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Wetlands are composed of the interaction of water, soil and suitable vegetation,
which has rich biological resources and strong ecological benefits. Due to
increasing human disturbance and the effects of climate change, wetlands are
being dramatically degraded and destroyed. However, the existing wetland
products lack the ability to capture and update the dynamic changes in time
and space, with less attention to the classification based on hydrological
processes and vegetation types. Therefore, we developed a Decision Tree
(DT)-based classification method, incorporating water frequency (WF) and
vegetation frequency (VF) calibrated with field observations, to monitor
wetland dynamics using Landsat-5/7/8/9 time-series images (2000–2022) and
Google Earth Engine (GEE). Taking Beidagang Wetland as the study area, six
classes were extracted with high overall accuracy (0.89) and Kappa coefficient
(0.85) in 2022. Interannual dynamics during 2000–2022 revealed two distinct
periods: terrestrial vegetation (TerV) dominance with permanent water (PW)
below 10% (2000–2014), and PW exceeding 20% while temporary vegetation
(TemV) decreased (2015–2022). Spatially, land cover types radiated outward from
Tiane Lake, with northwestern regions primarily covered by TerV and
southeastern regions by TemV and barren (B). Frequent type conversions
occurred between adjacent classes, with the most significant changes in
Guanqi Lake. Despite declining wetland water volumes due to rising
temperatures and reduced precipitation, ecological compensation measures,
including functional zoning, water replenishment, and phragmites restoration,
have continuously improved the wetland environment. This study presents a
promising method combining Landsat time-series images, DT and GEE for
continuous land cover monitoring. Threshold optimization using local data
and interpretability based on vegetation physiological characteristics
demonstrate enhanced applicability for large-scale wetland classification. The
generated annual maps represent the most current dataset for Beidagang
Wetland, providing scientific support for wetland monitoring, protection and
management.
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1 Introduction

Wetlands, alongside forests and oceans, are one of the three
most important ecosystems on Earth (Han et al., 2019). They offer a
variety of resources essential for human production and sustenance,
while simultaneously playing a crucial role in conserving water
resources, regulating climate, maintaining biodiversity and carbon
cycling (Erwin, 2008; Keddy, 2010; Mitsch et al., 2012; Yan et al.,
2022). However, with rising temperatures, changes in precipitation
patterns, and the impact of high-intensity human activities, wetlands
are experiencing significant degradation and even destruction in
recent decades (Salimi et al., 2021; Kuchara et al., 2023; Gell et al.,
2023). Therefore, obtaining spatiotemporal distribution information
and tracking dynamic changes in wetlands are crucial for effective
wetland management and protection.

Wetlands are complex ecosystems influenced by seasonal
hydrological processes, causing their boundaries to shift
constantly, which makes them difficult to define clearly (Leblanc
et al., 2011; Han et al., 2018; Kool et al., 2022). Furthermore,
wetlands consist of a wide range of types, with subtle spectral
differences between them, leading to significant spatiotemporal
uncertainties in classification (Yan et al., 2017; Mao et al., 2020;
Mahdavi et al., 2017). Within wetlands, various vegetation
communities are interspersed, creating complex spatial
heterogeneity (Plank et al., 2017; Tsyganskaya et al., 2018;
Ludwig et al., 2019). Therefore, advanced methods are essential
for effective wetland monitoring.

Remote sensing (RS) has emerged as a useful tool to obtain
surface information of wetlands in recent years (Ju and Bohrer, 2022;
de la Fuente et al., 2021; Feng S. et al., 2022). Due to the advantages
of high timeliness and large-scale repeated observation, optical
satellite remote sensing images is widely employed in wetland
mapping and monitoring (Kool et al., 2022; Mao et al., 2020;
Ludwig et al., 2019; DeVries et al., 2017; Zhang M. et al., 2021;
Mao et al., 2025). However, existing products typically relied on the
composite images from single or multiple dates, weakening or
hiding some characteristics of the target types (Tian et al., 2016;
Mahdianpari et al., 2017; Anderson et al., 2023). Furthermore,
optical images are frequently affected by cloud cover, limiting
data availability (Wang et al., 2012; Zhao et al., 2014). Time-
series remote sensing data can alleviate the impact of weather
factors, lower data acquisition costs, and effectively capture
phenological features (Feng K. et al., 2022; Wu et al., 2021; Guo
et al., 2022). For instance, Peng et al. constructed a cloudless, long-
term Landsat dataset to map wetland vegetation in Dongting Lake
from 2003 to 2020 (Peng et al., 2022). While Feng et al. used time-
series Sentinel-2 images to classify wetland plant communities based
on phenological features (Feng K. et al., 2022). Similarly, time-series
data have been instrumental in accurately mapping estuarine tidal
flats and capturing wetland dynamics at large spatiotemporal scales
(Wen et al., 2024; Wu et al., 2019). Time-series remote sensing data
fully use observable information to capture the dynamic
characteristics of wetlands, making them more promising for
land cover mapping at large spatiotemporal scales.

Advances in observation methods have also introduced data-
driven deep learning algorithms such as Convolutional Neural
Network (CNN) (Chen et al., 2020; Hosseiny et al., 2022; Zhang
et al., 2022) and Stacked Auto-Encoder (SAE) (Tian et al., 2020) for

wetland classification. However, these methods require extensive
training datasets and often face overfitting challenges (Kazemi et al.,
2022; Jamali et al., 2021). Machine learning algorithms like Support
Vector Machine (SVM) and Random Forest (RF) provide
alternatives with fewer parameters and training data
requirements (Gong et al., 2024; Periasamy et al., 2022; Aslam
et al., 2024a; Aslam et al., 2024b). RF, for instance, demonstrates
robust performance in coping with mislabeled samples and achieves
high classification accuracy in medium-resolution images (Berhane
et al., 2018; Belgiu and Drăguţ, 2016; Matarira et al., 2022; Svoboda
et al., 2022; Wang et al., 2024; Hao et al., 2025). However, its
interpretability remains limited to feature importance analysis (Feng
K. et al., 2022). Compared to these “black-box” models, Decision
Tree (DT) offers transparent classification outcomes by using
empirical knowledge and statistical data, and has been
successfully applied in coastal wetland classification (Han et al.,
2018; Mao et al., 2020; Zhang et al., 2023; Wang et al., 2020a; Wang
et al., 2020b; Liu et al., 2023; Zhao et al., 2024; Wang M. et al., 2023).
For example, Han et al. constructed a phenology-based DT model
using MODIS observations to present the major vegetation changes
in the Poyang Lake (Han et al., 2018). Wang et al. used a robust DT
algorithm to generate annual frequency maps of water and
vegetation, tracking annual changes of tidal flats in China during
1986–2016 (Wang et al., 2020a; Wang et al., 2020b). Incorporated
Sentinel-1 with Sentinel-2, a new rule-based time-series
classification method was developed to map the coastal land
cover types in the Yellow Sea (Liu et al., 2023). DT provides
classification results in an interpretable and transparent way
while being computationally more efficient than machine
learning models (Mao et al., 2020; Zhang et al., 2023; Wang M.
et al., 2023). However, despite their advantages, DT often requires
parameter optimization and localization to handle the complexity
and spatial heterogeneity of wetlands effectively.

With the advancement of big data and cloud computing, Google
Earth Engine (GEE) has been gradually important in processing
remote sensing data at large spatiotemporal scales (Wu et al., 2021;
Guo et al., 2022; Matarira et al., 2022; Hao et al., 2025; Wang et al.,
2020a; Wang et al., 2020b; Amani et al., 2019; Aslam et al.). GEE
provides users with direct access to extensive archives of free remote
sensing imagery and predefined algorithms which are easily
accessible and modifiable (Liu et al., 2023; Sidhu et al., 2018).
The integration of Sentinel-1 and Sentinel-2 datasets available on
GEE has supported the wetland mapping in the Great Lakes
(Mohseni et al., 2023) and land properties analysis in Moldova
(Valjarević et al., 2025). The utilization of multi-source remote
sensing data, combined with long-term satellite observations,
provides comprehensive data support while significantly reducing
the time required for image collection and preprocessing. For
instance, S. alterniflora changes in the Yangtze River Delta from
1990 to 2022 were captured using Landsat time series data on GEE
(Zhou et al., 2024), while a 10-m resolution map of mangrove forests
in China was generated by Sentinel-1/2 time-series data within GEE
(Hu et al., 2020). Furthermore, GEE has facilitated the development
of automated workflows for wetland classification and change
detection. Through comparison of three classifiers (SVM, RF, and
CART) on GEE, tree-based ensembles were demonstrated to be
superior for delineating features with high intra-class variability,
such as flooded vegetation (Aslam et al., 2024c). Improving the
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Continuous Change Detection and Classification (CCDC)
algorithms on GEE, Wang et al. successfully tracked continuous
changes of coastal tidal wetlands in Jiangsu Province over nearly
3 decades (Wang H. et al., 2023). These examples underscore the
immense potential of GEE in large-scale wetland mapping and
monitoring.

In this research, we take Beidagang Wetland as the study area,
combining GEE with Landsat 5/7/8/9 time-series images during
2000–2022. Therefore, the objectives of our study were to (Han et al.,
2019) develop a DT-based classifier incorporating WF and VF,
calibrated with field observations; (Erwin, 2008); generate maps of
Beidagang Wetland from 2000 to 2022, analyze its spatiotemporal
changes and explore its driving factors.

2 Data

2.1 Study area

Beidagang Wetland is located in the southeast of Binhai New
Area of Tianjin. It is the largest wetland nature reserve in Tianjin,
and also an important station on the East Asia-Australia migration
route, one of the eight important migratory bird migration routes in

the world. With high ecological particularity and comprehensive
protection value, Beidagang Wetland has been recognized by “The
List of Wetlands of International Importance”. In this area, the
terrain is low and flat, sloping downward from the northwest to the
northeast. Affected by East Asian monsoon, the climate has four
distinct seasons, with an average annual temperature of 13°–14°. In
the study, we defined the study area as the lower reaches of Duliujian
River with a latitude ranging from 38°44′52″to 38°49′48″N and a
longitude ranging from 117°18′45″to 117°29′58″E. The specific
location is shown in Figure 1.

2.2 Datasets and preprocessing

2.2.1 Landsat dataset
There are all series of Landsat images on GEE, with three

product types. In consideration of space, time and spectral
resolution, we used Landsat-5 TM, Landsat-7 ETM+, Landsat-8
OLI and Landsat-9 OLI-2 of Level-2 types which are the surface
reflectance obtained after orthophoto correction and atmospheric
correction. Notably, Landsat-9 OLI-2 represents an enhanced sensor
system compared to Landsat-8 OLI, featuring improved radiometric
performance and enhanced signal-to-noise ratio. For each image, we

FIGURE 1
Location of the study area and sample points. (a) shows the geographic location of the study area, mapped with the false-color composite image of
B5 (NIR), B4 (R) and B3 (G). (b) shows the spatial distribution of sample points, mappedwith the true-color composite image of B4 (R), B3 (G) and B2 (b). (c)
shows the field observation on 18 July 2023.
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selected five spectral bands: three visible bands (Blue, Green and
Red), the near-infrared (NIR) band, and the short-wave infrared
(SWIR) band, all with a consistent spatial resolution of 30 m. A total
of 1379 images (322 Landsat-5, 654 Landsat-7, 364 Landsat-8 and
39 Landsat-9 images) covering the study area from 2000 to
2022 were collected, and the distribution of images per year is
shown in Figure 2. Optical image acquisition is greatly affected by
the atmosphere, and some images contain cloud noise. Therefore, we
must apply cloud mask to the acquired image to remove pixels
affected by clouds and cloud shadows. We used the band of “QA_
PIXEL” (QA), which can detect clouds and cloud shadows of each
image, to remove bad-quality observations. Finally, we generated a
dataset containing all images from 2000 to 2022.

2.2.2 Meteorological dataset
In this study, we utilized the meteorological data from ERA5-

Land. As a fifth-generation global climate and atmosphere reanalysis
dataset, it is provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF), spanning from January 1950 to the
present day. The spatial resolution of ERA5-Land is 9km, with an
hourly temporal resolution. There are three types of datasets on
GEE, including hourly, daily and monthly data. Using
“ee.ImageCollection (“ECMWF/ERA5_LAND/DAILY_AGGR”),
we acquired daily aggregated data, facilitating the computation of
yearly data. The temperature is computed by
“ee.ImageCollection.mean ()”, while the total precipitation is
derived through “ee.ImageCollection.sum ()”.

2.2.3 Sample dataset
The sample points were collected on 18 July 2023. Using the

Garmin eTrex 221X Outdoor Handheld GPS Navigator, we
recorded the coordinates of each sample point. We recorded each
type of ground objects from both sides of the road, and the areas
obscured by Phragmites australis were interpreted manually aided
by drone imagery. We utilized the M300 RTK equipped with a
Mono×5+RGB detector, flying at an altitude of 100 m. A total of
406 sample points were collected in this study, and five classes were
determined according to the actual environment: permanent water
(PW), temporary water (including temporary water to vegetation)
(TW, TWTV), terrestrial vegetation (TerV), temporary vegetation
(TemV) and barren (B) (Figure 1b). To ensure balanced

representation across all classes during training and validation,
stratified random sampling method was adopted to divide all
samples into two parts, with 80% allocated for training and 20%
for validation. Ultimately, our dataset comprised 321 training points
and 85 validation points (Table 1).

3 Methods

In the study, GEE was utilized to analyze the dynamic changes of
Beidagang Wetland during 2000–2022, including three contents.
Two features, water frequency (WF) and vegetation frequency (VF),
served as effective discriminators between different land types,
utilizing all available images spanning the entire year. Drawing
upon the prior knowledge and field observation, we delineated
the ranges of WF and VF for each land type, enabling the
construction of a classification rule within the Decision Tree
(DT) framework. Through accuracy assessments, we obtained
classification results during 2000–2022, and further analyzed
these results to discern underlying driving forces shaping
spatiotemporal dynamics. The overall process of the study
unfolds as Figure 3.

3.1 Identification of water pixels and
vegetation pixels

Before calculating WF and VF, it is necessary to extract water
and vegetation pixels. In the study, we devised methods for water
and vegetation identification, employing four spectral indices:
Normalized Difference Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI), Modified Normalized Difference Water
Index (MNDWI), and Land Surface Water Index (LSWI). NDVI
stands out as a robust indicator, offering insights into the spatial
distribution, density, and biomass of vegetation, along with canopy
background information (Tucker, 1979). EVI, an enhancement of
NDVI, mitigates atmospheric interferences and exhibits heightened
sensitivity in areas with high biomass (Huete et al., 2002). LSWI
utilizes near-infrared and short-wave infrared bands, sensitive to
moisture content of the vegetation (McFeeters, 1996).
Simultaneously, we employed MNDWI, which combines green
and shortwave infrared bands to enhance open water features
while mitigating noise from vegetation and soil (Xu, 2006). These
indices, including NDVI, NDWI, LSWI, and MNDWI, are detailed
in Table 2, where ρ represents the spectral reflectance. “Blue (B)”,
“Green (G)”, “Red (R)”, “NIR” and “SWIR” correspond to B1, B2,
B3, B4 and B5 of Landsat-5 and Landsat-7, while for Landsat-8 and
Landsat-9, they correspond to B2, B3, B4, B5, and B6.

Given the intricate wetland ecosystems and their varied
structures, localized adjustments are necessary for accurately
identifying water and vegetation pixels. Based on the sample
points from field observation, we labeled PW points (consistently
inundated throughout the year) as water pixels, and TV points
(consistently vegetated throughout the year) as vegetation pixels.
Additionally, we recognized the pronounced seasonal dynamics of
Beidagang Wetland, particularly in its floodplain regions, which
alternate between submersion and exposure. Therefore, in order to
avoid bias in the final results, we utilized all available data

FIGURE 2
Numbers of Landsat images with good quality from TM/ETM+/
OLI/OLI-2.
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throughout the year, to determine the threshold for identifying
water and vegetation pixels.

From the preprocessed Landsat time-series data, we selected
the image collection closest to the field observation time in 2022.

Subsequently, time-series datasets comprising NDVI, EVI, LSWI,
and MNDWI were obtained. Being overlaid with time-series
datasets, each water and vegetation pixel acquired a series of
index values over the course of a year. For each index, valid

TABLE 1 Beidagang Wetland classification system for remote sensing.

Class Description Total samples

Permanent water (PW) Areas covered by water throughout the year 68

Temporary water (TW) Areas covered by water for less than a year, with some regions containing sparse vegetation 113

Terrestrial vegetation (TerV) Plants with a lifespan of more than 2 years 150

Temporary vegetation (TemV) Areas covered by vegetation for less than a year, with life cycles completed within one growing season 54

Barren (B) Areas with little to no water or vegetation, where the surface consists primarily of exposed soil 21

FIGURE 3
The framework of this study.
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observations were treated as individual units, from which the
three-quarters maximum, three-quarters minimum, and median
values were calculated. As shown in Figure 4, “MNDWI > EVI”
and “MNDWI > NDVI” serve as key indicators for identifying
water pixels. Additionally, the temporal change revealed that
“EVI <0.1″consistently characterizes all of water pixels
throughout the year, enabling to be as a supplementary
criterion. Hence, the final water pixel formula was determined
as “MNDWI > EVI, MNDWI > NDVI and EVI <0.1.
Furthermore, Figure 4 illustrates that EVI between 0.25 and
0.75 for vegetation pixels remains above 0 throughout the
year, while NDVI values for vegetation pixels consistently
exceed 0 in 2022, except for a few outliers. Therefore, we
propose using these two rules for vegetation pixel
identification. Additionally, apart from observations during the
fifth to ninth time periods, nearly all vegetation pixel values of
LSWI remained above −0.1. Consequently, we adopt “EVI ≥0,
NDVI ≥0 and LSWI > −0.1″as the criteria for identifying
vegetation pixels.

3.2 Algorithm to identify water frequency
and vegetation frequency

Due to the scarcity of good observations limited by cloud mask
and the seasonal dynamics of wetland vegetation, one image or one
composite image cannot fully capture the temporal changes of
wetlands. In order to reduce the impact of bad-quality
observations and phenological dynamics, we supposed to use
frequency-based method from Landsat time-series images to
characterize the differences between different land cover types.
Water pixels were firstly detected using Equation 1, and then
water frequency (WF) could be acquired by Equation 2.

∑Water � 1EVI< 0.1 ∩ MNDWI>EVI ∩ MNDWI>NDVI
0Other values

{
(1)

WF � ∑Water

∑Good (2)

Where “WF” is the frequency of water pixel occurrences within a
civil year (CY), “ΣWater” represents the number of water pixels, and
“ΣGood” denotes the total number of pixels with good-quality
observations. In Equation 1, the criterion (MNDWI > EVI or
MNDWI > NDVI) and EVI <0.1″serves as the threshold for
identifying water pixels. When this criterion is met, the current
pixel is classified as a water pixel, yielding a Boolean value of 1;
otherwise, it returns a Boolean value of 0 for a non-water pixel. By
counting the occurrences of pixels marked as 1 within a civil year,
WF can be eventually obtained by Equation 2. Notably, WF’s value
range from 0 to 1, with higher values indicating prolonged

TABLE 2 Summary of indices.

Indices Algorithms References

Vegetation
Indices

NDVI NDVI � ρNIR−ρR
ρNIR+ρR (Tucker, 1979)

EVI EVI � 2.5( ρNIR−ρR
ρNIR+6*ρR−7.5*ρB+1) (Huete et al., 1997)

Water
Indices

LSWI LSWI � ρNIR−ρSWIR
ρNIR+ρSWIR

(Xiao et al., 2002)

MNDWI MNDWI � ρG−ρSWIR
ρG+ρSWIR

(Xu, 2006)

FIGURE 4
Temporal changes of water and vegetation pixels mapped with each index in 2022. (a) EVI of water pixels. (b) EVI of vegetation pixels. (c) NDVI of
vegetation pixels. (d) LSWI of vegetation pixels.
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inundation periods throughout the year, thereby suggesting a closer
resemblance to PW in terms of land cover type.

We utilized Equation 3 and Equation 4 to identify vegetation
pixels and calculate vegetation frequency (VF). Pixels meeting the
criterion of “(EVI ≥0 and NDVI ≥0) and LSWI > −0.1” were
classified as vegetation pixels and assigned a Boolean value of 1;
those failing to meet the criteria returned a Boolean value of 0
(Equation 3). Similarly, higher VF values correspond to prolonged
presence of vegetation throughout the year, indicating a closer
resemblance to TV.

∑Vegetation � 1EVI≥ 0 ∩ NDVI≥ 0 ∩ LSWI> − 0.1
0Other values

{ (3)

VF � ∑Vegetation
∑Good

(4)

3.3 Construction of the classification rule

Each pixel has their own WF and VF within a year, and need to
be expressed in a certain way. Here, we employed the DT model to
formulate a classification rule based onWF and VF. DT, an effective
inductive machine learning technique, presents a hierarchical
flowchart structure from root node to branch leaves, offering

interpretability to a certain extent (F et al., 2016; Mueller et al.,
2016). The key to constructing DT is the determination of splitting
attributes (order) and splitting criteria (threshold). We collectedWF
and VF for all types of sample points in 2022, yielding a quantity
distribution map (Figure 4). By comparing the values of WF and VF
and delimiting specific ranges, we classified distinct classes within
the study area.

In selecting splitting attributes, we used comparative relations
between WF and VF as the root node for constructing the DT
classifier. Initially, we divided land cover types into two categories:
those with higher WF and those with lower WF. The former
included 2 types, PW and TW. From statistical analyses
(Figure 4), we established “WF-VF = 0.6″as the segmentation
threshold, reflecting the most significant difference for TW
delineation. For the latter, we delineated other land cover types
using different criteria. Employing “WF < 0.1 and VF < 0.2,” we
identified B.

Combining field observation and existing knowledge, we found
Suaeda glauca and Suaeda salsa (S. glauca and S. salsa) is the
dominant community in TemV. As an annual vegetation with a
growing season not exceeding 6 months, we classified TemV with
“VF < 0.6”, while the others belonging to TV. Additionally, we
recognized a distinct land cover type, which is TW, displaying dual
characteristics (Figure 5). Some points showed slightly higher WF
than VF, resembling PW in spatial distribution, while others

FIGURE 5
Map of quantity distribution in WF and VF for each type of sample points. (a) Permanent water. (b) Temporary water. (b1) Temporary water (WF > VF).
(b2) Temporary water to vegetation (WF ≤ VF) (c) Terrestrial vegetation. (d) Temporary vegetation. (e) Barren.
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demonstrated the opposite trend, closer to TV. Therefore, we
classified them separately as “WF > VF” (Figure 5b1 and “WF ≤
VF” (Figure 5b2). Considering the temporal characteristics of the
growing season, we ultimately utilized “0.1≤WF ≤ 0.4 and 0.2≤VF <
0.6″to identify TemV, with the other type labelled as TWTV. The
specific flow of DT is illustrated in Figure 6.

3.4 Method of validation

The accuracy of classification results is evaluated by
calculating the confusion matrix based on validation samples.
The confusion matrix, also known as the error matrix, is the most
basic, intuitive, and simplest method to calculate the accuracy of a
classification model (Svoboda et al., 2022). In image accuracy
evaluation, confusion matrix is mainly used to compare
classification results with actual measured points (Duro et al.,
2012). More advanced classification indicators can be obtained
from the confusion matrix. In the study, we selected Overall
Accuracy (OA), Kappa coefficient, Producer’s Accuracy (PA) and
User’s Accuracy (UA) for accuracy assessment. OA refers to the
proportion of correctly classified pixels relative to the total
number of pixels. The Kappa coefficient is calculated using
Equation 5.

Kappa � P0 − Pe

1 − Pe
(5)

Among them, “P0” is for OA, “Pe” is calculated as the sum of the
products of the actual and predicted quantities for all categories,
divided by the square of the sum of the matrix elements. The Kappa
coefficient ranges from −1 to 1, usually greater than 0. The higher
Kappa coefficient, the better the classification effect. What’s more,
the producer’s Accuracy is the probability that the real reference data
of a certain type is correctly classified (Dai et al., 2021). The user’s
accuracy is calculated by dividing the reference data of a certain type
by the real collected points (Dai et al., 2021).

4 Results

4.1 Accuracy assessment of
classification results

Since the field observation in 2023, we have utilized the
classification result in 2022, closest to the measurement period,
for accuracy assessment and constructing the confusion matrix
(Table 3). The OA derived from this matrix is 89.41%, with the
Kappa coefficient of 0.85, indicating a high degree of accuracy. Upon
the User’s Accuracy and the Producer’s Accuracy derived from the
confusion matrix, we observed notable misclassifications within
contiguous land cover types, particularly among TW, TV, and
TemV. TemV, primarily comprising S. glauca and S. salsa,
occupying dry or exposed river floodplains, is more likely to be
misidentified as TW. This misidentification often occurs due to the
floodplains’ intermittent submergence following sudden
precipitation or ecological replenishment, resulting in a scarcity
of TemV. Consequently, the spectral characteristics captured in
Landsat images may exhibit similarities between TW and TemV,
leading to comparable values in WF and subsequent
misclassifications.

Furthermore, we also conducted an accuracy assessment of
historical results from 2000, 2004, 2010, 2016, and 2020. For
validation sample preparation, we employed a sample migration
approach based on 2023 field observations. Spectral Angle Distance
(SAD) and Euclidean Distance (ED) were used to assess spectral
similarity across temporal intervals, yielding temporally consistent
validation points for each target year (Huang et al., 2020). Given the
limited number of migrated samples meeting stability criteria, we
supplemented the validation dataset through the visual
interpretation of high-resolution Google Earth (GE) images to
ensure adequate representation across all land cover types.
Classification accuracy was assessed using the collected validation
samples for each year, with results presented in Table 4. The
consistently high accuracy across all target years demonstrates

FIGURE 6
Construction of DT classifier based on WF and VF.
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that the DT-based classification method using WF and VF is reliable
and suitable for long-term wetland monitoring applications.

4.2 Spatial variation in Beidagang Wetland
during 2000-2022

Using the DT model based on WF and VF, we generated the
spatial distribution of each land cover type in Beidagang Wetland
from 2000 to 2022 (Figure 7). To mitigate the impact of strip noise
on classification results, data from 2005, 2008, 2011, and 2012 were
excluded, resulting in a total of 19 retained classification maps from
other years. The distinct spatial distribution patterns among
different land cover types, each adhering to specific rules, are
illustrated in Figure 7. TW and TWTV are frequently observed
at the peripheries of PW. Within expansive floodplain regions,
TWTV encircles TW, creating a transitional zone with TV.
TemV typically thrives within the transition zone, bridging the
gap between TWTV and TV. Characteristically, these patches
exhibit elongated and narrow shapes, with small and highly
fragmented areas.

To present the details of land cover changes in Beidagang
Wetland, the type conversion was employed in Figure 8. The
dynamics of different land cover types within Beidagang Wetland
exhibit a relatively intricate pattern of changes, primarily observed
in four key regions: Xiaobaiyangdian, Guanqi Lake, Tiane Lake, and
Chenxi Lake (Figure 8a). Xiaobaiyangdian, situated west of the study
area, transitioned from extensive TemV to TV, remaining
predominantly vegetated from 2000 to 2022 (Figure 8b).
Conversely, a significant transformation occurred in Chenxi Lake.
Previously characterized by TemV in 2000, it has evolved into PW

by 2022, marking considerable interannual variations in land cover
types over the past 2 decades.

Guanqi Lake, located centrally in the study area, depict the most
pronounced interannual changes in land cover types. Since 2000, It
has witnessed fluctuating changes of TV, TemV, PW and TW, with
concurrent existence of TW and TWTV. Furthermore, Tiane Lake,
in the middle of the study area, has remained water-covered since
2000, albeit in different forms. Notably, the expanse of PW has
expanded, primarily along the eastern shoreline, while TW persisted
near the western coast. Additionally, the centralized place of bird has
facilitated the growth of aquatic vegetation in the lake’s central
region. These areas have undergone substantial changes over the
past 2 decades, with significant alterations in land cover types.

4.3 Temporal changes in BeidagangWetland
during 2000-2022

To observe the temporal changes of Beidagang Wetland, we
initially conducted a Spearman correlation analysis to identify areas
where NDVI, WF, and VF significantly correlated with time (p <
0.05). Subsequently, we calculated the gradient of these features over
time (Figure 9a). The analysis identified three regions exhibiting
notable correlations with time: Luoxia Bay, Duliujian River, Guanqi
Lake and its northern area. However, differences emerged between
features within these significantly correlated regions. Specifically, in
Xiaobaiyangdian, an area dominated by TV, NDVI exhibited
minimal gradient change, indicating relatively stable TV
coverage, while VF showed a low correlation with time. This
relative stability in VF, coupled with a slight increase in NDVI,
suggests that TV coverage has remained largely unchanged, albeit
with slight growth improvements compared to 2000.

We also compared regions with higher gradients. The gradient
changes of NDVI and VF revealed a significant reduction in Guanqi
Lake over the past 20 years, whereas WF changes varied across these
regions. Notably, there was a significant increase of WF in the
northern areas, while within Guanqi Lake, WF exhibited differences.
Specifically, WF in the west of Guanqi Lake showed a slight increase
over time, while in the east, there were interannual fluctuations in
WF, lacking a clear change pattern. The decline of vegetation in
Guanqi Lake was accompanied by an increase of water, as evidenced

TABLE 3 Accuracy assessment of classification result in 2022 using the confusion matrix.

Actual class Predicted class Row total PA/%

PW TW TerV TemV B

PW 11 0 0 0 0 11 100.00

TW 1 31 0 0 0 32 96.88

TerV 0 1 26 0 0 27 96.30

TemV 0 4 3 5 0 12 41.67

B 0 0 0 0 3 3 100.00

Column Total 12 36 29 5 3 85

UA/% 91.67 86.11 89.66 100.00 100.00

TABLE 4 Accuracy assessment in 2000, 2004, 2010, 2016, 2020, and 2022.

Index Time

2000 2004 2010 2016 2020 2022

OA 0.84 0.84 0.84 0.86 0.87 0.89

Kappa
coefficient

0.8 0.78 0.79 0.81 0.84 0.85
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by the classification map, indicating a gradual transformation to a
water-dominated area in recent years.

Furthermore, we analyzed the interannual changes in the area
proportion of each land cover type in Beidagang Wetland. Figure 9b
reveals that the area of PW remained basically stable before 2015,
with the proportion consistently below 0.1. However, substantial
changes occurred after 2015, leading to an overall increasing trend.
By 2022, the proportion of PW had exceeded 0.2. The area occupied
by TW generally expanded since 2000, despite slight declines in
some years. From 2000 to 2014, the proportion of TW increased
gradually, but after 2015, significant fluctuations were observed. TW
experienced a slight decrease during 2016–2020, followed by a little
increase in 2021, maintaining an overall ratio between 0.1 and 0.2.
The change of TW after 2016 corresponded to those of PW,
suggesting a spatial redistribution between these two types.

Among various vegetation types, the proportion of transient
vegetation area fluctuated slightly within the range of 0–0.3,

indicating a gradual decline over time. The most significant
interannual fluctuations and the absence of clear change patterns
were observed in TWTV and TV. The proportion of TWTV
remained low during 2016–2020, fluctuating around 0.2 in
subsequent years. Although TV is the dominant community in
Beidagang Wetland, its overall proportion has decreased since 2014,
showing interannual instability. B has consistently constituted the
smallest land cover type in Beidagang Wetland, exhibiting little
change compared to water and vegetation.

In summary, the interannual changes in Beidagang Wetland
can be divided into two distinct periods: from 2000 to 2014 and
from 2015 to 2022. During the first period (2000–2014), the
wetland was characterized by vegetation dominance and stable
PW areas, with slight increases in TW. In contrast, the second
period (2015–2022), saw a notable overall downward trend in
vegetation types alongside an increase in PW, while TW exhibited
minor fluctuations.

FIGURE 7
Spatial distribution of six land cover types in Beidagang Wetland during 2000–2022.
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4.4 Long-term changes of WF and VF in
Beidagang Wetland during 2000-2022

To more intuitively represent the spatial variation
characteristics of Beidagang Wetland, we divided WF into four
levels: 0–0.1 (poor), 0.1–0.4 (adequate), 0.4–0.9 (good), 0.9–1
(excellent) (More detailed results are provided in
Supplementary Figure 1). As shown in Figure 10a, WF pixels
between “0–0.1” are mainly distributed in the southwest and

southeast of the study area, where the dominant land cover
types are TV and TemV. Pixels in the “0.1–0.4” are unevenly
distributed across years, with sparse and fragmented spatial
patterns, typically found near areas with higher WF values. In
contrast, the spatial distribution of pixels in the “0.4–0.9” and
“0.9–1” is more stable, primarily concentrated in the central part of
the study area, especially around Tiane Lake and Guanqi Lake.
However, the distribution varies annually, with type shifts
occurring mainly between “0.4–0.9” and “0.9–1”.

FIGURE 8
Type conversion during 2000–2022. (a) Shows the spatial conversion of major land cover types. (b) Shows the conversion ratio of each type and the
most varied type highlighted in red.

FIGURE 9
(a) Temporal changes of NDVI, WF and VF in Beidagang Wetland during 2000–2022. (b) The area ratio’s change of six land cover types
during 2000–2022.
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Similarly, VF was divided into five levels: 0–0.2 (poor), 0.2–0.4
(average), 0.4–0.6 (adequate), 0.6–0.8 (good), 0.8–1 (excellent). The
classification results for major years are shown in Figure 10b (More
detailed results are provided in Supplementary Figure 2). Overall,

the vegetation distribution has gradually shifted from the center to
the southwest and northwest of the study area, while
Xiaobaiyangdian has consistently remained the main area of
vegetation distribution. From Figure 10b, the areas of high values

FIGURE 10
Spatial distribution of WF (a) and VF (b) in Beidagang Wetland during 2000–2022.
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are gradually decreasing, with a trend toward spatial fragmentation.
Precipitation fluctuations significantly impact this interannual
variation, leading to a degree of mutual transformation between
areas of excellent growth (0.8–1) and good growth (0.6–0.8).

There is a clear correspondence betweenWF and VF. Areas with
higher WF tend to correspond with lower VF, consistent with the
distribution of wetland water. In Xiaobaiyangdian and its
surroundings, VF remains high, typically associated with WF
values in the “0–0.1”. Areas with adequate (0.1–0.4) or good
(0.4–0.9) levels of WF and adequate (0.4–0.6) levels of VF are
mainly located near Guanqi Lake.

5 Discussion

5.1 Driving factors

The spatial and temporal dynamics of Beidagang Wetland are
shaped by a combination of natural and human influences. Natural
factors, such as variations in temperature and precipitation, play a
significant role in these changes. Additionally, human activities,
including the enhancement of legal frameworks and the
implementation of wetland restoration initiative, also exert a
substantial impact on the wetland ecosystem.

5.1.1 Natural factors
To test whether the fluctuations in temperature and

precipitation influenced the dynamics of land cover types within
Beidagang Wetland, we collected data on annual temperature,
annual total precipitation in Beidagang Wetland during
2000–2022, alongside calculating WF of Duliujian River during
2000–2020. As shown in Figure 11, the temperature fluctuated
between years, showing an overall increasing trend. Temperature
increases can extend growing seasons and enhance the productivity
of salt marsh vegetation, which is also consistent with changes of
NDVI (Figure 9a). Additionally, temperature variations can
indirectly induce changes of hydrological parameters, affecting
the redistribution of land cover types (Zhang C. et al., 2021).

Precipitation serves as a vital water source for wetlands, and
alterations in precipitation patterns can lead to substantial
modifications in wetland hydrology and aquatic ecosystems.
Figure 11 illustrates the significant year-to-year fluctuations in
precipitation, whether sharp increases or decreases, resulting in

notable interannual changes in land cover types across Beidagang
Wetland. Increased precipitation, contracts the habitat of TemV,
causing a shift in land cover towards floodplains. Conversely,
decreased precipitation reduces the extent of TW, enlarging the
narrow transition zone between water and vegetation.

Furthermore, water replenishment from Duliujian River also
plays a pivotal role in shaping the spatiotemporal dynamics of
Beidagang Wetland. Figure 11 reveals a gradual increasing trend
of WF from 2000 to 2020, consistent with changes of wetland water,
albeit with minor fluctuations in some years. Prior to 2005, WF of
Duliujian River was lower than 0.9, essentially devoid of flow, and
unable to provide water replenishment for Beidagang Wetland.
Once WF stabilized at about 0.9, Duliujian River was capable of
supporting additional water resources for Beidagang Wetland.
However, rivers are not the primary source of water
replenishment, therefore, temporary fluctuations exert little
impact on the distribution of land cover types.

5.1.2 Human factors
Beidagang Wetland has experienced severe degradation over an

extended period due to irrational utilization and destruction. In
response, the Chinese government has implemented various efforts
aimed at restoring the wetland ecosystem (Figure 12). Before 2008,
the efforts focused on its conservation, scientific research, tourism
and public awareness, therefore, the overall recovery progressed at a
relatively slow rate. With the range adjustment and functional
zoning (core, buffer, experimental areas) of Beidagang Wetland
in 2008, the distribution of each land cover type gradually became
more standardized. The hydrological resources in Beidagang
Wetland are primarily concentrated in Tiane Lake, Luoxia Bay
and Guanqi Lake, with additional water bodies radiating outward
from three major areas. TerV occurs in fragmented patches adjacent
to the water areas, with the highest density cencentrated occurring in
the Xiaobaiyangdian (Figures 7, 10). These initiatives corresponded
to the interannual changes of TW and TerV (Figure 9b), exhibiting a
stable but slowly increasing trend over time.

Since 2014, ecological compensation for Beidagang Wetland
has intensified. Measures including ecological water replenishment
and water environment management have resulted in a noticeable
expansion of wetland water (Sun and Sun, 2021). Guanqi Lake,
situated within the core area, has undergone transitions from TerV
to TW and TWTV. The negative correlations between NDVI, VF
and time, coupled with the non-significant relationship between
WF and time (Figure 9a), proved the dominant role of human
factors in driving wetland transformations. Furthermore,
systematic functional zoning has been implemented, with all
production and living activities being phased out from the core
area (Chai et al., 2020). Luoxia Bay, formerly utilized for
aquaculture, has demonstrated annual increases in WF since
2017 (Figure 10a), indicating successful restoration to suitable
bird habitat. Concurrently, vegetation restoration efforts utilizing
native species such as Phragmites and Suaeda have been
implemented, while invasive Spartina populations have been
systematically controlled (Sun and Sun, 2021). These restoration
measures have significantly improved the wetland’s ecological
environment, abundance and diversity of migratory birds, and
establishing favorable conditions for regional sustainable
development.

FIGURE 11
Temperature and precipitation of Beidagang Wetland during
2000–2022, andWF of Duliujian River (WF_River) during 2000–2020.
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5.2 Uncertainties and limitations

The accuracy of classification results mostly depends on the
accuracy of sample points. Since there is no existing dataset to
support it, only 1 year of actual sample points can be relied on to
determine the classification standard, which may lead to a certain
degree of error. Especially for the land cover types with large
spatiotemporal variations, such as TemV, the sample points of
only 1 year still cannot contain all dynamic change information.
Additionally, our analysis of the confusion matrix reveals clusters of
misclassifications within contiguous land cover types. Despite
deliberate efforts to position sample points away from
transitional zones, the intersecting numerical distributions of WF
between adjacent classes pose challenges for direct classification
using a binary model. While these misclassified pixels are relatively
sparse and minimally affect OA, they do influence the evaluation of
Kappa coefficient.

5.3 Applicability and future applications

The DT classifier based onWF and VF demonstrates potentially
broad applicability for large-scale wetland monitoring. Its superior
interpretability enables threshold optimization tailored to regional
characteristics while facilitating the selection of classification
features based on the physiological and ecological properties of
vegetation. Moreover, the computational efficiency makes this
method well-suited for large-scale applications where traditional
machine learning approaches may encounter resource constraints
(Zhang et al., 2023; Wang et al., 2020a; Wang et al., 2020b; Liu et al.,
2023; Zhao et al., 2024; Zhang et al., 2020; Chen et al., 2017).
Currently, deep learning and machine learning have been gradually
applied to wetland classification (Chen et al., 2020; Hosseiny et al.,
2022; Zhang et al., 2022; Aslam et al., 2024a; Aslam et al., 2024b;
Berhane et al., 2018). Future developments will focus on
synthesizing advanced computational methods with transparent,
interpretable frameworks to enhance both classification accuracy
and ecological understanding. As satellite data archives continue
expanding, this approach can provide consistent and interpretable

results for multi-decadal wetland classification across diverse
geographical regions.

6 Conclusion

This study utilized Landsat-5/7/8/9 time-series images and GEE
to develop a DT-based classification method for monitoring
spatiotemporal dynamics of Beidagang Wetland from 2000 to
2022. The approach employed optimized thresholds of WF and
VF to characterize land cover types and revealed the driving factors
underlying wetland changes. The flowing conclusions drawn from
our study revealed that:

(1) The DT-based classification method achieved the OA of
0.89 with the Kappa coefficient of 0.85, demonstrating the
reliability of WF and VF for wetland classification.

(2) During 2000–2022, Beidagang Wetland exhibited substantial
changes characterized by increasing water areas and declining
vegetation communities, while other land cover types
remained stable and limited spatial coverage. The areas
where NDVI, WF, and VF showed significant temporal
correlations were primarily located in Luoxia Bay,
Duliujian River, and Guanqi Lake. In contrast, Tiane Lake
displayed non-significant correlations among these three
variables over time. Guanqi Lake demonstrated the largest
vegetation reduction gradient; however, in the eastern areas
dominated by TW and TWTV, the correlation between WF
was not evident.

(3) Based on interannual variability and policy adjustments, two
distinct periods were identified. From 2000 to 2014,
Beidagang Wetland was characterized by TerV
dominance, with PW occupying less than 10% of the
total area and TW showing a gradual increase. From
2015 to 2022, PW expanded to exceed 20%, accompanied
by declining TerV coverage and fluctuating TWTV at
approximately 20%. TWTV and TerV presented the
greatest variability over the past 2 decades, with potential
spatial transitions occurring between TW and PW.

FIGURE 12
Changes of policies in Beidagang Wetland from 2000 to 2022.
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(4) Land cover types exhibited a radial distribution pattern centered
on Tiane Lake, extending toward peripheral areas including
Guanqi Lake and Luoxia Bay, with the Duliujian River serving as
a north-south boundary. PW and TerV concentrated primarily
in the Tiane Lake and Xiaobaiyangdian, while TW and TWTV
occupied intermediate transitional zones.

(5) Complex type conversions occurred predominantly in four
critical areas: Guanqi Lake, Tiane Lake, Xiaobaiyangdian, and
eastern Luoxia Bay. Guanqi Lake, located in the center of
Beidagang Wetland, exhibited the most significant change,
transitioning from TerV to TW.

(6) Wetland dynamics resulted from the complex interaction of
natural and anthropogenic factors. Climate variables,
including rising temperatures and precipitation deficits,
contributed to wetland water volume reduction and
extension of transition zones. Conservation management
interventions, including functional zoning, comprehensive
withdrawal of human activities, and ecological restoration
initiatives, facilitated wetland water area expansion, enhanced
avifaunal diversity, and improved overall ecosystem integrity.

The results indicate that DT-based classification method using
WF and VF effectively captures long-term wetland dynamics
through annual remote sensing imagery. Compared to traditional
single-date approaches and machine learning algorithms, this
method offers superior interpretability, computational efficiency,
and cost-effectiveness while maintaining high classification
accuracy. These findings provide valuable insights for wetland
ecosystem monitoring and support evidence-based conservation
management at large spatiotemporal scales.
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