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A method for determining the average photon path length in a slab of
multiple scattering material is presented. Radiances can be obtained from the
radiative transfer equation and subsequently differentiated to obtain the average
photon path length. These radiances can be obtained viamultiplemethods including
Monte Carlo simulations, analytic two-stream approximations, and multi-stream
numerical solutions such as the AccuRT computational tool. Average path lengths
obtained via numerical differentiation of these radiances are found to agree closely
with path length estimates predicted by existing methods found in the literature.
The average photon path length is further considered for a slab of finite physical
thickness. It was found that for a slab consisting of non-absorbing material there is a
linear relationship between the slab thickness and the average photon path length,
but that formaterials with nonzero absorption, this linear relationship breaks down as
the slab thickness increases. Average path lengthsmay be converted to time spans to
determine the amount of time a photon spends in a multiple scattering medium,
which may be used to quantify the impact of multiple scattering on pulse stretching
in lidar/radar applications.
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1 Introduction

We present a method for computing the average optical path length of photons
undergoing random walks in a slab of arbitrary physical thickness. The slab is assumed
to consist of a dilute medium1 with arbitrary values of the single-scattering albedo and the
scattering phase function. This method can be used to compute the average optical path
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1 In a dilute medium the concentration of particles is sufficiently low that the time between particle

collisions is much longer than the duration of a collision, which implies that only binary (two-particle)

collisions are important.
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length 〈Lopt〉 at any location in the slab, but also to quantify 〈Lopt〉
for photons escaping from the top or bottom of the slab.

The average optical path length 〈Lopt〉 is of interest in a variety
of practical applications, such as in the study of the horizontal
variability of clouds or in the study of diffuse light transport with
relevance to biomedical imaging. In many studies of atmospheric
scattering, a plane-parallel atmosphere is assumed with no
variability in the horizontal direction. In contrast, Stephens and
Heidinger (Stephens andHeidinger, 2000) considered the effects of a
three-dimensional cloud geometry. They noted that horizontal
cloud heterogeneity may lead to a reduced reflected radiance,
which in turn may lead to a corresponding reduced value of the
inferred optical depth compared to the optical-depth value obtained
in the case of a plane-parallel atmosphere (Stephens and Heidinger,
2000). They further noted that the average photon path length can
be used to estimate the optical depth, but that horizontal
heterogeneity causes a positive bias as compared to the optical
depth values expected in the plane-parallel case. The difference
between these two optical depth estimates may be used as a metric to
quantify the degree of horizontal heterogeneity of a scattering
atmosphere.

The average optical path length 〈Lopt〉 has also been used in the
study of diffuse light transport, which has applications in biomedical
imaging of strongly scattering biological tissues. For example, Pierrat
et al. (2008) used the transport mean free path of photons to
determine the regime of validity for the diffusion approximation.
At large length scales, the diffusion approximation produces good
results for the transport of the diffuse intensity (or radiance).
However, the diffusion approximation has limitations at short
length scales. Pierrat et al. (2008) investigated these limitations
and proposed improved models. Elaloufi et al. (2004) used the
transport mean free path to study the dynamic transport of light
in optically thin slabs. They found diffusion-approximation results
to accurately predict the long-time behavior of transmitted pulses in
slabs of physical thickness h larger than 8ℓtr where ℓtr is the
transport mean free path. Optically thin slabs (h< 8ℓtr), instead
fall into the non-diffusive regime, and the authors used the radiative
transfer equation to study the transition from the diffusive to the
non-diffusive regime (Elaloufi et al., 2004).

Also, the average optical path length is useful in satellite remote
sensing, wherein an instrument such as a lidar deployed in space
measures the upward radiance of photons at the top of the
atmosphere (TOA). Here the atmosphere may be assumed to be a
plane-parallel, horizontal slab varying only with altitude z, and satellite
remote sensing data may be used to infer the average path length of the
photons escaping at the TOA. Likewise, photons emerging from the
bottom of the slab, may be used to compute average path lengths that
will be useful for interpreting data fromground-based lidar deployments
aimed at studying cloud and aerosol properties.

To demonstrate the validity of our method for computing
average optical path lengths, we use the AccuRT software tool
(Stamnes et al., 2018). This software tool solves the radiative
transfer equation (RTE) for two coupled slabs with different
refractive indices (such as the coupled atmosphere-ocean system)
using the discrete ordinate method. Solutions to the RTE yield
radiances at a number of discrete polar quadrature angles (also
known as streams), with a greater number of streams producing
more accurate results (Stamnes et al., 2017). From these solutions at

the polar quadrature angles, the source function can be computed
via interpolation of the radiances computed at the polar quadrature
angles and then integrated to obtain radiances at arbitrary polar
angles by the “integration of the source function technique” as
summarized in Section 3.

Prior work has been done in computing the average optical path
length from radiance values for some simple cases, as summarized
by van de Hulst (Hendrik Christoffel et al., 1980). It is therefore
interesting to compare results obtained using our method for
computing average optical path lengths, with corresponding
results obtained by van de Hulst’s approach.

2 Methodology

Consider a horizontal slab of physical thickness h and
inherent optical properties (IOPs) that are characterized by
the absorption coefficient α(z), the scattering coefficient β(z),
and the scattering phase function p(z,Θ), where z � 0 at the
bottom of the slab and z � h at the top of the slab. The scattering
angle Θ is related to the polar and azimuth angles (θ′, ϕ′) before a
scattering event and (θ, ϕ) after a scattering event by the cosine
law of spherical trigonometry

cosΘ � cos θ′ cos θ + sin θ′ sin θ cos ϕ′ − ϕ( ). (1)

The quantity γ(z) � α(z) + β(z), is called the extinction
coefficient and is used to describe the total attenuation or
extinction due to the combined effects of absorption and
scattering. The single-scattering albedo (SSA), denoted
ϖ(z) � β(z)/(α(z) + β(z)), describes the fraction of the
extinction that is due to scattering. Note that for a homogeneous
slab the scattering and absorption coefficients as well as the
scattering phase function do not depend on altitude z measured
upwards from the bottom of the slab.

Both the slab thickness h and the inherent optical properties
impact the degree to which light is absorbed and multiply
scattered. It is convenient to use the slab total optical
thickness τ* � h(α + β) together with the single-scattering
albedo ϖ � β/(α + β) and the scattering phase function p(Θ)
to encapsulate all required information for a homogeneous slab.

Similarly, if we want to evaluate radiances at some intermediate
depth z (with 0≤ z≤ h) for a homogeneous slab, we can use the
optical depth τ(z) � z(α + β).2

We may also consider the case where some absorbing gas with
absorption coefficient κ is mixed with small particles which can be
characterized using IOPs as just described. We can introduce
the parameter

η � κ/ α + β( ) (2)

2 If we measure altitude from the bottom of the atmosphere (slab) upwards,

but optical depth from the top of the slab downwards, then for an

inhomogeneous slab, we have τ(z) � ∫∞
z
(α(z′) + β(z′))dz′, see Equation

15, Section 3.
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which is simply the ratio of the gas absorption coefficient κ to the
“particulate matter” extinction coefficient (α + β).

In such a mixture it is possible to introduce modified values for
the optical thickness τ*′ � τ*(1 + η), optical depth τ′ � τ(1 + η),
and single-scattering albedo ϖ′ � ϖ/(1 + η). That is, for any
particulate medium that is mixed with or embedded in an
absorbing gas, we may replace the mixture with an equivalent
medium in which there is no gas between the particles and
where the optical properties of the particles are (ϖ′, τ*′, τ′)
instead of (ϖ, τ*, τ). This relation is known as the equivalence
theorem (Hendrik Christoffel et al., 1980):

I τ,ϖ, τ*, η( ) � I τ′,ϖ′, τ*′( ) (3)
where I is some measurable quantity at some optical depth τ within
a medium. Suppose, for concreteness, that I is the radiance
(although this argument holds for any measurable quantity) and
that we wish to determine the radiance I at some optical depth τ

within a medium.

2.1 The optical path length

Within the medium, there will be a number of photons that
will combine to produce the radiance I at optical depth τ. These
photons may take a number of different paths through the
medium–for example, some photons may travel directly to
depth τ, while others may be scattered once along the way,
and yet others may be scattered multiple times before arriving at
τ. The optical path length Lopt of each of these photons
will be randomly distributed, and for a large number of
photons, the probability distribution p(Lopt) describes the
probability that a given photon will traverse some path
length Lopt before arriving at τ. This probability distribution
is normalized, such that

∫∞

0
p Lopt( )dLopt � 1. (4)

Then in the case of a medium with no gas absorption, the
radiance I is given by

I � I∫∞

0
p Lopt( )dLopt. (5)

If we instead consider a medium with gas absorption, then the
radiance will experience some exponential attenuation and so
Equation 5 becomes

I τ,ϖ, τ*, η( ) � I τ,ϖ, τ*, 0( )∫∞

0
p τ,ϖ, τ*, Lopt( )e−ηLoptdLopt (6)

where η is given by Equation 2.
Introducing the Laplace transform

F Lopt( ) � L−1 f η( )[ ] (7)
where f(η) � ∫∞

0
F(Lopt)e−ηLoptdLopt, we see that F(Lopt) is

obtained via the inverse Laplace transform of f(η) as indicated
in Equation 7. Hence, Equation 6 can be expressed as

I τ,ϖ, τ*, η( ) � I τ,ϖ, τ*, 0( )L−1 p τ,ϖ, τ*, Lopt( )[ ]. (8)

2.1.1 The average optical path length
The moments of the distribution p(Lopt) can also be found. For

example, the mean (or average) optical path length is given by

〈Lopt〉 � ∫∞

0
Loptp Lopt( )dLopt. (9)

We may wish to use this approach to find the average path
length of an absorbing medium. Using the inverse Laplace transform
in conjunction with the equivalence theorem, it can be shown that
[see Display 17.1 of (Hendrik Christoffel et al., 1980)]

p τ,ϖ, τ*, Lopt( ) � L−1
I τ 1 + η( ), ϖ

1+η( ), τ* 1 + η( )( )
I τ,ϖ, τ*( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� L−1 I τ′,ϖ′, τ*′( )

I τ,ϖ, τ*( )⎡⎣ ⎤⎦ (10)

We have a property of the Laplace transform:

dF(s)
ds

� −L tf t( )[ ] (11)

We may write the expression for the average path length
as follows3:

〈Lopt〉 � ∫∞
0
Loptp Lopt( )dLopt

� ∫∞
0
Loptp Lopt( )dLopt

� L Loptp Lopt( )[ ]
� − d

dη

I τ′,ϖ′, τ*′( )
I τ,ϖ, τ*( )

⎛⎝ ⎞⎠
and so the average optical path length can be obtained by

differentiation

〈Lopt τ,ϖ, τ*( )〉 � ∂ ln I τ,ϖ, τ*( )
∂ lnϖ − ∂ ln I τ,ϖ, τ*( )

∂ ln τ*
− ∂ ln I τ,ϖ, τ*( )

∂ ln τ
.

(12)
If we consider the special case of a semi-infinite slab (τ* � ∞) in

which we measure the radiance I(0,ϖ,∞) escaping at the top of the
slab (τ � 0) then we obtain the average optical path length from a
simplified version of Equation 12:

〈Lopt 0,ϖ,∞( )〉 � ∂ ln I 0,ϖ,∞( )
∂ lnϖ . (13)

The corresponding average geometrical path length is
obtained as

〈L〉 � 〈Lopt〉/ α + β( ) ≈ Lopt/β if β≫ α. (14)

Hence, if α and β are specified in [m−1], then the unit of 〈L〉
will be [m].

3 A brief note on the final step here: in Section 17.1.2, van de Hulst makes the

comment that the total extinction factor has one part, exp(−Lopt), hidden
in the factor p(Lopt). Thus we see that although the integral appears to be

missing the exponential factor that would turn it into a Laplace transform, it

is actually the case that this exponential factor has been subsumed into

p(Lopt) and so the Laplace transform here is valid.
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3 Radiative transfer

Having shown that the average optical path length can be
obtained from radiance values, the next task is to choose a
method by which these radiance values may be computed. One
such method for obtaining these radiances is via the radiative
transfer equation (RTE), which allows us to determine radiance
values at arbitrary values of optical depth τ, polar angle θ, and
azimuth angle ϕ. By solving the RTE, we can obtain radiance values
which we may then substitute into Equation 12 to obtain the
corresponding average optical path length for photons
propagating in direction θ, ϕ at optical depth τ. If we are
interested in the average optical path length of photons escaping
from the top of the slab (as in the lidar case), we may use
Equation 13.

In the remainder of this section, we will introduce a general
method for solving the RTE via the integration of the source
function technique in conjunction with the discrete ordinate
method (Stamnes et al., 2017). We will then show how this
approach can be applied to the lidar problem. Finally we will
introduce AccuRT (Stamnes et al., 2018), a computational tool
for solving the RTE.

Consider a medium consisting of two adjacent, horizontal,
multilayered, coupled slabs illuminated at the top of the upper slab
by a collimated beam of irradiance F0 (normal to the beam) in direction
θ0, ϕ0 with respect to the normal to the coupled slabs. Here θ0 is the
polar angle of incidence, and ϕ0 the corresponding azimuth angle.

The absorption coefficient, α(τ(z)), the scattering coefficient,
β(τ(z)), and the scattering phase function, p(τ(z),Θ) �
p(τ(z), u′, ϕ′; u, ϕ) [i.e., the inherent optical properties (IOPs)] of
the two coupled slabs are assumed to vary only in the vertical
direction z. Recall that the relationship between the scattering angle
Θ and the polar and azimuthal angles is given by Equation 1. If we
assume that z increases upwards, then the corresponding optical
depth τ(z), defined as

τ z( ) � ∫∞

z
α z′( ) + β z′( )[ ]dz′ (15)

increases downwards from τ(z � ∞) � 0 at the top of the slab.
For such a 1-D problem the RTE for the diffuse radiance I(τ, u, ϕ) is
(Stamnes et al., 2017; Stamnes and Stamnes, 2015; Stamnes et al.,
2022; Stamnes et al., 2023)

u
I τ, u, ϕ( )

dτ
� I τ, u, ϕ( ) − S τ, u, ϕ( ) (16)

FIGURE 1
Comparison of the average optical path length 〈Lopt〉 as obtained from numerical differentiation of AccuRT results (Equation 38), the van de Hulst
approach (Equation 44), and the two-stream approach based on the Chandrasekhar H-function (Equation 40). AccuRT was run with a slab optical
thickness τ* � 200, whichwas sufficiently large to approximate a semi-infinite slab. We see close agreement between the results obtained from the three
different methods.
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where dτ(z) � −γ(z)dz, is the differential optical depth,
γ(z) ≡ α(z) + β(z) is the extinction coefficient, u is the cosine of
the polar angle, θ, and ϕ is the azimuthal angle.

The source function is given by

S τ, u, ϕ( ) � Sb τ, u, ϕ( )
+ ϖ τ( )

4π
∫2π

0
dϕ′∫1

−1
du′p τ, u′,ϕ′; u, ϕ( )I τ, u′, ϕ′( )

(17)
where ϖ(τ) � β(τ)/(α(τ) + β(τ)) is the single-scattering albedo,
and p(τ, u′, ϕ′; u, ϕ) is the scattering phase function. The total
source function is comprised of two terms: the source function
due to singly-scattered incident collimated beam light [Sb(τ, u, ϕ)]
and a second term which represents the contribution of multiply-
scattered light. The source function due to the incident collimated
beam is

Sb τ, u, ϕ( ) � ϖF0

4π
p τ, u, ϕ;−μ0, ϕ0( )e−τ/μ0 , μ0 � cos θ0. (18)

We may isolate the azimuth dependence of Equation 16 by
expanding the scattering phase function in Legendre polynomials
and invoke the addition theorem for spherical harmonics to show
that the scattering phase function becomes a Fourier cosine series.

Then if the radiance is also expanded in a Fourier cosine series of 2M
terms (Stamnes et al., 2017)

I τ, u, ϕ( ) � ∑2M−1

m�0
Im τ, u( )cosm ϕ − ϕ0( ) m � 0, 1, . . . , 2M − 1

(19)
it can be shown (Stamnes et al., 2017) that each Fourier

component (m � 0, 1, . . . , 2M − 1) independently satisfies the
radiative transfer equation

u
dIm τ, u( )

dτ
� Im τ, u( ) − Sm τ, u( ) (20)

where

Sm τ, u( ) � Smb τ, u( ) + ϖ τ( )
2

∫1

−1
du′pm τ, u′, u( )Im τ, u′( )

and

Smb τ, u( ) � ϖF0

4π
pm τ, u,−μ0( )e−τ/μ0 . (21)

Equation 20 can be solved by integrating the source function
layer by layer:

FIGURE 2
Comparison of normalized reflectance ratios R(ϖ≤ 1)/R(ϖ � 1) computed by the analytic TSA method (Equation 39) (vertical axis) and by AccuRT
(horizontal axis). Shown are values computed for g � 0.0 (isotropic scattering), μ � μ0 � 1.0, �μ � 0.6, and two different values of the slab optical thickness:
τ* � 100 and τ* � 500.
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Im+ τ, μ( ) � ∫τp

τ

dt

μ
Sm+
p t, μ( )e− t−τ( )/μ + ∑~L

n�p+1
∫τn

τn−1

dt

μ
Sm+
n t, μ( )e− t−τ( )/μ

(22)

Im− τ, μ( ) � ∑p−1
n�1

∫τn

τn−1

dt

μ
Sm−
n t, μ( )e− τ−t( )/μ + ∫τ

τp−1

dt

μ
Sm−
p t, μ( )e− τ−t( )/μ

(23)
where the + sign denotes the upward hemisphere and the–sign the
downward hemisphere, and we have used the convention μ ≡ |u| �
| cos θ| (Stamnes et al., 2017). Also, ~L is the number of layers and
Im+(τ, μ) and Im−(τ, μ) are Fourier components of the radiances for
the diffuse radiation field. Since the source functions Sm+

i (t, μ) and
Sm−
i (t, μ) in layer denoted by subscript i (� n, or p) can be
evaluated analytically by the discrete ordinate method, Equations
22 and 23 have analytic solutions (Stamnes et al., 2017).

3.1 Application to the lidar/radar problem

Radiative transfer involving lidar/radar (finite as opposed to
collimated) beam illumination is a three-dimensional (3-D)
problem. The solution of the 3-D RTE for a narrow finite laser
beam (i.e., the so-called searchlight problem) is quite challenging
and computationally demanding. Therefore, it has become
customary to use a one-dimensional (1-D) approach instead, and
most treatments of the lidar/radar problem rely on solving a 1-D
RTE for both atmospheric (Hogan, 2008; Hogan and Battaglia,
2008) and oceanic (Mitra and Churnside, 1999) applications
implying that Equations 22, 23 pertinent for collimated beam
illumination may be used also for lidar/radar beam illumination.

Equations 22, 23 are general solutions that allow us to find the
radiance at any desired values of optical depth τ, polar angle θ,
and azimuthal angle ϕ. As a concrete example of how these
equations may be applied to a practical scenario, we now consider
the special case of the lidar problem. In the so-called (mono-
static) lidar problem, we assume that the incident light
illumination is along the vertical (i.e., nadir) direction. That is,
we assume that μ0 � 1.0, implying that ϕ is irrelevant in slab
geometry. For spaceborne lidar deployments, we are interested in
the zenith radiance I0+(0, 1) escaping at the top of the slab
(i.e., τ � 0) in the zenith direction (i.e., μ � 1), while for
ground-based lidar deployments we are interested in the nadir
radiance I0−(τ ~L, 1) escaping at the bottom of the slab (i.e., τ � τ ~L)
in the nadir direction (i.e., μ � 1):

I0+ 0, 1( ) � I0+ τ � τ0 � 0, μ � 1( )
� ∑~L

n�1
∫τn

τn−1
dt S0+n t, μ � 1( ) e−t (24)

I0− τ ~L, 1( ) � I0− τ � τ ~L, μ � 1( )
� ∑~L

n�1
∫τn

τn−1
dt S0−n t, μ � 1( ) e− τ

~L
−t( ). (25)

Note that for these commonly used mono-static lidar
configurations, only the azimuthally-averaged radiance, i.e., the

m � 0 component I0±(τ, 1) in Equation 19, contributes to the
radiances in the zenith (I0+(τ, 1)) or nadir (I0−(τ, 1)) direction.

As an example, consider a single slab (as opposed to two
adjacent, coupled slabs) consisting of two layers (~L � 2): a
“target” (layer 2) overlain by layer 1, and let the slab be
illuminated from above by a collimated beam at polar angle θ0 �
0° (i.e., nadir direction, μ0 � 1). For this two-layer slab, the reflected
signal would be given by [see Equation 24]:

I+ 0, 1( ) � ∫τ1

τ0

dt S+1 t, 1( ) e−t + ∫τ2

τ1

dt S+2 t, 1( ) e−t. (26)

If the single-scattering approximation is applicable for both layers
1 and 2 and each layer is assumed to be homogeneous, we have
[ignoring multiple scattering and since μ � μ0 � 1, see Equation 21,
Smb (τ, u) � ϖF0

4π pm(τ, u,−μ0)e−τ/μ0 (Stamnes et al., 2023)]

S+i t, 1( ) � S0,+b,i t, 1( ) � ϖF0

Si
e−t i � 1, 2

where Si ≡ Si(−1, 1) � 4π
pi(−1,1) (i � 1, 2) is the lidar ratio4, defined

as the extinction coefficient divided by the 180° backscattering
coefficient (pi(−1, 1) is the scattering phase function). Hence, for
incident beam irradiance F0 � 1.0 (normal to the beam direction),
the radiance reflectance becomes [setting τ0 � 0 at the top of the
upper slab and using Equation 26]

RI,SSA � I+ 0, 1( ) � ϖ1

2S1
1 − e−2τ1[ ] + ϖ2

2S2
e−2τ1 − e−2τ2[ ] sr−1[ ].

(27)
Thus, for a homogenous two-layer slab with the same ϖ and S
values (i.e., ϖ2

2S2
� ϖ1

2S1
� ϖ

2S)

RI,SSA � ϖ
2S 1 − e−2τ2[ ] sr−1[ ].

The second term in Equation 27 gives adequate results if the
target layer (layer 2) is optically thin (so that the single-scattering
limit applies), but will yield inaccurate results if layer 2 is optically
thick. Then multiple scattering will lead to an enhanced path length
through the target layer, commonly referred to as “pulse stretching”
in the lidar literature. The method described in this paper can be
used to compute the average path length required to estimate the
actual time photons spend in the target layer and hence quantify the
time delay referred to as “pulse stretching”.

3.1.1 Lidar equation
The contribution to the radiance reflectance from layer 2, the target

layer, i.e., the single-scattering approximation to the radiance reflectance
RI,SSA is determined from the second term in Equation 27:

RI,SSA � ϖ2

2S2
e−2τ1 − e−2τ2[ ] � ϖ2

2S2
e−2τ1 1 − e−2 τ2−τ1( )[ ] sr−1[ ]. (28)

The attenuated backscatter βSSA from the target (layer 2) is
obtained through division by its vertical thickness Δz:

βSSA � 1
ΔzRI,SSA � e−2τ1

Δz
ϖ2

2S2
1 − e−2 τ2−τ1( )[ ] m−1sr−1[ ]. (29)

4 For isotropic scattering pi(−1, 1) � 1 → Si � 4π.
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3.1.1.1 Lidar equation estimate
The attenuated backscatter coefficient (assuming a target layer of

vertical extent Δz) from lidar measurements is given by the lidar
equation (Stamnes et al., 2023)

βlidar �
T2

Δz∫
Δz

0
βπ z( )e−2γ z( )zdz � T2

Δz∫
Δz

0

γ z( )
S z( ) e−2γ z( )zdz m−1sr−1[ ]

(30)
where T2 is the two-way transmittance, βπ(z) [m−1sr−1] the 180°
backscattering coefficient, γ(z) [m−1] the extinction coefficient, and
S(z) ≡ γ(z)/βπ(z) [sr] the lidar ratio. If we assume that S(z) and
γ(z) do not vary within the vertical extent Δz of the target layer, then
Equation 30 yields

βlidar �
T2

Δz
1
2S 1 − e−2γ z( )Δz[ ] m−1sr−1[ ]. (31)

Setting T2 � e−2τ1 and γΔz ≈ τ2 − τ1, we find that the attenuated
backscatter results predicted by Equation 29 and by the lidar
equation (Equation 30) are the same (Stamnes et al., 2023),
i.e., βSSA � βlidar if ϖ2 � 1.0 and S � S2.

3.2 The AccuRT computational tool

AccuRT (Stamnes et al., 2018) is a computational tool for
radiative transfer simulations in a coupled system consisting of
two adjacenthorizontal slabs with different refractive indices (like in
the case of an atmosphere overlying a body of liquid water or ice,
such as sea ice or lake ice). The AccuRT computer code accounts for
reflection and transmission at the interface between the two slabs,
and allows for each slab to be divided into a number of layers
sufficiently large to resolve the variation in the inherent optical
properties (IOPs) with depth in each slab.

The user interface of AccuRT is designed to make it easy to
specify the required input including wavelength range, incident
beam forcing, and layer-by-layer (IOPs) in each of the two slabs
as well as the two types of desired output.

• Irradiances and mean intensities (scalar irradiances) at a
set of user-specified vertical positions in the
coupled system;

• Radiances in a number of user-specified directions at a set of
user-specified vertical positions in the coupled system.

FIGURE 3
Comparison of the average optical path length 〈Lopt〉 as obtained from AccuRT, the van deHulst approach, and the two-stream approximation (TSA)
based on the Chandrasekhar H-function Equation 40. In this case, AccuRT was run using a slab optical thickness that was too small to adequately
approximate a semi-infinite slab. This situation leads to discrepancies between results produced by AccuRT and those produced by either the van de
Hulst approximation (Equation 44) or the Chandrasekhar TSA (Equation 40) in the limit as ϖ → 1.0.
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Note that although AccuRT was originally developed to deal
with two coupled slabs, it can easily be used for radiative transfer
simulations in a single slab such as the atmosphere overlying a land
surface. This capability can be accomplished by simply invoking the
“vacuum” option to make the lower slab transparent.

The AccuRT software package (Stamnes et al., 2018) can be
configured to produce the desired radiance values for given inputs
(layer physical thickness, scattering coefficient, absorption coefficient,
scattering phase function, etc.). For example, we may set up a series of
AccuRT runs, each of which has some fixed layer physical thickness,
scattering coefficient, β, and phase function, but with varying absorption
coefficients,α. In thiswaywemay effectively sweep over different values of
the single-scattering albedo (SSA) [ϖ � β/(α + β) values]. For the space-
based lidar problem, each AccuRT run will produce top-of-atmosphere
(TOA) radiance values. Thus, we efficiently obtain the radiance as a
function of SSA. Using these radiance values, we can then obtain average
path lengths via numerical differentiation (see Equations 12, 13).

3.3 The two-stream approximation

AccuRT solves the RTE for systems consisting of two adjacent
slabs with different refractive indices using the discrete ordinate
method. It can be used for an arbitrary number of angular
quadrature points (“streams”) 2N with N streams each for the

upper and lower hemispheres, withN � 2, 4, 6, 8, . . .. But the lowest
order of streams obtained by setting N � 1 (i.e., the two-stream
case), is not included in the discrete ordinate (DISORT) solver
employed in AccuRT. In some cases, weakly absorbing media in
particular, an analytic two-streammethod can produce useful results
that agree closely with results obtained using either AccuRT or the
van de Hulst approach discussed in Section 4.1.

3.3.1 Two-stream results
The analytic two-stream method adopted in this paper is very

general and yields results for arbitrary values of (i) optical depth, τ,
(ii) angle of beam incidence, θ0, (iii) angle of observation, θ, (iv)
absorption coefficient, α, (v) scattering coefficient, β, (vi) scattering
asymmetry factor, g, and (vii) slab physical thickness, h, or slab
optical thickness, which for a homogeneous medium is simply
τ* � h(α + β). This method (Stamnes et al., 2024) is discussed in
detail elsewhere5 and summarized here. For a general non-

FIGURE 4
The derivative of upward radiance with respect to slab optical thickness (the second term of Equation 45: (dI+d/dτ*)/I+d, as a function of the slab
optical thickness. It can be seen that this derivative term approaches zero as the slab thickness increases.

5 Stamnes, K., T. Kindervatter, W. Li, N. Chen,Y. Huang, Y. Hu, S. Stamnes, X.

Lu, B. Hamre, T. Tanikawa, J. Lee, C. Weimer, X. Zeng, C. K. Gatebe, and

J. J. Stamnes, Two-stream approximation in radiative transfer: Average

Photon Path Length Estimation, Journal of the Atmospheric Sciences,

accepted, 2024.
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conservative (ϖ< 1.0), homogeneous, anisotropically scattering
(g ≠ 0) slab, the two-stream equations for the diffuse radiance
I±d(τ) can be written (Stamnes et al., 2017)

�μ
dI+d τ( )
dτ

� I+d τ( ) − S+ τ( ),
S+ τ( ) � ϖ 1 − b( )I+d τ( ) + ϖbI−d τ( ) + S+b τ( )

(32)

−�μ dI
−
d τ( )
dτ

� I−d τ( ) − S− τ( ),
S− τ( ) � ϖ 1 − b( )I−d τ( ) + ϖbI+d τ( ) + S−b τ( )

(33)

where ϖ is the single-scattering albedo, and b � (1 − g)/2 is the
backscattering ratio with g being the scattering asymmetry factor.
The source functions for an incident collimated beam of irradiance
F0 (normal to the beam) are

S+b τ, μ0( ) ≡ X+e−τ/μ0 ; X+ ϖ, b( ) � ϖF0

2π
b+ μ0( ),

b+ μ0( ) ≈ b � 1 − g( )/2S−b τ, μ0( ) ≡ X−e−τ/μ0 ;

X− ϖ, b( ) � ϖF0

2π
b− μ0( ), b− μ0( ) ≈ 1 − b � 1 + g( )/2.

(34)

Equations 32, 33 can be solved to yield analytic expressions
for I+d and I−d , which in turn can be used to solve for the
source functions

S± τ, τ*( ) � ϖ 1 − b( )I±d τ( ) + ϖbI∓d τ( ) + ϖF0e−τ/μ0

2π
b± μ0( ). (35)

By integrating S±(t, τ*), one can show that the upward (I+d )
and downward (I−d ) radiances at arbitrary values of τ, μ, μ0,ϖ, g,
and τ* can be expressed analytically as (see Stamnes et al., 2023)

I±d τ, μ, μ0,ϖ, b, τ*( ) � C±
1 ϖ, τ*( ) E±

1 τ, μ,ϖ, b, τ*( )
+ C±

2 ϖ, τ*( ) E±
2 τ, μ,ϖ, b, τ*( )

+ C±
3 ϖ( ) E±

3 τ, μ, μ0, τ*( ) (36)

where C±
1(ϖ, τ*), C±

2(ϖ, τ*), and C±
3(ϖ) are constants, and

E±
1(τ, μ,ϖ, g, τ*), E±

2(τ, μ,ϖ, g, τ*), and E±
3(τ, μ, μ0, τ*) are simple

analytic formulas (Stamnes et al., 2023).
By differentiating I+d given by Equation 36, the average optical

path length of photons traveling in the upward direction is obtained
(see Equation 12):

〈Lopt τ, μ, μ0,ϖ, g, τ*( )〉 � ∂ ln I+d τ, μ, μ0,ϖ, g, τ*( )
∂ lnϖ

− ∂ ln I+d τ, μ, μ0,ϖ, g, τ*( )
∂ ln τ*

− ∂ ln I+d τ, μ, μ0,ϖ, g, τ*( )
∂ ln τ

. (37)

For a semi-infinite slab (τ* → ∞) inwhichwe focus on the radiance
I+(0, μ, μ0,ϖ, g,∞) escaping at the top of the slab (τ � 0), we obtain
the average optical path length from the first term of Equation 37:

〈Lopt 0, μ, μ0,ϖ, g,∞( )〉 � ∂ ln I+d 0, μ, μ0,ϖ, g,∞( )
∂ lnϖ . (38)

3.3.2 Analytic two-stream solution for a semi-
infinite slab based on Chandrasekhar’s H-function

For isotropic scattering an accurate solution for a semi-infinite slab
can be expressed in terms of Chandrasekhar’s H-function (see

Chandrasekhar (1950), page 209 (Chandrasekhar, 2013) or Stamnes
et al. (2017), Equation (7.124) and page 271 (Stamnes et al., 2017)). The
reflected diffuse radiance I+d(0, μ, μ0,ϖ,∞) ≡ I+d(0, μ, μ0,ϖ, τ* → ∞)
can be approximated by a two-stream version of the
H-function, Htsa(x) � �μ+x

�μ+x ���
1−ϖ√ :

I+d 0, μ, μ0,ϖ,∞( ) � ϖF0μ0
4π μ + μ0( )Htsa μ( )Htsa μ0( )

≈
ϖF0μ0

4π μ + μ0( ) �μ + μ

�μ + μ
�����
1 − ϖ

√ �μ + μ0
�μ + μ0

�����
1 − ϖ

√ .
(39)

Defining f(ϖ) ≡ I+d(0, μ,ϖ; τ* → ∞)/(F0μ0) and
differentiating Equation 39, we find

〈Lopt ϖ( )〉 � ∂ lnf ϖ( )
∂ϖ � 1 + ϖ

2�μ/μ( ) �����
1 − ϖ

√ − 2ϖ + 2

+ ϖ
2�μ/μ0( ) �����

1 − ϖ
√ − 2ϖ + 2

(40)

for the average optical path length 〈Lopt〉 in this special case.Wenote
that Equation 40 predicts 〈Lopt〉(ϖ) � 1.0 in the absence of scattering. It
also correctly predicts 〈Lopt(ϖ)〉 → ∞ as ϖ → 1.0. For isotropic
scattering (b � 1/2, g � 0) numerical differentiation using
Equation 38 gives 〈Lopt〉 results that agree with those computed
analytically using Equation 40.

3.4 Anisotropic scattering–Henyey-
Greenstein phase function

The Henyey-Greenstein (HG) scattering phase function is
expressed in terms of the scattering angle Θ and the asymmetry
factor g ≡ 〈cosΘ〉 as follows:

pHG cosΘ( ) � 1 − g2

1 + g2 − 2g cos Θ( )3/2. (41)

In the TSA we usually approximate the backscattering ratio as
b ≈ (1 − g)/2 (see Equation 34), but for the HG scattering phase
function a simple integration yields the following analytic
formula (x � −cosΘ):

bHG � 1
2
∫1
0

pHG −x( )

dx � 1 − g2

2
∫1
0

dx

1 + g2 + 2g x( )3/2 � 1 − g

2g
1 + g( )�������
1 + g2( )√ − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦.
(42)

Hence, if the HG scattering phase function is used to approximate
the actual phase function, Equation 42 gives the corresponding
backscattering ratio.

4 Comparison with other methods

In Section 3.2, we introduced the computational tool AccuRT
and explained how it can be used to solve the RTE to obtain radiance
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values. These radiance values can then be used in Equations 12 and
13 to obtain the corresponding average optical path length 〈Lopt〉. In
this section we compare the 〈Lopt〉 results obtained via the AccuRT
radiances to those obtained using a method described by van de
Hulst (1980) (Hendrik Christoffel et al., 1980).

4.1 AccuRT vs. the van de Hulst approach

For isotropic scattering, Hendrik Christoffel et al. (1980)
presented the following approximation for the average optical
path length 〈Lopt〉 of photons reflected from a semi-infinite slab:

〈Lopt〉 � 1 + 0.693ϖ + . . . (43)
where ϖ is the single-scattering albedo. This approximation is valid
for a strongly absorbing medium (ϖ → 0.0), but does not apply for a
weakly absorbing medium (ϖ → 1.0). For ϖ-values near 1.0,
Hendrik Christoffel et al. (1980) provided a different asymptotic
expression for the average optical path length:

〈Lopt〉 ≈ 1.732t−1 − 1.42 + . . . (44)

where t � �����
1 − ϖ

√
.

Using the method described in Section 2, we ran AccuRT for
ϖ-values in the range 0.999≤ϖ≤ 1.0 and obtained the average
optical path length via numerical differentiation using Equation
38.We also computed average optical path lengths analytically using

FIGURE 6
(A): Enhancement of the average optical path length due to multiple scattering for slab physical thickness h in the range 0–20m and SSA values in the range
0.9999–1.0. This enhancement factor is obtained by finding the average optical path length as a function of slab physical thickness h [m] and then dividing by the path
length in the single-scattering limit (i.e., the case of a thin slab, τ* � 0.01). The average optical path length was computed via numerical differentiation of radiances
obtained from the two-stream approximation. (B): Same as the left panel, but for slab physical thicknesses in the range 0–1.0 m and SSA values in the range
0.9–1.0. Note that for small slab thicknesses (i.e., less than about 0.1 m) the relationship between the enhancement factor and the slab physical thickness is not linear.

FIGURE 5
Scaled average optical path length (Equation 45:
〈Lopt〉
τ* � 1

τ* [ϖI+d
∂I+d
∂ϖ − τ*

I+d
∂I+d
∂τ*]) as a function of slab optical thickness τ*. Values

were obtained via numerical differentiation of radiance values
obtained from an analytic two-stream approximation.
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both Equation 40 and van de Hulst’s asymptotic formula (Equation
44).6 The average optical path length as a function of SSA obtained
via Equation 38 using AccuRT radiances is shown in Figure 1, which
also shows the average optical path lengths obtained via Equations
40 and 44. We see that there is close agreement between the average
optical path lengths obtained from numerical differentiation
(Equation 38) and the two analytic results (Equations 40 and 44).

4.2 Radiance reflectance ratio: two-stream
vs. multi-stream results

For a semi-infinite slab consisting of a weakly absorbing matter
(e.g., visible light penetration into fresh snow) the reflectance ratio
R(ϖ≤ 1)/R(ϖ � 1.0) at SSA values close to 1.0 is expected to be well
approximated by the two-stream method.

For space-based lidar measurements, Hu et al. (2023) compared
analytic two-stream results of the radiance ratio R(ϖ≤ 1)/R(ϖ � 1)
at SSA values close to 1.0 with results obtained via Monte Carlo

simulations, and found two-stream results to agree well with
accurate Monte Carlo results.

We now check if we can reproduce the results of Hu et al. (2023),
but by using AccuRT computations instead of Monte Carlo
simulations. Thus, we use AccuRT to obtain accurate reflectance
ratios for comparison with the two-stream results. We consider SSA
values in the range 0.998≤ϖ≤ 1.0 and angle cosines μ � 1.0, μ0 �
1.0 (mono-static lidar configuration), and �μ � 0.6. For these SSA and
angle cosine values, we used Equation 39 to compute two-stream
radiances, which were then normalized to R(ϖ � 1).

To compute the reflectance ratio, we used AccuRT to obtain top-
of-slab radiance values for light reflected off a snow layer on the
ground. We modeled the snow layer using a Henyey-Greenstein
scattering phase function with asymmetry factor g � 0.0 (isotropic
scattering), and we used the same range of SSA values as Hu et al.
(2023) (0.998≤ϖ≤ 1.0). For a fixed snow layer thickness of 1.0 m,
we varied the scattering coefficients when running AccuRT to
evaluate how closely the AccuRT results would compare with the
analytic TSA results using τ* � 200 to mimic the case of semi-
infinite slab optical thickness. The radiance values were then
normalized to the radiance at ϖ � 1.0 in order to produce the
radiance reflectance ratio R(ϖ≤ 1)/R(ϖ � 1).

From Figure 2, which shows analytic two-stream results plotted
against the reflectance ratio obtained via AccuRT, we see that

FIGURE 7
Scaled average optical path length (Equation 45) as a function of slab optical thickness τ*. Values were obtained via numerical differentiation of radiance values
obtained from an analytic two-stream approximation. Values are shown for isotropic scatteringwith cosine of beam incidence angles ranging from μ0 � 0.2 toμ0 � 1.0.

6 The reason for using Equation 44 instead of Equation 43 is that the latter

only applies to low (ϖ → 0) SSA values and thus is not applicable to the SSA

values close to 1.0 used for this comparison.
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AccuRT results corresponding to a slab optical thickness of τ* � 500
agree closely with analytic TSA results. Since the TSA results are
valid for a semi-infinite slab, it follows that a slab thickness of τ* �
500 is sufficiently large to represent the semi-infinite case.
Conversely, Figure 2 shows that AccuRT results corresponding to
a slab optical thickness of τ* � 100 do not agree closely with analytic
TSA results. Hence, we conclude that a slab optical thickness of
100 is not sufficiently large to adequately represent a slab of semi-
infinite optical thickness. The importance of the latter case is
discussed further in Section 4.3.

4.3 How to simulate a semi-infinite case for a
slab of finite physical thickness

It is important to emphasize the assumption of a semi-infinite
slab when considering the results presented in Section 4.1 based on
van de Hulst’s approach (Hendrik Christoffel et al., 1980). The basis
of these results was the assumption of reflection from a semi-infinite
slab. Thus, for a proper comparison, it is important that also
AccuRT is set up to model reflection from a semi-infinite slab,
which implies that all energy incident at the top of the slab must be
absorbed and reflected, since, by definition, no energy can be
transmitted.

For a homogenous slab of thickness h and absorption and scattering
coefficients α and β, respectively, the slab optical thickness is
τ* � h(α + β), and the single-scattering albedo is ϖ � β/(α + β). In
the semi-infinite limit we require τ*≫ 1. Hence, in the limit asϖ → 1.0
(β≫ α), if we choose to fix the slab thickness h (for example, wemay use
h = 1.0 m for a snowpack) then we must require that β≫ 1.0.

Figure 3 demonstrates the problem that arises when AccuRT is
not properly approximating the semi-infinite case. For example, if
for a fixed physical slab thickness h, β is not sufficiently large, the
optical slab thickness τ* will not be large enough to approximate a
semi-infinite slab. In this case, some of the incident light may escape
through the bottom of the slab, leading to a reduced value of the
overall radiance reflected at the top of the slab. This reduced
radiance value, when used in Equation 13 [〈Lopt(0,ϖ,∞)〉 �
∂ ln I(0,ϖ,∞)

∂ lnϖ ] produces a reduced value of the average optical path
length. This problem becomes quite pronounced as ϖ → 1.0, as can
be seen in Figure 3.

A similar issue arises in the snow problem considered in Section
4.2. In this case, the relationship between the analytic TSA result for
the radiance reflectance ratio and the corresponding accurate Monte
Carlo result is shown to be approximately one-to-one for a slab of
semi-infinite thickness. However, if the semi-infinite limit is not
properly accounted for because the slab optical thickness τ* is not
chosen large enough to represent τ* → ∞ in AccuRT, then the

FIGURE 8
Scaled average optical path length (Equation 45) as a function of slab optical thickness τ*. Values were obtained via numerical differentiation of
radiance values obtained from an analytic two-stream approximation. Values are shown for anisotropic scattering with g � 0.5 and solar zenith angles
ranging from μ0 � 0.2 to μ0 � 1.0.
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relationship between the analytic TSA result and the AccuRT result
will no longer be represented by the one-to-one line in Figure 2. An
example is shown by the blue points in Figure 2 corresponding to a
slab optical thickness of τ* � 100.

5 Optical path length in a slab of
arbitrary optical thickness

The preceding analysis was carried out for a semi-infinite slab. From
Equation 38, which represents this special case, it follows that the average
optical path length depends only on one term: the derivative of the radiance
with respect to the single-scattering albedo (SSA). To treat the
general case of a slab of arbitrary slab optical thickness τ*, we
introduce instead the “scaled” average optical path length given
by (see Equation 37)

〈Lopt 0, μ, μ0,ϖ, g, τ*( )〉
τ*

� 1
τ*

∂ ln I+d
∂ lnϖ − ∂ ln I+d

∂ ln τ*
[ ]

� 1
τ*

ϖ
I+d

∂I+d
∂ϖ − τ*

I+d

∂I+d
∂τ*

[ ] (45)

where I+d ≡ I+d(0, μ, μ0,ϖ, g, τ*) is the radiance reflected from the
slab. Viik (1995) presented average photon path length results for an

isotropically scattering slab of finite thickness with focus on the
dependence of 〈Lopt〉/τ* on the optical depth ratio, τ/τ*. In contrast,
here our interest is primarily in 〈Lopt〉/τ* values resulting due to
photons reflected from the top of the slab or layer of a scattering/
absorbing medium as a function of slab (or layer) IOPs and optical
thickness τ*. Such results are of prime interest and importance for
remote sensing applications. Here “layer” may refer to a “target
layer” in lidar/radar applications (see Section 3.1).

We note that for a slab of finite optical thickness the second term
in Equation 45 [−(dI+d/ dτ*)/I+d] accounts for the change in the
average path length due to the change in the slab optical thickness τ*.
This term is subtracted from the first term in Equation 45, indicating
that the average optical path length will be smaller for a slab of finite
optical thickness than for a semi-infinite slab. We need to quantify
how the second term of Equation 45 contributes to the optical path
length. We expect that in the semi-infinite limit (τ* → ∞) Equation
45 will approach Equation 38:
〈Lopt(0, μ, μ0,ϖ, g,∞)〉 � ∂ ln I+d

∂ lnϖ � ϖ
I+d

∂I+d
∂ϖ . In other words, we expect

that the second term of Equation 45 will approach zero as τ* → ∞.
To compute the second term, we may compute radiances at some
fixed SSA value and then numerically compute the derivative of the
radiance with respect to the slab optical thickness. Figure 4 shows
the results of such computations, where for simplicity the radiances
were computed via the analytic two-stream approximation

FIGURE 9
Scaled average optical path length (Equation 45) as a function of slab optical thickness τ*. Values were obtained via numerical differentiation of
radiance values obtained from an analytic two-stream approximation. Values are shown for anisotropic scattering with g � 0.7 and solar zenith angles
ranging from μ0 � 0.2 to μ0 � 1.0.
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(Equation 36) for an SSA value very close to 1.0 (ϖ � 1 − 10−9).
From Figure 4 it is clear that the second term of Equation 43
approaches zero in the limit of a semi-infinite slab.

We see that good results are obtained by computing the
second term of Equation 45 using radiances resulting from
the two-stream approximation. Thus, we may extend this
approach also to the first term to provide a method for
obtaining the scaled average optical path length 〈Lopt〉/τ* for
a slab of arbitrary optical thickness τ*. In order to validate the
results of this approach, we may compare them to those obtained
by an analytical method presented by Hendrik Christoffel et al.
(1980), who considered the scaled average optical path length
〈Lopt〉/τ* for a non-absorbing slab (ϖ � 1.0). He considered the
scaled path length value in the limit of an infinitely thin slab
(τ* → 0) as well as for a semi-infinite slab (τ* → ∞). For an
infinitely thin slab, Hendrik Christoffel et al. (1980) found the
scaled path length to approach the value of 1.5, and for a semi-
infinite slab he found it to approach a value of 2.0.

Using the two-stream approximation, we computed radiances
over a range of slab optical thicknesses from τ* � 0.1 to τ* � 100 at a
fixed SSA value of ϖ � 1 − 10−9. Each term of Equation 45 was
obtained via numerical differentiation. Finally, the difference
between the two terms was used to obtain the scaled two-term
path length, which is shown in Figure 5.

Figure 5 shows that the scaled average optical path length
computed using radiances obtained by the two-stream
approximation approaches 2.0 in the limit of a semi-infinite slab in
agreement with results reported by Hendrik Christoffel et al. (1980).

5.1 Dependence of 〈L〉 on slab physical
thickness h

It is of interest to know how the average path length of photons
reflected from a slab depends on slab physical thickness h, since such
knowledge would allow us to “translate” average path lengths into
average “spans of time” spent by photons in a layer of specified
physical thickness h. Due to multiple scattering these average “time
spans” are expected to be longer than those obtained from the
standard mean free path. In Figure 6A dense grid of 10,000 linearly
spaced SSA values ranging from ϖ � 0.9999 to ϖ � 1 − 1 × 10−9

were used to compute reflected radiances, and these computations
were done for 200 linearly spaced slab physical thicknesses ranging
from 0 to 20 m. Several fixed SSA values were then chosen,
and the path length as a function of slab physical thickness is
shown for each of these SSA values. Figure 6 shows that in the
case of no absorption (ϖ � 1.0), there is a nearly linear relationship
between the enhancement factor and the slab physical thickness.
However, when even a small amount of absorptive substance is
present, this linear relationship no longer holds. It can also be seen
that for small slab thicknesses the relationship between the enhancement
factor and the slab physical thickness is not linear. This result can be seen
in both panels of Figure 6; the effect is subtle in the left panel but can be
seen as a very slight upward curve as the slab physical thickness
approaches zero. The effect is more plainly seen in the right panel,
where the curve trends upward for slab physical thicknesses less than
about 0.1 m.

The results provided in left panel of Figure 6 might apply to a cloud
of water or ice particles for which the particle density might be fixed,
whereas the physical thickness might be allowed to vary. For a medium
like a snowpack (or a vegetation canopy) one could fix the slab thickness
(at say 1m of snow like in the right panel of Figure 6) and vary the snow
particle number density. Alternatively, for a fixed snow density, one
could vary the snow pack physical thickness. In each case, one could
generate results similar to those displayed in Figure 6.

5.2 Dependence of the optical path length
〈Lopt〉 on the cosine of the beam of
incidence angle

We now consider how the average optical path length depends
on μ0, the cosine of the beam incidence angle. Following the same
approach as before, we consider photons reflected in the zenith direction
(μ � 1), but let μ0 vary from near grazing incidence (μ0 � 0.2) to
perpendicular incidence (μ0 � 1.0). For isotropic scattering, Figure 7
shows scaled average optical path length values as a function of slab
optical thickness τ* for photons reflected in the zenith direction
(μ � 1.0).

Figure 7 shows that for isotropic scattering in the semi-infinite
limit, the scaled optical path length approaches the value

〈Lopt 0, μ, μ0,ϖ, g, τ*( )〉
τ*

� μ + μ0. (46)

This result is in agreement with an analytic derivation presented
by van de Hulst (Hendrik Christoffel et al., 1980), page 591.

Finally, we consider the effect of anisotropic scattering on the
path length in the case of varying μ0. For example, Figures 8, 9
show scaled path length results at several values of μ0 for
asymmetry factors of g � 0.5 and g � 0.7, respectively. Figures
8, 9 show that for a slab of finite optical thickness, the average
photon path length of reflected photons is quite sensitive to the
scattering phase function.

6 Summary and conclusion

A method for determining the average photon path
length due to random walks of photons in a slab consisting
of multiple scattering material is presented. The method is
applicable to anisotropic scattering and can be used to
provide results for arbitrary slab (optical or physical)
thickness. To validate the method we compare computed
results with a limited number of results available in the
literature, mostly for the case of a semi-infinite slab with
isotropically scattering particles. The main results can be
summarized as follows.

1. For isotropic scattering in an optically thick, weakly
absorbing medium:
• Results produced by an analytic two-stream approximation
to the radiative transfer equation (RTE) agree well with
results produced by accurate multi-stream (such as discrete
ordinate) solutions (see Figure 1 (average path lengths) and
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2 (reflected radiances)). Both of these methods would enable
one to address a variety of applications, but since the analytic
two-stream solutions are computationally more efficient,
they are preferred whenever they are applicable. Note
that this agreement has only been demonstrated for
isotropic scattering. Future work is required to determine
whether the analytic two-stream method still provides good
agreement with multi-stream solutions for anisotropic
scattering, and if so under what conditions.

• In agreement with results reported by Hendrik Christoffel
et al. (1980), for a slab of finite thickness, the average optical
path length approaches 2.0 in the semi-infinite limit
(see Figure 5).

• Compared to the average path length obtained in the single
scattering limit the enhancement due to multiple scattering
increases linearly with increase in slab physical thickness (for a
fixed number density of scattering particles, see Figure 6) or
with increase in particle number density for a fixed slab physical
thickness) in the absence of absorption. A small amount of light
absorbing material is enough to make this relationship non-
linear as demonstrated in Figure 6.

• Figure 7 shows scaled 〈Lopt〉/τ* results for bi-static
configurations (μ � 1.0, μ0 varying). Note that in the
semi-infinite limit, as ϖ → 1.0 the scaled optical path
length approaches the value 〈Lopt(0, μ, μ0,ϖ, g, τ*)〉/τ* �
μ + μ0 in agreement with a result presented by Hendrik
Christoffel et al. (1980).

2. Results for anisotropic scattering provided in Figures 8, 9 show
that the average path length of photons reflected from a slab of
finite optical thickness is sensitive to the anisotropy of the
scattering phase function.

Finally, we should emphasize that the capability to convert
average path lengths into average “time spans” spent by photons
in a layer of specified physical thickness h will allow us to quantify
the impact of multiple scattering on the “pulse stretching”
phenomenon. Thus, we may translate the results from the spatial
domain into the time domain utilized by researchers in the lidar/
radar community. For a medium with a constant refractive index, this
transformation is straightforward. As discussed in Section 3.2, for a
coupled two-slab system, such as an atmosphere overlying a body of
water, the difference in refractive index between the two slabs must be
considered.
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