric, like the highest AUC. Another, perhaps more
representative approach for visualizing predictions, is to consider all
predictions from each bootstrap in aggregate. One aggregation

technique calculates the per-pixel mean of the stack of bootstrap
predictions (Figure 8A). Unfortunately, this mean prediction does
not have associated evaluation metrics since this would require a
separate holdout set of species observations, which is not practical
considering the low number of presences for many species. We also
calculate the per-pixel standard deviation, and use that in
conjunction with the per-pixel mean to display the coefficient of
variation as an estimate of per-pixel uncertainty
(Supplementary Figure S6).

Another dimension to consider is time. The Hindcast with GEDI
Fusion model scenario includes several temporally-dynamic
predictor variables which are appropriate for hindcasting species’
probability of occurrence. The temporally-dynamic predictors go
back to approximately the year 2001. Here we highlight the change
in probability of occurrence from 2001 to 2021 for a single species
with an IUCN endangered status, the Sunda Clouded
Leopard (Figure 8B).

FIGURE 6
The percent of Base + GEDI Fusion and Hindcast with GEDI Fusion RF models (across 10 bootstraps) where at least one GEDI Fusion metric ranks in
the top 5 of variable importance, computed as the permutation mean decrease in AUC. Point coloring is used to contrast scenarios. Species are ordered
by the average percent of Hindcast with GEDI Fusion models where at least one GEDI Fusion metric ranks in the top 5. Asterisks indicate that a species
only has “forest” as its suitable level 1 IUCN habitat.
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4 Discussion

4.1 Multitemporal catalog of species
distributions and forest structure

Considering the necessity of forest habitat for many Sundaland
mammal species and the rate of forest loss in this region, the most
significant contribution of this study is the creation of a multi-
temporal catalog of species distribution maps for 47 mammal
species in Borneo and Sumatra, 11 of which are Endangered and
3 of which are Critically Endangered. The maps are based on an
extensive camera trap network, two modeling algorithms, and the
best available remotely-sensed datasets, including GEDI lidar
which provides the most comprehensive tropical canopy
structure metrics available to date. The combination of spatial
extent, relatively-fine spatial resolution, multitemporal
predictions, and number of species is unprecedented in this
region as previous work has focused on distribution models of
individual species or guilds (e.g., Hearn et al., 2016; Macdonald

et al., 2019b; Nursamsi et al., 2023; Mendes et al., 2024; Chiaverini
et al., 2023) or aggregate diversity metrics (e.g., Macdonald et al.,
2020), typically at a point in time. The maps we developed and
present here will be useful inputs for downstream conservation
analyses and decisions. Species probability of occurrence maps can
be used to evaluate the effectiveness of existing protected areas
(e.g., Chiaverini et al., 2023) and identify spatial conservation
priorities (Faleiro et al., 2013; Hughes, 2017; Macdonald et al.,
2019a). Similar products have also been used in this region to
define resistance surfaces for connectivity modeling and
subsequent identification of core habitat areas (Kaszta et al.,
2020). Moreover, species distribution and connectivity maps
can be used to assess how previous agricultural conversion and
infrastructure development projects have affected species core
habitat during the Landsat period of record. Impact associated
with projected development can also be assessed prior to
implementation in order to inform decisions, such as relocation
of the Indonesian capital (Nusantara) and the construction of
major highways (e.g., Kaszta et al., 2024; Jantz et al., 2025).

FIGURE 7
Bearded pig variable importance, computed as the permutation mean decrease in RF AUC, aggregated by variable group over 10 bootstraps. Each
bin corresponds to a predictor associated with the specified group and the width of the bin corresponds to themean decrease in AUCwhen that variable
was permuted for a given bootstrap. The top set of plots corresponds to the Base + GEDI Fusion scenario, while the bottom set corresponds to the
Hindcast with GEDI Fusion scenario.
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The multi-temporal GEDI Fusion maps considered by each
SDM are themselves an important and relatively novel
contribution since multiple aspects of forest structure (beyond
height and cover) have never been spatially-resolved and
hindcast at the cadence used in this study. The cadence of these
and other temporally-matched predictors has implications for
hindcasted SDM accuracy. The GEDI Fusion predictors have a
cadence of 3 years which generally is enough time to establish a
new Landsat CCDC segment considering frequent cloud cover in the
region. Most other predictors range from 1 to 3 years cadence, with a
maximum of 5 years for the global human modification predictor
(see Supplementary Table S1). The accuracy of hindcasted SDMs is
related to the cadence/temporal fuzziness of temporally-matchable
predictors. For example, if a particular region had few to no Landsat
observations in a year, but that region experienced deforestation
during that year, our prediction of GEDI forest structure metrics
would have higher error, and would potentially result in a higher
probability of occurrence than what would have been predicted had
several Landsat observations been available for that year. Hence,
considering the cadence of the predictors themselves, our hindcasted
predictions should be representative of a ~ 3–5 years time period.

Change estimates should thus only be made across time periods
greater than 3 years.

4.2 Utility of GEDI fusion predictors in SDMs

Another major contribution is the characterization of the utility of
four-dimensional GEDI Fusion predictors in SDMs, both in terms of
improvingmodel performance and ecological inference.We compared
several model scenarios (i.e., predictor sets with and without metrics
representing vertical forest structure) and two algorithms for
predicting the distribution of mammal species in Borneo and
Sumatra. Regarding model performance, one of our key outcomes
is that species models including GEDI Fusion variables do not, from a
practical standpoint, perform better than alternate model scenarios.
For the RF algorithm there were only 4 cases (out of 65) where the Base
+ GEDI Fusion scenario performed meaningfully better (AUC >0.01)
than the baseline (Base) scenario. The Hindcast with GEDI Fusion
scenario yielded 9 cases with meaningful increases in model
performance relative to the Base scenario. Comparing Base + GEDI
Fusion and Base + CCDC Spectral yielded a similar result.

FIGURE 8
Sunda clouded leopard predicted probability of occurrence in 2021 (A) and change in predicted probability of occurrence from 2001 to 2021 (B). All
maps correspond to the RF model algorithm with the Hindcast with GEDI Fusion model scenario. Ground slope is displayed as the basemap.
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In one sense, this set of results is surprising considering the
gradient of forest structure in this region and the fact that many
species are dependent on forest habitat. In another sense this is not
surprising considering the relatively high-degree of correlation
among predictors, both within the same group and across groups
(Supplementary Figure S7). GEDI Fusion variables are all highly
correlated between themselves and with several Climate,
Disturbance, and Geomorphology variables, which is also not
surprising considering elevation and forest cover loss were
included in making continuous predictions of GEDI Fusion
metrics, and that elevation inherently has a strong positive
relationship with forest structure in this region and the tropics in
general (Liu et al., 2025). As a result, the GEDI metrics may not be
selected in models if they didn’t make it through the initial GVIF
variable selection routine, which often selected other predictors
based on preliminary training and importance scores. Moreover,
a principal component analysis of our GEDI Fusion predictors
resulted in only 2–3 informative components based on the Eigen
value scree plot and visual analysis of PC bands. As a result, there
may not be as many unique dimensions to our GEDI Fusion
products as expected.

Another reason GEDI metrics might not lead to large
improvements in performance is the fact that most metrics tend
to saturate (or lose discrimination) where forests are tall and very
dense. In the case of RH98 (canopy height), approximately half of
the camera trap sites have predicted RH98 values greater than 30 m,
which is around the height that saturation of RH98 predictions
occurs (Figure 3). Furthermore, based on comparisons with a
discontinuous 1 km gridded dataset that only used actual GEDI
data in aggregate (Burns et al., 2024), we expect at least the upper
25% of RF predicted canopy height values are indiscriminate, i.e., the
approximate maximum predicted canopy height is 40 m, while this
value only corresponds to approximately the 75th percentile of the
gridded distribution. In general we expect most RF predicted canopy
heights greater than 30 m will be associated with minimally
structurally-disturbed forests, so that unintentional threshold
associated with saturation is somewhat ecologically relevant. But
the loss of height discrimination starting somewhere between 30 and
40 m and possibly up to 70 mmay be an important limitation for the
prediction of some species which use very tall forests. At the same
time, animals that make full use of that vertical space may also be
more challenging to detect with camera traps placed close to ground
level (discussed further below). PAVD from 0 to 5 m, which is the
stratum where camera traps are placed, was not reliability predicted
(R2 = 0.05). Considering many of the species in this analysis are
frequently found at ground level, PAVD from 0 to 5 m might
actually be a very relevant predictor. But the reliability and lack of
discrimination of this GEDI Fusion structure metric may preclude
initial GVIF selection and limit model discrimination and
subsequent inference.

Despite only yielding limited improvements in model
performance, GEDI Fusion predictors do offer novel habitat
insights for some species and arguably improve ecological
interpretability of SDMs. Consider correlated predictors from two
different model scenarios, Base + CCDC Spectral and Base + GEDI
Fusion - NDVI and GEDI Fusion canopy height (RH98). NDVI does
somewhat represent vegetation structure (or at least vegetation
density), but in tall, dense forests it primarily corresponds to

reflectance from the top of the canopy (Gao et al., 2023). Canopy
height predicted from fusion of GEDI and Landsat CCDC is not
necessarily more reliable considering the aforementioned saturation
issues of NDVI (and other spectral vegetation indices) and the
propagated uncertainty associated with fusion modeling (Moudrý
et al., 2024), but canopy height is more interpretable for ecologists
and decision makers. Even though it may be challenging to
accurately measure the height of a 70 m tree from the ground,
canopy height is still much more intuitive than a spectral index like
NDVI. Other GEDI Fusion metrics, like PAI, FHD, or understory
PAVD, may not be quite as intuitive, but three-dimensional forest
structure is more tangible and closely linked to species habitat
preferences compared to spectral indices which focus on canopy
tops and make use of wavelengths that are beyond the perception of
human vision. Thus, while incorporating GEDI Fusion metrics does
not, in general, substantially improve model performance, these
predictors enhance our understanding of species’ habitats for
practical management and applied ecological purposes.

Supplementary Figure S8 shows the partial dependence of Sunda
clouded leopard probability of occurrence considering several GEDI
Fusion metrics, separated into two groups corresponding to focal
mean and focal standard deviation. For this species, probability of
occurrence generally increases as the focal mean of each GEDI
Fusion metric increases. Probability of occurrence generally
decreases as the focal standard deviation of each GEDI Fusion
metric increases (i.e., forest structure surrounding a camera trap
site is relatively more heterogeneous). The GEDI Fusion partial
dependence plots for Sunda clouded leopard also show that metrics
with focal standard deviation applied were more frequently selected
than those with focal mean applied.We observed the same pattern in
many of the SDMs (see additional partial dependence plots in
Supplementary Material). This is not necessarily surprising
considering the focal standard deviation metrics generally have a
lower degree of correlation with predictors from other groups.
Hence when considering Base + GEDI Fusion or Hindcast model
scenarios, the GEDI Fusion focal standard deviation predictors
tended to be favored (relative to focal mean) in the groupwise
variance inflation factor variable selection routine. Multiscale
optimization is now more commonly used in SDMs, but is
usually done based on mean and rarely based on focal SD. One
important implication of our study for multiscale machine learning
models is that optimization on multiscale variation may be more
important than optimization on multiscale mean, at least when a
large pool of correlated predictors are considered.

The focal standard deviation of GEDI Fusion metrics is a
relevant way to characterize the heterogeneity of forest structure
in this region. Examining maps of GEDI Fusion metrics with focal
standard deviation applied, low values typically correspond to
homogeneous forests and high values correspond to edges, such
as an undisturbed forest next to an agricultural area. Edges are
known to influence forest vertebrate abundance (Pfeifer et al., 2017)
and recent work utilizing GEDI showed that edge effects on interior
canopy structure may extend further than previously thought, to
about 1.5 km (Bourgoin et al., 2024). Although GEDI Fusion metrics
are identifying prominent edges that can also be detected by optical
satellites like Landsat or Sentinel-2, there is promise for
characterizing actual structural edges (Nguyen et al., 2023)
instead of spectral edges primarily associated with the top of the
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canopy. Additional texture and heterogeneity metrics (sensu
Torresani et al., 2023) may represent other forest structure
configurations and provide more relevant information for
prediction of some species distributions.

4.3 Perspectives on SDM
methodological options

There are multiple metrics and lines of evidence for choosing the
“best” combination of model algorithm and scenario to use for
spatial prediction and inference. Regarding model metrics, we chose
to base our model assessments and comparisons on the commonly
used AUC metric because it considers both sensitivity (the true
presence rate) and specificity (the true absence rate) across a range of
presence/absence thresholds. We were not concerned with absolute
presence/absence predictions associated with the choice of a
threshold, but rather the relative patterns of probability of
occurrence. Nonetheless, it may be worth considering other
performance metrics. Sofaer et al. (2019) showed that area under
precision recall curve (related to F1 and analogous to AUC but with
precision and recall instead of sensitivity and specificity) had
important advantages for evaluating rare species, in particular,
since true absences are not considered. However, Flach and Kull
(2015) recommended plotting precision-recall curves in a different
coordinate system, noting a key advantage because the area under
Precision-Recall-Gain (PRG) curves yields an expected F1 score on a
harmonic scale. To compare area under the receiver operator
characteristic curve (AUC ROC/AUC) and AUC PRG, we
focused on models for Borneo species (the region with the most
data and best performing models), showing the differences between
two different model scenarios and the baseline scenario per
bootstrap in terms of AUC PRG (Supplementary Figure S9). We
found few species had many models which used GEDI Fusion
predictors that were very different from the baseline scenario.
This is generally in line with our findings based on AUC ROC.
Regarding the model algorithm, we found RF performed better than
GLM in the vast majority of SDMs. One of the key methodological
differences between modeling algorithms we used here was the
decision to balance presence and absence samples for RF, but not
GLM. RF has been shown to be sensitive to class imbalance (Evans
and Cushman, 2009; Valavi et al., 2021) while GLM is generally
thought to be less sensitive or insensitive. Future work could evaluate
model performance using independent validation data and compare
effects of different class imbalance ratios across these combinations
of modeling approaches.

The Hindcast with GEDI Fusion model scenario, while not
always the best performing, is an attractive option to focus on for
several reasons. First, it is relatively parsimonious since it only
considers predictors which are either relatively fine spatial
resolution or temporally-resolved. Intuitively, this composition of
predictors is appropriate for such a dynamic landscape. While most
patterns of species occurrence will be correlated to some degree with
coarse resolution climate predictors (e.g., mean annual temperature
or precipitation), changes in climate are not thought to be the
primary factors driving changes in mammal species occurrence over
the last few decades in this region (Jaureguiberry et al., 2022).
Moreover, several predictor groups, such as CHELSA Bioclim

and SoilGrids, are themselves modeled using topography
predictors, and hence the groups are often highly correlated.
Therefore, including high spatial and/or temporal resolution
geomorphology predictors, which may themselves be proxies for
climate or soil properties, permits finer spatial resolution
predictions. Fine resolution human influence and forest structure
predictors are other obvious sets of predictors to include in this
model scenario, since a large portion of the landscape is affected by
conversion to palm oil plantations (Descals et al., 2021) and hunting
pressure (Deith and Brodie, 2020).

For the majority of species models, there is no meaningful
difference in model performance between the Hindcast with
GEDI Fusion and Base (or Base + GEDI Fusion) model scenarios
(Figure 4). However the key difference is how we interpret the
importance of predictors in these different scenarios. GEDI Fusion
forest structure predictors are used more often in the Hindcast with
GEDI Fusion scenario relative to the Base + GEDI Fusion scenario
(Figures 5–7). In general, the GEDI Fusion structure predictors are
taking the place of Vegetation Productivity and Climate predictors,
which is relevant because these groups of predictors are correlated.
Similarly, Wilson et al. (2013) found a surprisingly weak
contribution of forest structure in St. Francis’ satyr butterfly
distribution models, suggesting undetected correlations with
other variables (terrain, land cover) reduced predictive power.
The other comparison to highlight in Figure 5 is the use of
spectral indices in the Base + Landsat CCDC scenario, relative to
structure predictors in the Base + GEDI Fusion scenario. Spectral
indices are relatively more important than GEDI Fusion forest
structure predictors. From a signal-to-noise perspective, this is
not surprising since the spectral indices are closer to the original
sensor observation and have been aggregated temporally using the
CCDC algorithm. In contrast, GEDI Fusion structure metrics
predicted from Landsat CCDC include relatively more noise due
to factors like GEDI geolocation uncertainty and saturation of
spectral indices (e.g., NDVI) in more dense forests.

Given the relatively high degree of correlation among GEDI
Fusion metrics and between GEDI Fusion metrics and other
predictor groups, it is worth considering alternate methods for
generating continuous maps of vegetation structure to use as
inputs in SDMs. One alternate method is statistical aggregation
(i.e., gridding) of GEDI shots within a practical andmeaningful pixel
size. For vegetation structure, a statistically meaningful pixel size
would be on the order of 1 km, ideally finer. Dubayah et al. (2021b)
and Burns et al. (2024) have produced gridded products in this
manner, but unfortunately large gaps in GEDI quality-shot coverage
in the tropics yield large gaps in the gridded maps at 1 km spatial
resolution, which is problematic for making continuous predictions
of species probability of occurrence (and why we did not utilize these
products in this study). A second option is geostatistical
interpolation, such as kriging. We developed a set of GEDI
predictors which were kriged at 1 km spatial resolution (Brodie
et al., 2023) and considered using these kriged GEDI structure
metrics since this method usually improves the prediction of low
and high values in dense forests relative to fusion with Landsat
CCDC. Unfortunately, there are still many large gaps in GEDI
coverage in the tropics which require interpolating over large
distances. This is problematic since, for example, forest structure
is locally variable as a function of topography, human influence and
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other factors. Therefore, while exploratory models combining the
Base set of predictors and Kriged GEDI metrics had performance on
par with Base + GEDI Fusion models, the former models had more
problematic spatial artifacts associated with the kriging
interpolation. Ultimately, even though GEDI Fusion predictors
did not capture high structure values as well as hoped, we
preferred them over GEDI Kriged predictors since they had a
finer spatial resolution, fewer spatial artifacts, and could be used
for hindcasting.

The model scenarios we used were designed to include a
multitude of factors known to influence species habitat. We
sought to create a semi-automated SDM pipeline, and
considering the large number of species and uncertainty
regarding the habitat preferences of some species, we used an
automated variable selection approach. This choice impacted how
often GEDI Fusion metrics were selected and the resulting
interpretation of variable importance. This data-driven approach
has merits, including automation and potential to gain novel
insights about the habitat preferences of understudied species.
Nonetheless, it would also be beneficial to include expert
knowledge in the variable selection process, especially since
models (especially RF) tended to optimize performance regardless
of model scenario (excluding the scenario which only used GEDI
Fusion predictors). Previous studies have advocated for expert input
in SDMs (Petitpierre et al., 2017; Fourcade et al., 2018), but this
requires a greater level of coordination and collaboration across
disciplines (e.g., Velásquez-Tibatá et al., 2019). Remote sensing
scientists and ecological modelers can certainly learn from
biologists who study these species in the field, while biologists
can also gain insights from the exploration and incorporation of
novel geospatial datasets.

4.4 Species monitoring limitations

While one of the primary components of this study is assessing
the utility of remotely-sensed forest structure metrics in SDMs, it is
also important to note other considerations associated with the
species survey design. Estimating presence/absence from camera
trap observations is an imperfect process (Zwerts et al., 2021). Here
we used a relatively low number of camera trap nights (30) to
designate the absence of a species at a site. For most species, we
found the number of camera trap nights to be the most important
predictor of species probability of occurrence - more nights typically
meant a higher probability of detection occurrence. Future work
may consider other ways of incorporating survey effort information
in the context of absences, possibly by using the number of camera
trap nights as case weights in RF and GLM models. Higher case
weights would correspond to more camera trap nights (i.e., higher
likelihood of true absence), and the higher weighted observations
would be used more often in the model fitting process, potentially
improving discrimination between presences and absences.

In a dense forest many of the species we modeled are inherently
challenging to detect with camera traps since they may be obscured
by vegetation. Hence, areas with more open understories (i.e., lower
PAVD from 0 to 5 m) may appear to have more species occurrences,
relative to very dense understories. However, this might not align
with the species’ actual habitat preferences, largely due to

detectability. Unfortunately this conundrum is difficult to resolve
with our current GEDI Fusion products since PAVD from 0 to 5 m
was the most challenging forest structure metric to predict (R2 =
0.05 and Rel. RMSE = 85–95%). Detection with camera traps is even
more challenging for primarily arboreal species that spend little time
on the ground within the view of most camera traps. Therefore it is
likely that arboreal mammal presences are underestimated, leading
to model predictions that are biased towards absence. For RF
models, our use of balanced presence and absence sample sizes
(i.e., down-sampling) per decision tree may have partially reduced
this bias, but the tradeoff of down-sampling is that some (typically
absence) locations will not be considered in an individual bootstrap
model. Research teams have already taken the obvious next steps of
tracking arboreal species with GPS (McLean et al., 2016) and
deploying camera traps in the upper canopy to observe scansorial
and arboreal species (Haysom et al., 2021; Honda et al., 2025).
Acoustic recording units (ARU), possibly coupled with camera traps
(Garland et al., 2020), could provide another complementary piece
of occurrence information, especially when vegetation is very dense.
In the case of either technology (camera trap or ARU), the influence
of vegetation density on species detection would need to be
considered. Emerging technologies, such as tracking tagged
animal movement via micro transmitters detected by small
satellites (Cube Sats) has the potential to rapidly advance our
understanding of habitat use, resource selection and
migration routes.

4.5 Moving forward with spaceborne lidar in
biodiversity analyses

Our results should not be taken to imply that forest structure
per se is not a strong predictor of mammal species probability of
occurrence, but rather that the GEDI Fusion predictors do not
substantially improve prediction in this region relative to a
baseline model scenario, which included co-varying predictors
of climate, geomorphology, disturbance, human influence and
vegetation productivity spanning local to landscape scales.
Previous studies have demonstrated the utility of high-
resolution vegetation structure from ALS for modeling species
habitat associations in this region (Davies et al., 2017; Deere et al.,
2020). Future work using higher density and/or quality remotely
sensed forest structure data may find substantially different
results, particularly in hierarchical frameworks which
explicitly consider different levels (scales) of landscape
structure (e.g., Nursamsi et al., 2023) and connectivity. In our
analysis, the utility of GEDI Fusion forest structure metrics in
terms of performance was limited for three main reasons: 1)
predictions of the tallest forests (30 + m) and understory PAVD
from 0 to 5 m were unreliable, 2) there was a high degree of
correlation between GEDI Fusion predictors and limited effective
dimensionality, and 3) there was a high degree of correlation
between GEDI Fusion predictors and geomorphology predictors,
in particular, making it challenging to disentangle their unique
impacts on model performance. However, in terms of model
inference, GEDI Fusion predictors are a step in the right
direction, offering habitat insights and improved ecological
interpretability.
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Moving forward, we expect forest structure metrics derived from
GEDI, and ultimately next-generation spaceborne lidar missions
designed for terrestrial ecological applications, to have greater utility
in SDMs for several reasons. First, after a brief ~1 year hibernation
period from March 2023 to April 2024, GEDI began reacquiring
data. Data coverage will improve with time on-orbit which will
likewise improve continuous structure maps generated using
gridding, kriging, or fusion with image data. Moreover, GEDI
data accuracy and quality are expected to improve in future
versions of the data products. For example, horizontal
geolocation uncertainty is expected to decrease to about 5 m for
data release 4. Unfortunately, the tropics, which harbor the bulk of
the world’s terrestrial species and above ground carbon, will
continue to have relatively less GEDI coverage than higher
latitudes due to ISS orbital geometry and greater cloud cover
over dense humid forests. Hence, fusion strategies will continue
to be a necessary bridge for creating fine spatial resolution,
continuous forest structure predictors until new satellite
instruments and/or constellations with improved spatial and
temporal coverage are operational. Fortunately from the bridge
perspective, many new satellite missions and datasets which
could be fused with GEDI are already online or coming online
soon. For example, Planet Labs 3 m imagery will be helpful for better
characterizing vegetation texture/heterogeneity while also providing
phenological context in fusion models. The NASA-ISRO SAR
mission (NISAR) will use L-band (~23 cm wavelength)
measurements capable of penetrating into forest canopies. The
L-band backscatter measurement is closely correlated with forest
structure, particularly when calibrated with LiDAR measurements,
since the transmitted wavelength interacts with stems and branches.

Novel and emerging deep learning models should also be
explored for making spatio-temporal predictions of forest
structure metrics and species distributions. Regarding forest
structure, several studies focused on this region have
demonstrated the capability of using deep learning for mapping
oil palm plantations (Descals et al., 2021; Rodriguez et al., 2021),
which are a major driver of deforestation and habitat loss (Hughes,
2017). In terms of GEDI-measured forest structure, multiple studies
have reported improved performance when applying deep learning
models trained on satellite imagery (Lang et al., 2023; Schwartz et al.,
2023; Wagner et al., 2024) since these models are able to learn
complex features across spatial and temporal scales. In regards to
species distribution models, convolutional neural networks (CNN)
are appealing because they leverage the spatial context (i.e., texture)
of environmental predictors (Brodrick et al., 2019). For example,
Deneu et al. (2021) found local landscape structure improved the
predictive performance of CNN-SDMs and that this modeling
framework outperformed RF when evaluated by mean top-k
accuracy, but not AUC and TSS. In this study we applied simple
convolutions (gaussian focal mean and standard deviation) to
predictor variables. Notably, we found the focal SD of some
GEDI metrics, a proxy for forest structure heterogeneity and a
way to identify edges, to be relatively important for certain species
distributions. We used a relatively small number of multiscale
convolutions relative to current CNN architectures, so additional
performance gains may be possible with more numerous and
complex convolutions in a CNN framework. Lastly, the
availability of massive pre-trained foundational models, especially

those tailored to multispectral and multiscale datasets (e.g.,
SpectralGPT, Hong et al., 2024), may increase model efficiency
and performance.

Our results are encouraging in terms of model performance and
advancing interpretation of animal habitat use by incorporating
forest structure metrics that are more tangible relative to other
predictors, such as vegetation spectral indices. Given the extreme
rapidity of forest loss in many tropical regions and expected impacts
related to economic expansion in Sundaland (e.g., Nusantara),
having a catalog of 47 species models that are able to be
hindcasted across decades (in this case from 2001 to 2021) and
updated into the future is extremely valuable for conservation
purposes (e.g., Shirk et al., 2023). This catalog will enable a
multi-temporal assessment of changes in the habitat extent,
pattern, and connectivity for a broad swath of Sundaland
mammal biodiversity, assessment of protected area effectiveness,
identification of unprotected areas of high biodiversity value, and
projection of likely future changes to multi-species habitat quality
and extent.

Data availability statement

Given the extremely sensitive nature of species occurrence data
with respect to illegal wildlife trade, locations of camera traps will
not be made public at this time to avoid further endangering the
already threatened species. However, we welcome correspondence
with scholars and conservationists regarding collaborative use of the
data to advance science and conservation of SE Asian mammal
species. All prediction maps (90 mGeoTIFF files) for years 2001 and
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are publicly available in a Zenodo repository (https://zenodo.org/
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is available in a github repository (https://github.com/burnspat/
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