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The role of wetlands in coastal area processes must be recognized and
strengthened. Unless the hydrological and related functions of coastal
wetlands are maintained, the success of sustainable coastal development is
uncertain. In this study, an initial methodology section is dedicated to the
calculation and normalization of several topographic indices to assess soil
moisture susceptibility in coastal wetland areas. By providing detailed
information on the elevation and topographic structure of coastal wetlands,
this study uses various topographic indices, including the Topographic Wetness
Index (TWI), the Topographic Position Index (TPI), the Multi-Resolution Valley
Bottom Flatness (MRVBF). Additionally, the study considers valley depth, which
can contribute to a better understanding of hydrological dynamics, water level
variations, and water flow zones during the process of mapping and monitoring
changes in these environments. The second research aim of this work is
evaluation of the pre-localization of potential coastal wetland areas and their
evolution over time in relation to impervious surface changes in Brittany. The
analysis reveals that between 1990 and 2020, the area of potentially impervious
wetlands increased by 18.3% from 145.3 km2 to 171.95 km2. By combining these
pre-localization results with Corine Land Cover (CLC) data andOCSGE, the study
highlights the influence of urbanized and impermeable area on coastal wetlands
dynamics between 1990 and 2020. The third aim in of this article focuses on
assessing the quality of the “binary classification” ofwetlands and non-wetlands. A
inventory focus on coastal wetlands (carried out by stakeholders between
2011 and 2019) is used as reference data to check whether the proposed
methodology is effective and, if so, to determine the score at which it gives
satisfactory results. Model performance metrics show a high recall of 0.948 for
non-wetland areas, though with moderate precision (0.798), suggesting
occasional misclassification of wetland areas as non-wetlands. For wetland
areas, the approach achieved high precision (0.936) but a lower recall (0.759),
indicating challenges in detecting all existing wetland areas. The overall accuracy
of 0.854 and a Kappa coefficient of 0.708 point to a solid performance of the
binary classification methodology.
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1 Introduction

Coastal wetlands are essential ecosystems for biodiversity and
play a crucial role in the regulation of biogeochemical cycles (Reddy
et al. (2022), protecting coasts from erosion (Nayak and Bhushan
(2022), and mitigating the impact of storms (Allam (1978). Effective
integration and maintenance of the hydrological functions of coastal
wetlands can help to improve coastal water quality, reduce the risk of
damage to health and loss of life and property, increase the economic
value of coastal lands, and maintain coastal biodiversity. However,
coastal wetlands are facing numerous pressures related to climate
change, such as rising sea levels as well as human activities (Newton
et al. (2020), such as coastal urbanization, that are accelerating their
degradation and transforming their dynamics (Mitsch and
Gosselink (2015); Davidson (2014). It is important to have
reliable and accurate methods and tools for detecting and
localizing these environments to better understand the condition
of coastal wetlands. According to the Global Wetland Outlook,
around 35% of the world’s wetlands disappeared between 1970 and
2015, a rate of decline three times faster than that of forests
(Davidson (2014); Ramsar (1971). Coastal wetlands, such as
mangroves, coastal marshes, and estuaries (Sievers et al. (2021),
are particularly vulnerable to the combined effects of human
activities, including urbanization, conversion to agricultural land
and pollution, and climate change (Ballut-Dajud et al. (2022), which
can result in adverse effects including sea-level rise and the
intensification of extreme weather events Vinayachandran et al.
(2022). These pressures are leading to increased degradation of
water quality (Trebitz and Herlihy (2023), loss of habitat, and
reduced resilience of coastal ecosystems. Faced with these
challenges, the conservation and restoration of coastal wetlands
have become strategic priorities in several international agreements,
notably the Ramsar Convention and sustainable Development Goals
of the United Nations, which encourage the sustainable
management of these environments to ensure their preservation
and their ability to adapt to future pressures (United Nations
Environment Programme (UNEP) (2021).

To sustainably monitor and manage these areas, certain
methods can be particularly effective. The use of altimetric data,
such as Digital Terrain Models (DTMs), has proven highly efficient
for their detection and for understanding their dynamics. Altimetry
data (such as DTMs) provide valuable information on land surface
topography (Allam (1978), which is essential for assessing
hydrological dynamics and water level variations in these areas
(Chen et al. (2022). In addition, the contribution of satellite imagery,
combined with data such as DTMs, is particularly valuable. Due to
their spectral information, these data enable the characterization of
vegetation and the identification of water bodies over time through
the re-visit capabilities of satellites. Furthermore, the
complementarity between DTMs and satellite imagery enhances
the analysis by integrating topographic details with spectral and
temporal information, offering a more comprehensive
understanding of the areas studied (Ozesmi and Bauer (2002).

Detection and pre-localization of coastal wetlands remains a
methodological challenge due to the inherent complexity of these
environments, their spatiotemporal variability, and the limitations
of remote sensing data in terms of spatial and temporal resolution
(Mahdavi et al. (2018). Traditional approaches, based on the analysis

of optical images, have limitations in areas covered by dense
vegetation or during bad weather conditions, reducing the quality
and frequency of usable data (Adam et al. (2010). To overcome these
limitations, methodologies have been developed that incorporate
multiple data sources, such as a combination of LIDAR, RADAR
(Montgomery et al. (2019); Richard Allen et al. (2013), and satellite
image data (Niculescu et al. (2020). Methodologies based on the
synergy between RADAR, LIDAR, and optical data enhance
hydrological and ecological modeling by providing high-
resolution, multidimensional datasets that capture both the
physical and biological characteristics of coastal wetlands. Radar
data contribute to precise surface and subsurface moisture
assessments, critical for simulating water flow and retention.
LiDAR, with its fine-scale elevation measurements, accurately
delineates microtopographic features and hydrological pathways,
essential for modeling water dynamics and flood patterns. Optical
data, which offer detailed spectral information, enable the
identification and monitoring of vegetation types and conditions,
which are integral to ecological modeling. The integration of these
data sources ensures that models reflect the complexity of
interactions between topography, vegetation, and hydrological
processes, thereby improving predictions of ecosystem responses
to environmental changes and management interventions (Zhang
et al. (2018); DeLancey et al. (2019).

DTMs play an essential role in modeling water flow zones in
coastal wetland ecosystems. By providing detailed information on
the elevation and topographic structure of these environments, they
can be used to calculate topographic indices such as the TWI and the
TPI. The TWI, based on local slope and flow accumulation, is widely
used to identify areas of potential saturation and to model locations
likely to accumulate water during periods of rainfall or when the
water table rises. The TPI, which measures the relative position of a
point in relation to its immediate surroundings, can be used to
distinguish depressions and areas of high altitude, making it easier to
characterize the microreliefs influencing the distribution of surface
water flows (Weiss (2001). These altimetric variables are combined
with remote sensing data through spatial analysis and data
integration techniques. For instance, digital terrain models
(DTMs) derived from altimetric variables provide detailed
topographic information, which can be overlaid with spectral and
temporal data from remote sensing imagery. This fusion allows for
the identification of hydrologically active zones, such as areas of
potential water retention or flow pathways. The objective is to detect
potential wetland areas by leveraging topographic insights from
altimetric data alongside spectral indicators from remote sensing,
such as vegetation health or water presence. This integrated
approach enhances the ability to map and monitor wetlands,
supporting their sustainable management by targeting areas most
critical for conservation or restoration (Rodhe and Seibert (1999);
Higginbottom et al. (2018); Infascelli et al. (2013).

The main objective of this study is to develop an integrated
methodological approach for the detection, pre-location and
characterization of coastal wetlands areas in Brittany region using
altimetry data and exogenous datasets including Corine Land Cover
(CLC) and OCS GE data (between 1990 and 2020) and a wetland
inventory (carried out by stakeholders between 2011 and 2019).
More specifically, the study aims to detect and pre-localize potential
wetlands by combining DTMs with land cover and land use data,
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taking advantage of their complementary strengths. The DTMs
provide detailed topographic information essential for
understanding the hydrological dynamics and water retention
processes in these ecosystems. The use of CLC data enables the
assessment of urbanized and impervious areas, providing a
comparative analysis of land use and its impact on the potential
functionality of wetlands. By integrating these datasets, the study
seeks to refine the detection, pre-localization, and mapping of
wetlands, highlighting hydrologically active areas while assessing
the influence of human activities such as urbanization on wetland
functionality. In addition, the study explores how altimetry
variables, such as TWI and TPI, can be used with land cover
data to improve the accuracy of wetland detection and assess
interactions with impervious surfaces. This approach aims to
provide valuable information on the dynamics of coastal
wetlands, supporting sustainable management and conservation
strategies in the face of climate change and increasing
anthropogenic pressures.

2 Materials and methods

2.1 Study site

Brittany (Figure 1), a region located in the far west of France, is
distinguished by its unique hydrological characteristics and diverse
landscapes, shaped by an oceanic climate and strong maritime
influence. The Brittany region is characterized by relatively low
altitudes, with a gently undulating landscape shaped by ancient
geological processes. The region’s highest point is the Roc’h Ruz,
located in the Monts d’Arrée, which peaks at 385 m above sea level.
Brittany’s average altitude is approximately 50 m, reflecting its
predominantly low-lying terrain. The slopes are generally
moderate, with steeper inclines concentrated in the central areas,
and gentler slopes dominating the coastal plains and river valleys.
This topographical diversity plays a significant role in influencing
hydrological dynamics, including water flow and wetland
distribution, across the region. The region has a dense
hydrographic network, consisting mainly of short rivers and

coastal streams, such as the Vilaine, Odet, and Blavet. Rainfall is
relatively high, ranging from 700 to 1,200 mm per year (Hainry and
Colombet (2009), with regular precipitation that is particularly
concentrated in autumn and winter. The region’s geology,
dominated by impermeable granite and schist soils (Ballevre
et al. (2013), limits infiltration and promotes surface runoff,
thereby increasing the risk of seasonal flooding. This is especially
the case in small drainage basins, which are sensitive to climatic
variations and human activities (BRGM, 2011).

According to Hallégouët and Poncet in 1980 in their book
‘Evolution of coastal wetlands in Brittany’. we learn that at that
date there were around 1,137 km2 of wetlands along the entire
Brittany coastline. Hallégouët and Poncet (1980) These varied
environments, including marshes, peat bogs, estuaries, and flood
zones (Bioret and Kerberiou (1994), play a crucial role in regulating
hydrological cycles, filtering water, and providing protection against
floods and coastal erosion (Barbier (2013). Wetlands, and coastal
wetlands in particular, play also an essential role in maintaining
biodiversity and ecosystem services (Gopal (2009), including
hydrological regulation (Bullock and Acreman (2003), carbon
storage (Nahlik and Fennessy (2016), coastal protection against
erosion, and as a habitat for a wide variety of species (Weller
(1999). Among the notable areas, the National Nature Reserve of
“L’étang de Chéran” and the Guérande marshes stand out for their
ecological diversity and importance for migratory birds, which find
suitable habitats there for breeding and feeding. Furthermore, the
Bay of Saint-Brieuc, classified as a Special Protection Area (SPA) and
Ramsar site, is another emblematic example of the richness of
Brittany’s wetlands, providing sanctuary for numerous
endangered species, such as shorebirds, redshanks, and great
crested grebes. However, these ecosystems face increasing
pressures from urbanization, intensive agriculture, and climate
change, making their conservation and management all the more
critical. The preservation of wetlands is therefore essential not only
for maintaining biodiversity but also for safeguarding the ecosystem
services they provide to the region and its inhabitants.

Land use in Brittany shows a predominance of agricultural land,
covering approximately 70% of the territory and focusing primarily
on livestock and forage crop activities (EEA). This agricultural

FIGURE 1
Location of the study area - Brittany (France) at national and regional levels.
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dominance has significant environmental impacts, particularly
through the runoff of pollutants such as nitrates and phosphates,
which affect the quality of surface and groundwater. Although
relatively limited, urban areas are gradually expanding around
major urban centers such as Rennes, Brest, and Lorient,
contributing to increased soil artificialization and added pressure
on local water resources. Land use maps, such as those produced by
the CORINE Land Cover program and Sentinel imagery, provide a
basis for monitoring these changes and measuring the impact of
human activities on the natural ecosystems of Brittany. In the field
study of remote sensing, S. Rapinel and Laurence Hubert-Moy are
prominent researchers in this application for wetlands study in
Brittany, particularly on the Pleine-Fougères or Couesnon
floodplain close to the Mont-Saint-Michel Bay. Their work has
advanced the understanding and mapping of these ecosystems
Rapinel et al. (2019), Rapinel et al. (2015), Rapinel et al. (2018).

Urban planning in Brittany is characterized by a high
fragmentation of urban spaces, often due to a combination of
urban sprawl, small municipalities, and a great diversity of
landscapes (Le Lannou (1950). This fragmentation results in an
uneven distribution of infrastructure, marked peri-urbanization,
and the fragmentation of agricultural land. Many municipalities,
especially in rural areas, suffer from a lack of coherence in land use
planning, complicating the organization of transport and public
services. According to a study by the Île-de-France Region Institute
for Planning and Development, this situation poses challenges for
the sustainability and integration of public policies on housing and
the environment in Brittany. In response, urban space management
initiatives, such as the “Bretagne Horizon 2040” project1, aim to
promote more integrated and sustainable urban development while
preserving the unique characteristics of the region.

2.2 Data

2.2.1 BD alti/DTM
In this study focuses on monitoring and pre-locating potential

coastal wetlands we will use the BD Alti® dataset as the primary
source of topographic data. This digital elevation model (DTM)
provides high-resolution terrain information, making it
foundational for the calculations and algorithms applied in our
approach. With its detailed depiction of landscape morphology, BD
Alti enables accurate water accumulation analyses and helps identify
potential retention zones. These data thus serve as the starting point
for the spatial processing and analytical methods that will be further
outlined in the following sections.

BD Alti® 25 m2 (Figure 2) is a reference altimetric database in
France, developed and maintained by the National Institute of
Geographic and Forest Information (IGN). Covering the entire
metropolitan territory, this database provides a digital terrain
model (DTM) with a 25-m resolution, offering a continuous
representation of altitudes on regular 25 m × 25 m grids. It is

primarily intended for applications requiring medium-resolution
accuracy over large geographic areas.

The BD Alti® 25 m relies on a range of data collection and
integration methods, including aerial photogrammetry, satellite
remote sensing, LiDAR surveys, and topographic maps from
previous field campaigns (IGN (2021). The main production
method is based on photogrammetry, which allows altitude
measurements to be derived from aerial images using
triangulation techniques. The images are obtained through
systematic flyover campaigns conducted by IGN, supplemented
by satellite data to cover hard-to-access areas. Data processing
includes error corrections, filtering of outlier points, and altitude
harmonization to ensure continuous altimetric representation
across the entire territory (IGN (2021).

The DTM of BD Alti® provides an average altitude for each cell
in this grid. This resolution is particularly suited to medium-scale
applications, such as slope mapping, hydrological flow modeling,
and landscape dynamics studies (IGN, 2020). The altimetric data are
structured as a grid matrix, making it compatible with geographic
information system (GIS) software and facilitating the extraction of
topographic indices, such as the TWI or the TPI, commonly used to
characterize wetlands and flow dynamics (Weiss (2001). The IGN’s
BD Alti® 25 m was initially produced in the 1990s, with regular
updates to improve accuracy and incorporate new data. The current
version is the result of several successive enhancements, the most
recent of which took place in the 2010s to integrate (modern) remote
sensing techniques as aerial photogrammetry and new LiDAR
acquisitions in certain regions.

2.2.2 Corine land cover database (1990 and 2020)
In this study, we also used the CLC database (1990 and 2020).

Developed by the European Environment Agency (EEA), the CLC
database is a comprehensive and consistent dataset designed to
monitor land cover in Europe. First launched in 1990, CLC provides
a detailed classification of land cover types through a 44-class
hierarchical system that encompasses both natural and
anthropogenic land cover categories. The database is derived
from satellite imagery, which is processed and validated using
remote sensing techniques. Updated periodically, typically every
few years, the CLC reflects changes in land cover, making it an

FIGURE 2
Digital terrainModel (DTM) of Brittany: Topographic Features and
Variations from BD AltiⒸ(IGN).

1 https://www.planif-territoires.logement.gouv.fr/IMG/pdf/2015-au-bzh-

territoires-2040_en_bretagne.pdf

2 Available free of charge: https://geoservices.ign.fr/bdalti
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invaluable resource for environmental research, land use planning,
and ecological modeling.With a spatial resolution of 100m, the CLC
dataset supports the analysis of land cover dynamics, biodiversity,
and the impacts of land use changes on ecosystems. Its consistent
methodology and wide applicability make it a crucial tool for
assessing land cover patterns and trends across Europe, as well as
for informing European Union policies on environmental
protection and sustainable development.

2.2.3 A wetland inventory (carried out by
stakeholders between 2011 and 2019)

Since 2011, wetland inventories in Brittany have been
systematically conducted by local stakeholders, including local
authorities. Each actor is responsible for conducting an inventory
and mapping of wetlands within their respective territories, often
defined by catchment areas or specific geographical units. There is
no specific inventory of coastal wetlands, but since a comprehensive
inventory has been conducted across the entire Brittany region, it is
possible to extract only those wetlands located in coastal areas. The
inventory process involves detailed field surveys, combined with the
use of advanced tools such as GIS and remote sensing technologies.
This approach facilitates the production of high-resolution,
regularly updated maps of wetland ecosystems, allowing for
precise identification of wetland boundaries, types, and functional
characteristics. These fine-scale maps offer a deeper understanding
of wetland distribution, dynamics, and ecological functions. This
inventory has the advantage of being highly accurate, as it is an in
situ wetland inventory. This means that extensive fieldwork was
conducted each time to characterize wetlands at a specific moment
in time. As a result, this inventory stands out for its precision and
effectiveness, although it requires a very long revisit time. Another
inventory, also conducted at the scale of Brittany, was carried out by
modeling potential wetlands (using a methodology similar to ours).
This inventory, conducted by UMR SAS INRAE - Agro Rennes
Angers, uses the Beven-Kirby index. This index, similar to the
Topographic Wetness Index (TWI), allows for reliable pre-
location of wetlands based on elevation data. However, the use of
a single topographic variable, such as the Beven-Kirby index, has
limitations compared to our methodology with the combined use of
multiple topographic variables (such as TWI, Topographic Position
Index (TPI), Terrain Ruggedness Index (TRI), etc.). Indeed, a
multivariate approach better captures the complexity of
environmental conditions influencing wetland formation. For
example, the TPI (Topographic Position Index) adds an
additional dimension by identifying relative topographic
positions, such as depressions, slopes, or ridges.

The integration of these individual inventories is coordinated by
Géobretagne,3 a platform managed by the Direction régionale de
l’Environnement de l’aménagement et du logement (DREAL)
Bretagne and the Région Bretagne (Regional Council).
Géobretagne consolidates all the data into a single comprehensive
database, accessible through an online portal. This centralized
system allows for data standardization, ensuring that all wetland
information from different actors is harmonized and accessible,

thereby facilitating region-wide monitoring and management. Each
local actor, including regional planning bodies and environmental
organizations, update their inventories to reflect changes in land use,
natural processes, and human activities. This ongoing monitoring
provides essential data that informs decision-making processes
related to sustainable land management, conservation policies,
and climate adaptation strategies.

3 Methodology

The methodology of this study is structured into three
interconnected parts: models for calculating topographical
indices, extraction of impervious areas from the Corine Land
Cover database, and accuracy assessment (Figure 3). Each
part contributes to achieving the final objective, namely,
detection and pre-localization of coastal wetlands in Brittany
using topographical indices from altimetric and remote
sensing data.

3.1 Models for calculating
topographical indices

The first step is based on the calculation of several
topographic indices (TWI, TRI, valley depth, MRVBF, and
TPI) to assess soil moisture susceptibility in coastal wetland
areas. Each of these indices plays an essential role in
understanding hydrological dynamics, water level variations,
water flow zones, and the spatial distribution of wetland
ecosystems. Soil moisture susceptibility is used to detect and
pre-localize coastal wetland area (Thanks to this, we can also
study the hydro-ecological continuity of wetlands, also known as
the blue network). In this first part, we present the variables and
algorithms employed in the analysis, followed by an explanation
of how these variables were utilized to produce a wetland map at
the regional scale in Brittany.

All calculations were conducted using the open-source software
SAGA GIS which is available with a graphical interface and
integrated into QGIS 3.22.124.

The Topographic Wetness Index (Equation 1) (Beven and
Kirkby (1979) is a dimensionless index that quantifies the spatial
distribution of soil moisture based on topography. It is calculated
using the following formula:

TWI � ln
A

tan β( )( ) (1)

where A represents the contributing area per unit width, and β is
the slope of the terrain. This index is particularly useful for
identifying areas where water tends to accumulate, which
facilitates the modeling of wet meadows and floodplains. By
highlighting regions that are likely to be saturated, TWI allows
for analysis of the hydrological dynamics of wet environments such
as flood meadows and floodplains.

3 https://cms.geobretagne.fr/ 4 More information here: https://saga-gis.sourceforge.io/
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The Terrain Ruggedness Index (Equation 2) (TRI, Riley et al.
(1999) quantifies terrain complexity by calculating the variability of
elevation over a defined area. It is obtained by assessing elevation
changes within a specified window size, resulting in an index that
represents the roughness of the landscape. High TRI values
indicate areas with significant elevation variations, often
associated with various hydrological conditions. This index is
particularly relevant for detecting wetlands located in
mountainous environments, such as montane marshes and
headwater wetlands, where topographic variability significantly
influences hydrological dynamics and habitat availability (Riley
et al. (1999).

The formula for TRI can be expressed as follows (Figure 4):

TRI � 1
n
∑n
i�1

|zi − zi−1| (2)

where n is the number of elevation points and z is the elevation at
each point.

Valley depth is a measure of the vertical distance between the
highest point of a watershed and the valley floor. This parameter is
essential for understanding the potential for water accumulation and
retention in low-lying areas, making it a critical factor in the
formation of wetlands. Valley depth can indicate a region’s
capacity to support different types of wetlands, such as estuarine
wetlands and coastal marshes, which thrive in valleys where marine
and freshwater influences converge. Analyzing valley depth allows
for a better assessment of these areas’ ability to support wetland
ecosystems and their associated biodiversity.

The formula for valley depth (Equation 3) can be expressed
as follows:

Valley Depth � zmax − zmin (3)

Where Zmax is the elevation of the highest point and Zmin is
the elevation of the valley floor.

Multi-Resolution Valley Bottom Flatness (MRVBF) (Gallant
and Dowling (2003) (Figure 6) assesses the flatness of valley
bottoms using multiple resolutions of topographic data. The
MRVBF is calculated by comparing the elevation of valley
bottoms to that of their surroundings, allowing for the
identification of systematically flat areas likely to retain water.
This index is particularly useful for detect wetlands that require

FIGURE 3
Methodological framework for detection and pre-localization of coastal wetlands in Brittany, France.

FIGURE 4
Variability of terrain roughness (TRI) along the Brittany coast (A):
global analysis and local focus on a Crozon estuary (B).
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prolonged water retention, such as riparian zones, floodplains, and
coastal marshes, which are essential for biodiversity and
ecosystem services.

MRVBF (Equation 4) is calculated using the following equation:

MRVBF � Hflat

Htotal
(4)

Where hflat is the height of the flat valley bottom and h is the
total height in the study area.

The Topographic Position Index (TPI) (Equation 5) (Guisan
et al. (1999) (Figure 6) is a dimensionless index that quantifies the
relative position of a point within the landscape, based on its
upstream contributing area and slope angle. It is computed using
the following formula:

TPI � A · tan β( )
z

(5)

where A is the contributing area, β is the slope, and z is the
elevation Wilson and Gallant (2000).

The Topographic Wetness Index (TWI) (Beven and Kirkby
(1979) (Figure 6) is an essential tool for the detection of wetlands,
particularly riparian wetlands, due to its ability to quantify water
accumulation based on topography and flow patterns. This index
also helps detect floodplains, which are frequently inundated, as well
as marshes and swamps where water accumulates. The use of the
TRI makes it possible to relatively easily highlight estuarine areas,
particularly mudflats and salt marshes, which are characterized by
very flat topography in the intertidal zone. In addition, continental
water bodies, due to their very smooth surface, are also easily
identifiable using this index. (Figure 4 In addition, valley depth is
a key indicator for areas where water accumulation is likely, allowing
the detection of estuarine marshes, floodplains, and coastal wetlands
(Sparks (1995). The MRVBF enables assessment of the flatness of
valley bottoms, which is crucial for detecting wetlands that retain
water, such as riparian wetlands and salt marshes. Finally, the TPI is
particularly useful for identifying water contribution areas and

facilitating the detection of freshwater and saltwater marshes as
well as transitional wetlands where freshwater and saltwater meet,
thus supporting rich biodiversity. (Qiu et al. (2017).

3.2 Statistical and analytical methods for
combining standardized indices into a
composite score

The methodology adopted in this study is based on the
calculation and normalization of several topographic indices to
assess soil moisture susceptibility in coastal wetland areas. The
selected indices include the TWI, TRI, valley depth, MRVBF, and
TPI (Figure 6). Each of these indices plays an essential role for
understanding of hydrological dynamics, water level variations,
water flow zones and the spatial distribution of wetland ecosystems.

Once the indices have been calculated, the next step is to
normalize them on a scale from 0 to 1 (Equation 6), where a
score of 0 represents a wet condition and a score of one
corresponds to a non-wet state. This normalization is essential to
harmonize the different units and scales of the indices, thereby
facilitating direct comparison among them. For normalization, a
min/max method was applied to standardize the pixel values of the
raster, scaling them to a range of 0–one using the formula:

Normalization � Vp − Vmin

Vmax − Vmin
(6)

Through this standardized approach, it becomes possible to
integrate the indices into a comparative analysis, providing a
solid foundation for assessing soil moisture susceptibility in the
detection, understanding, and pre-localization of wetlands areas.
After the normalization, an integrative scoring of the various
variables is conducted. This step involves applying statistical and
analytical methods to combine the normalized indices into a
composite score. A composite score was calculated to represent
the soil moisture gradient by integrating multiple raster-based

FIGURE 5
Mapping of soil moisture sensitivity in the coastal areas of Brittany using the proposedmethodology. On a global scale (A); on the scale of the Crozon
Peninsula and the Bay of Brest (B).
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variables. Each variable was normalized to a range of 0–one to
ensure comparability, and the composite score was derived as the
mean value across all variables for each raster cell. This approach
provides a single metric per pixel, effectively summarizing the
combined influence of multiple contributing factors into a
unified gradient that reflects variations in soil moisture
(Figure 5). This composite score reflects the relative soil moisture
sensitivity, enabling the generation of a detailed map of sensitive
areas. This mapping serves as a valuable tool for water resource
management and ecosystem conservation as it identifies areas likely
to be affected by climatic variations and human activities (Figure 3).
The results of this study yield a 25-m resolution soil moisture map,
providing a global view of moisture gradients across the entire
Brittany region, including the coastal wetlands. This approach
enables the identification of soil moisture variations in different
geographic areas.

3.3 Extraction of impervious areas from the
Corine Land Cover database via intersection
of built-up layers

To further refine these results, we integrated complementary
datasets, such as Corine Land Cover (CLC) and OCS GE5,
depending on the required level of detail. The contribution of

CLC allows for the incorporation of a land-use dimension to
account for impervious areas located within potential wetland
zones, particularly in coastal areas. Moreover, as the CLC
database is regularly updated, it facilitates the analysis of changes
in soil impermeabilization over time in relation to potential wetland
zones. The inclusion of these data allows us to map impermeable
areas, which we convert into raster format for integration into our
analysis. Rather than simply assessing probable wetland areas, this
approach enables a more accurate mapping of actual wetlands. By
incorporating this information, we improve the precision of our
assessment, providing a more comprehensive understanding, pre-
localization, and spatial distribution of wetland ecosystems.

3.4 Accuracy assessment

The evaluation of classification performance is an important
step in assessing the reliability and accuracy of methods applied to
distinguish wetland and non-wetland areas using altimetric data.
Among the widely used metrics for this purpose are precision,
overall accuracy, and the kappa coefficient. Each of these metrics
provides unique insights into the quality of the classification results,
enabling a comprehensive understanding of the model’s
performance.

Precision, also referred to as the positive predictive value,
measures the proportion of correctly identified positive instances
(e.g., wetland areas) relative to the total instances predicted as
positive. Mathematically, precision is defined as the ratio of true
positives (TPs) to the sum of TPs and false positives (FPs). This

FIGURE 6
Illustration of topographic indices. Detection and localization of soil moisture sensitivity in coastal wetlands (Brittany, France), with a local focus on
Crozon estuary.

5 Available here: https://geoservices.ign.fr/ocsge
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metric is particularly valuable in applications where minimizing FPs
is critical as it reflects the confidence one can have in predictions
labeled as positive. High precision indicates that the method
effectively identifies wetlands with minimal misclassification of
non-wetland areas as wetlands, which is especially important for
applications requiring targeted conservation efforts or resource
allocation.

Overall accuracy is another fundamental metric, representing
the proportion of correctly classified instances (both wetland and
non-wetland) out of the total number of instances. It is calculated by
dividing the sum of TPs and true negatives (TNs) by the total
number of observations. This metric provides a general assessment
of the classifier’s performance across all classes. While
straightforward and intuitive, overall accuracy can be influenced
by class imbalance as it does not differentiate between the
contributions of different classes to the final score. Despite this
limitation, overall accuracy remains a widely used metric due to its
simplicity and its ability to provide an overarching view of
classification success.

The kappa coefficient, developed by Jacob Cohen in 1960
(Cohen (1960), offers a more nuanced evaluation of classification
performance by accounting for the agreement expected by chance.
The kappa statistic is calculated as follows: K = (po - pe)/(1 − pe),
where po is the observed agreement (overall accuracy) and pe is the
expected agreement under random classification. A kappa value of
one indicates perfect agreement between predicted and actual
classifications, while a value of 0 suggests no better agreement
than random chance. The kappa coefficient is particularly useful
in situations where class imbalances exist as it provides a normalized
measure of performance that is less influenced by unequal class
distributions. Its ability to assess the extent to which the classifier
exceeds random expectations makes it an important tool in
evaluating the robustness and reliability of classification methods.

By employing all three metrics, we can gain a nuanced
understanding of the strengths and weaknesses of different
classification methods. For instance, the over-classification of
wetland areas as non-wetland, or the inverse, can be identified
and quantified through these measures. Precision directly
addresses false positives, kappa highlights performance beyond
random chance, and overall accuracy provides an overall snapshot.

3.4.1 Assessment the quality of the “binary
classification” of wetlands and non-wetlands

To assess the quality of the classification of wetland and non-
wetland areas, a wetland inventory was employed as reference data.
This inventory, developed in collaboration with local stakeholders
and regularly updated since its first edition in 2011, serves as a
reliable dataset for validation. A total of 4,000 validation points were
selected independently of the classification results, including
2,000 points within wetland areas and 2,000 points in non-
wetland areas. These points provide a robust basis for evaluating
the model’s performance using standard metrics such as accuracy,
F1-score, and the Kappa coefficient.

Given the transitional nature of wetland boundaries, the
proposed methodology applies a defined threshold to spatially
differentiate wetlands from non-wetlands. This approach
simplifies the classification process while acknowledging the
presence of buffer zones between these areas. The selected

validation points, derived from the wetland inventory, enable a
detailed assessment of the model’s strengths and limitations.

4 Results

4.1 Detection and localization of soil
moisture sensitivity in coastal wetlands

In this section, we analyze and evaluate the spatial distribution
and sensitivity of soil moisture levels moisture across the study area,
as derived from the composite scoring of normalized topographic
indices (Figure 6).

This analysis reveals moisture gradients and identifies sensitive
wetland zones across all the coast of Brittany, highlighting coastal
regional variations. For example, northern Brittany is characterized
by a steep coastal topography with cliffs, leading to wetlands
primarily located in valley bottoms that drain directly toward the
sea. In contrast, southern Brittany, particularly in the Morbihan
department, features a much flatter landscape with gentle slopes. In
this area, water tends to accumulate, similar to an alluvial plain, and
flows more slowly, resulting in a different hydrological dynamic
compared to the north. This contrast in topography influences the
distribution and behavior of wetlands, with the north favoring rapid
drainage and the south promoting water retention and slower
runoff. By quantifying topographic properties, this approach
provides a deeper understanding of the water accumulation and
drainage dynamics that influence soil moisture availability. To
validate these results, we compared them with a regional wetland
inventory specific to Brittany conducted by local stakeholders,
allowing us to assess the accuracy of our method in mapping
actual wetland areas. This approach ensures a robust assessment
of soil moisture sensitivity, enhancing the precision of wetland
ecosystem mapping and supporting biodiversity conservation and
water resource management efforts.

4.2 Detection and pre-localization of coastal
wetlands in brittany

The results enable wetlands to be detected and pre-located,
thereby providing an in-depth understanding of the spatial
distribution of the main wetland ecosystem units and enabling
their temporal evolution to be studied as a function of various
factors affecting these regions, such as soil sealing, coastal erosion,
and agricultural practices. To better understand the health of
wetlands over time, impervious areas (such as roads, buildings,
and construction sites) were identified using the CLC dataset. This
made it possible to detect potential wetlands, identify impermeable
areas, and analyze their temporal evolution between the first
comparable dataset (1990) and the most recent (2020). This
study focuses mainly on soil impermeability, assessed using CLC
data to analyze changes in impermeability between 1990 and 2020.

For this analysis, the DTM was cross-referenced with aquatic
zones encompassing the Gulf of Morbihan and several estuarine
areas (Figure 7). This methodological approach, which incorporates
altimetry data, also enables the modeling of intertidal zones subject
to tidal fluctuations, where mudflats (slikkes) and salt marshes
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(schorres) follow one another. However, this approach may slightly
overestimate the extent of wetlands, as it includes marine water
bodies present in the gulf, estuaries, and intertidal zones.

The pre-localization of wetland areas allows for a raw
identification of all regions where water could potentially
accumulate and create wetland environments due to gravity and
surface runoff, in the absence of human intervention (Figure 5). This
approach serves as a valuable methodological resource for
identifying areas that could be targeted for rewilding or
restoration as wetland habitats, especially if they are located in
impermeable regions.

By combining the pre-localization of wetland areas with CLC
data from 1990 to 2020, it becomes possible to assess the evolution of
wetland areas in correlation with changes in impervious surfaces in
Brittany. The proposed methodology therefore contributes to
understanding the spatial distribution of the main ecosystem
units within wetland areas. This fusion allows for the
identification of hydrologically active zones, such as areas of
potential water retention or flow pathways, and serves as a
valuable methodological chain for water resource management
and ecosystem conservation efforts by identifying areas likely to
be affected by climatic variations and human activities.

In 1990, the results indicate that there were 145 km2 of potential
coastal wetland areas in Brittany that had been impervious,
compared to 171.9 km2 in 2020. This represents a 18.3% (Tables
1, 2) increase in impervious wetland areas over a 30-year period. It is
important to note that other factors, such as erosion and agricultural
practices, can also influence wetland areas, potentially contributing
to changes in these results. An in-depth analysis of the different land
use classes contributing to the impermeabilization of coastal
wetlands in Brittany reveals that discontinuous urban fabric
(representing 80.5% in 1990 and 79.8% in 2020) and industrial/
commercial zones (11% in 1990 and 12% in 2020) are the primary
factors. Together, these two classes account for approximately 90%

of the impermeable surfaces affecting potential coastal wetlands in
Brittany. This situation is not surprising, as the Breton coastal
territory is characterized by fragmented habitats and urban
sprawl dominated by single-family housing, explaining the
predominance of discontinuous urban fabric. Additionally,
Brittany has numerous port and commercial areas along its
coastline, both military and public, which also contribute to the
significance of industrial and commercial zones. However, a 17%
increase in urban sprawl over the past 30 years has been observed,
highlighting ongoing pressure on coastal wetlands.

4.3 Estimating performance in detecting
coastal wetland/non coastal wetland areas

To assess the quality of the “binary classification” of wetland and
non-wetland areas, a wetland inventory was used as reference data to
verify whether the proposed methodology is effective and, if so, to
determine the score at which it performs adequately. In practice,
there is a gradient (or buffer zone) between wetland and non-
wetland areas, with transitions being gradual. However, the
presented methodology establishes a threshold to spatially
differentiate wetland areas from non-wetland areas. To evaluate
the quality of this classification, 4,000 (Figure 8) points were selected
independently of classification results based on a wetland inventory
conducted by local stakeholders that is regularly updated. The first
edition of this inventory was published in 20116 This dataset
includes 2,000 points within wetland areas and 2,000 points
outside of them (Figure 8). These points enable the calculation of

FIGURE 7
Detection and pre-localization of coastal wetlands and impermeabilized areas (wetlands affected by soil sealing) based onCORINE LandCover data:
Global scale (A); Audierne Bay (B); Northern Finsitère (C).

6 freely available here: https://geobretagne.fr/mapfishapp/map/

6b3b98dca689205102b3ac827351758b
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various metrics to assess model performance, such as accuracy, F1-
score, and Kappa. All the validation points have been implemented
on the Brittany coast to ensure consistent metrics.

The results indicate that the model effectively identifies non-
wetland areas, with a high recall of 0.948, demonstrating a strong
detection capability. However, the precision for this class is more
modest (0.798), suggesting a tendency to incorrectly classify some
wetland areas as non-wetlands and therefore resulting in
false positives.

For wetland areas, the methodology shows a high precision of
0.936, which means when an area is predicted as wetland, it is
generally accurate. However, the lower recall (0.759) indicates a
challenge in detecting all existing wetland areas, leading to a
significant number of false negatives.

The Kappa coefficient of 0.708 and an overall accuracy of
0.854 reflect a decent performance, though with some imbalance.
The model demonstrates strong performance in detecting non-
wetland areas but is more conservative for wetland areas,

TABLE 1 Surface of potential coastal wetlands and impermeabilized coastal wetlands in brittany (France) from 1990 to 2020.

Year Surface of potential coastal wetlands (including estuarine
water)

Surface of impermeabilized coastal potential
wetland

1990 1,651 km2 145.3 km2

2020 1,624 km2 171.9 km2

TABLE 2 Evolution of impervious surfaces in coastal wetlands in Brittany (1990–2020).

Nomenclature 1990 (km2) % 1990 2020 (km2) % 2020 % change

Continuous urban fabric 2.7 1.8% 2.7 1.6% 0.0%

Discontinuous urban fabric 117.0 80.52% 137.1 79.8% +17.2%

Industrial or commercial zones 17.0 11.7% 20.85 12.1% +22.6%

Ports, airports, roads 6.7 4.6% 7.7 4.5% +14.9%

Mineral extraction sites
dumps, construction sites

1.9 1.3% 3.6 2.1% +89.5%

Total 145.3 100% 171.95 100% +18.3%

FIGURE 8
Distribution of validation points (Images Ⓒ2024 TerraMetrics) in coastal Brittany: 2,000 wet (red) and 2,000 non-wet (blue) validation points:
Finistère (A); Audierne Bay (B); Nothern Finistère (C).
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suggesting room for improvement in balancing the classification of
both categories.

5 Discussion

5.1 Comparison with other studies.
Strengths and limitations of the study

This article is structured into three interconnected parts that
form a methodology for improved detection and pre-localization of
coastal wetlands. This methodology facilitates the pre-location of
coastal wetlands and their spatial distribution across a given territory
by combining topographic variables. By modeling areas of water
accumulation and runoff, this approach provides an overview of
potential wetlands, while also incorporating factors of soil
impermeability derived from exogenous data sources, such as the
Corine Land Cover (CLC) dataset. This approach can be compared
to other studies that have used similar indices for soil moisture
detection and pre-localization for mapping of ecosystems and units
of wetlands. However, previous studies have often focused on a
limited number of indices, such as the TWI alone, to assess soil
moisture dynamics (Beven and Kirkby (1979). Here, by combining
multiple indices and incorporating supplementary data sources,
such as CLC and OCS GE, our methodology provides a more
global understanding of detection, pre-localization, and mapping
of wetland ecosystems. Moreover, the robustness of this
methodology stems from its inherent flexibility and adaptability:
the approach can be tailored by incorporating various combinations
of topographic variables and leveraging diverse altimetric datasets at
varying resolutions. This adaptability ensures its applicability to the
distinct topographic characteristics of each study area, making it a
versatile tool for diverse geographical contexts. Corine Land Cover
can be replaced by finer-grained land cover data or even land cover
mapping using machine learning, making this method even more
automated. Currently, the presence of impermeable surfaces, such as
urbanized areas or specific geological formations, can skew the
interpretation of topographic indices. An improvement would
involve incorporating more detailed information on soil types
and land use, specifically excluding sandy areas or non-wetland
depressions, to refine the mapping of potential wetland zones. This
approach, combined with up-to-date and high-resolution data,
allows for a more precise detection of water retention areas,
particularly in depressions or regions with limited natural drainage.

The TRI is not tailored to detecting wetland areas but
nevertheless proves valuable in identifying transitional zones
characterized by abrupt changes in slope. Our study is a concrete
example of the adaptability of this topographical index to coastal
wetlands and its importance to the observation and analysis of
transition zones between different ecosystems. Particularly in
intertidal zones where salt marshes or salt meadows are found,
characterized by very flat topography with minimal elevation
changes, these areas can sometimes be challenging to detect. The
TRI helps to highlight these very flat and smooth areas (Figure 4).
This topographical index was previously applied to coastal wetlands
by (Shaver et al. (2019), whose conclusions converge with our study.
These zones are critical for understanding the interfaces between
different ecosystems, such as salt marshes and upland areas. By

emphasizing the ruggedness of terrain, the TRI highlights features
like steep gradients that might otherwise be overlooked when
focusing on flat or low-relief wetland areas. In coastal
environments, TRI is particularly useful for delineating sharp
transitions, such as those seen in cliffs or escarpments, compared
to more gradual slopes like coastal plains or dune systems. For
riparian zones and riparian ecosystems, the TRI can help
differentiate between steep banks and flatter floodplains
(Engelhardt et al. (2012); Baker and Wiley (2009); Baker (1989).
While the TRI is predominantly applied in mountainous regions, its
application in coastal and flat regions underscores its potential for
detecting features that influence wetland boundaries. To enhance its
utility in these contexts, modifications such as applying stronger
weighting to specific ruggedness thresholds could improve its
sensitivity to subtle but ecologically significant terrain changes in
flat or lowland landscapes. Such adaptations would allow the TRI to
better capture the complexity of transitional zones, further
supporting wetland research and management.

A comparable study which studied the contribution of
topographic index and optical image data is that of (Haas (2010),
which uses TWI and Landsat imagery to predict vegetation
distribution based on soil moisture. This study is notably
comprehensive, offering in-depth insights into the TWI and its
application in satellite imagery and thus providing a strong
foundation for understanding the relationship between
topography and vegetation. Furthermore, the inclusion of raster
data from current geographic databases, such as OCS GE, enables us
to account for impervious surfaces, enhancing the accuracy of
wetland mapping. This approach not only extends Haas et al.‘s
framework but also improves the overall precision of wetland
mapping and soil moisture assessments. In 2013, Infascelli et al.
published an article testing different topographical indices to predict
the distribution of wetlands in a catchment in Brittany. This study
shows that, depending on the variable or index used, it is possible to
predict between 43% and 59% of soil hydromorphy. For example,
the downslope index predicts between 0% and 42% of hydric soils,
while the climato-topographic index offers a prediction of 56% with
a threshold of 5.29. These results show that topographical variables
can predict the distribution of wetlands, but only incompletely. Our
research aims to reduce this uncertainty by merging these different
indices, in order to capitalise on the specific advantages of each. The
study also highlights the importance of the Strahler order for
predicting wetlands. Although this method works well for
continental wetlands, it may have limitations in the case of
coastal wetlands. In these environments, the topography of the
terrain, such as coastal alluvial plains where water tends to
diffuse and accumulate, may not be correctly captured by
Strahler’s order (Infascelli et al. (2013). Also in 2013, Lang et al.
proposed a method to improve forest wetland mapping using
topographic metrics. This method uses LiDAR data to generate a
digital terrain model (DTM). Although the article focuses on a finer
scale, it uses similar approaches to those mentioned above. In this
study, the researchers suggest using the Topographic Wetness Index
(TWI) and propose an improvement to it. Their method is based on
adding several conditions to the TWI, followed by thresholding, to
produce a composite score for mapping forest wetlands. This
research is particularly interesting, as it demonstrates that the
TWI alone is robust for mapping wetlands when it is correctly
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thresholded. The researchers also show that combining this index
with other metrics, such as the Enhanced Topographic Wetness
Index (ETWI), Local Terrain Normalized Relief (LTNR) and the
Relief Enhanced TWI, significantly improves prediction accuracy.
These results highlight the power of integrating several indices for
more reliable wetland mapping (Lang et al. (2013).

As pointed out by (Mahdianpari et al. (2020), the main
limitation of remote sensing studies for wetland detection is their
tendency to focus on identifying areas of surface water and equating
them directly with wetlands.: their tendency to focus on identifying
areas of surface water and equating them directly with wetlands. Our
study demonstrates that this approach oversimplifies the complexity
of wetland ecosystems because a wetland does not necessarily
require visible surface water. In our study area, water may be
present only in the soil or in the underlying water table, which
are undetectable on standard satellite images. By integrating
multiple topographic indices, our approach detects hydrologically
active wetlands, even in the absence of visible surface water. Our
method leverages elevation data to simulate water flow and
accumulation. This enables the identification of hydrological
processes through gravity-driven dynamics, without the need for
direct imagery. This is particularly advantageous in forested areas,
where canopy cover can obscure ground-level hydrological activity.
However, these results remain pre-localizations and theoretical
predictions, highlighting the need for complementary methods.
As such, this approach is highly synergistic with subsequent
optical or radar satellite imagery.

The literature shows that many authors have taken an interest in
the contribution of topographical indices to improving or carrying
out wetland mapping or prediction, and many studies have used
TWI (Berhanu and Bisrat (2018); Bian et al. (2021); Grabs et al.
(2009); Anaya-Acevedo et al. (2017). These studies are often based
on a single index and propose a methodology for extending and
improving it, but rarely a methodology combining several
topographical indices to determine wetlands (Rodhe and Seibert
(1999); Bian et al. (2021); Murphy et al. (2007); Meles et al. (2019);
McKergow et al. (2007). In addition, very few articles focus on these
topographic indices for predicting coastal wetlands (Sun et al.
(2020). The multidimensional approach of this study offers
several strengths. Firstly, it provides a more nuanced
understanding of soil moisture dynamics by examining how
topography influences water accumulation and drainage, while
land cover—such as impervious surfaces in urban affects runoff,
infiltration, and the drying of wetlands. By integrating these factors,
our approach captures the spatial variability of soil moisture more
accurately, highlighting how human-altered landscapes and natural
features jointly regulate hydrological processes. This is crucial
because wetlands do not all share the same characteristics: some
are formed by surface runoff, others by topographic depressions,
while others act as buffer zones between watercourses and
floodplains. Using a single variable would fail to capture this
complexity, potentially overlooking key areas where wetlands
exist due to different hydrological or geomorphological processes.
Moreover, the normalization of indices facilitates direct comparison
and integration of multiple data sources, thereby enhancing the
robustness of the results. This approach improves the accuracy and
reliability of moisture susceptibility assessments, making it a
valuable methodology for wetland monitoring and management.

Additionally, the use of IGN’s BD Alti® 25 m provides notable
advantages for wetland detection through the integration of
topographic indices and elevation data. Its spatial resolution of
25 m offers a balance between data granularity and
computational efficiency, making it suitable for regional-
scale analyses.

This resolution allows the identification of broad wetland areas
and captures topographic gradients that are critical for delineating
wetland boundaries. However, its limitations become apparent when
dealing with smaller or fragmented wetlands, which may be
underrepresented or entirely omitted due to the coarser spatial
resolution. Additionally, subtle elevation changes, which are often
crucial for distinguishing transitional wetland zones, may not be
fully captured. This can lead to inaccuracies in detecting low-relief
wetlands or areas with gradual topographic transitions. While BD
Alti® 25 m is sufficient for large-scale mapping, higher-resolution
data may be required for detailed local studies or for detecting
wetlands in highly heterogeneous landscapes. Balancing resolution
and computational demands remain a critical consideration for
optimizing the use of elevation datasets in wetland detection
efforts. This methodology also has certain limitations. For
instance, while a resolution of 25 m is sufficient for regional
analysis, it may not capture microhabitats in more heterogeneous
landscapes. Furthermore, incorporating additional data, such as
detailed vegetation or land use information, could enhance the
accuracy of the results; however, this would require high-quality
data sources.

This methodology is also complementary with the integration of
optical and radar remote sensing data as well as artificial intelligence.
Indeed, the model serves as a form of pre-localization for wetland
zones, offering a mask that can be a decision-support tool for AI
algorithms to reduce confusion between wetland and non-wetland
land cover classes Le Guillou et al. (2024); Le Guillou et al. (2023). By
combining this pre-localization with optical/radar imagery, it is
possible to add significant value to spectral information
(reflectance), thereby enhancing the discrimination/detection
of wetlands.

Furthermore, the methodology’s integration of freely available
datasets such as CLC and OCS GE, along with high-resolution
altimetric data, enhances its scalability and flexibility. By
incorporating both spatial and temporal dimensions, the study is
able to account for changes in impervious surfaces over time, adding
a layer of environmental context that is often overlooked in
traditional wetland mapping techniques. This temporal aspect is
particularly crucial for understanding the impacts of urbanization,
agricultural practices, and climate change on wetland ecosystems.
The approach thus provides a valuable tool for monitoring and
managing coastal wetlands, which are highly sensitive to
anthropogenic pressures, such as soil sealing and coastal erosion.

5.2 Points of improvement

An improvement may be in the weighting of the variables used
in the classification of wetland areas. Currently, each topographic
index is given equal consideration, which may limit the accuracy of
the resulting map. However, certain indices can be more indicative
of soil moisture presence, depending on local conditions and the
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type of ecosystem being analyzed. For example, the TWI, which is
highly correlated with water accumulation, could be assigned a
higher weight compared to positional indices such as the TPI in
areas where water accumulation is crucial for characterizing
wetlands. Implementing weighting techniques such as multiple
linear regression or multi-criteria analysis, could provide greater
flexibility in adjusting the weight of each index according to its
relative influence on wetland localization.

6 Conclusion

Coastal wetlands are complex systems resulting from the
interaction between hydrological, geomorphological and
biological processes. They are generally highly coveted for both
their ecological and economic value. Coastal wetlands are suitable
objects of study for addressing the transformations of Atlantic
coastal areas through the prism of the relationship between
nature and societies in a context of global change. In this study,
we present an original methodological sequence that mobilizes a
complete series of widely available spatial data at different temporal
scales and open source software, structured in three interconnected
parts, with the ultimate goal of improving the detection and pre-
localization of coastal wetlands in Brittany. The first methodological
approach, based on the calculation and standardization of several
topographic indices, including the topographic wetness index
(TWI), the topographic position index (TPI) and the
multiresolution valley bottom flatness index (MRVBF), by
combining them with detailed information on elevation and
topographic structure, aims to evaluate the soil moisture gradient
of coastal wetlands (with a resolution of 25 m), which can contribute
to a better understanding of hydrological dynamics, water level
variations and water flow zones during the process of mapping and
monitoring changes in these environments. In the second
methodological part, the CLC and OCS GE data are used to
analyze changes in impermeability between 1990 and 2020. This
made it possible to detect potential wetlands, identify impermeable
areas and analyze their temporal evolution over the period
considered. The method enabled a reliable assessment of the
surface area of potentially impervious wetlands, which increased
by 18.3%, from 145.3 km2 to 171.95 km2 between 1990 and 2020, and
the influence of the urbanized and impervious area on the dynamics
of coastal wetlands between 1990 and 2020. The third
methodological approach is in fact structured in the form of a
methodical evaluation of the quality of the “binary classification” of
wetlands and non-wetland areas by implementing an inventory of
wetlands (carried out by stakeholders between 2011 and 2019) is
used as baseline data to verify whether the proposed methodology is
effective and, if so, to determine the score at which it gives
satisfactory results. Through its cartographic, statistical and
spatial results and through these proposals for model
optimization, this methodology proves to be particularly reliable
and robust for the detection and pre-localization of coastal wetlands
in Brittany, particularly in regions where traditional methods may

prove insufficient to apprehend the complexity of the boundaries of
these wetlands. Furthermore, the robustness of this methodology
stems from its inherent flexibility and adaptability: the approach can
be adapted by incorporating various combinations of topographic
variables and by exploiting different sets of altimetric and land use
data at varying resolutions. This adaptability/optimization is
particularly important to support conservation strategies adapted
to the challenges of current global changes.
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