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The geometric transformation of remotely sensed imagery from one map
projection to another necessitates a data resampling operation which alters
the recorded values. The global Landsat archive is made available in the
Universal Transverse Mercator (UTM) projection system which preserves
geographic shape across small area but introduces small errors in distance
and area. As remote sensing-based studies develop from local scales to
regional and global, they need to adopt more appropriate map projections
from which accurate area measurements can be made. While effects of
resampling on recorded values have been studied in the past, the impacts on
higher-level results such as land cover have not been widely reported. This study
investigates an approach for monitoring land cover and land change using two
input datasets derived from identical source Landsat data, where one input
dataset is transformed to an equal-area map projection and thereby
resampled. Recorded surface reflectance values are changed through the
reprojection/resampling process, and our study highlights observed
differences in derived land cover from these two different input datasets
throughout the various stages of deriving land cover and related
characteristics. Our findings suggest that large-scale analyses of land cover
will not be substantially impacted by reprojection of input data, but small-
scale analyses should exercise caution when interpreting timing and
magnitude of pixel-level change and classification dynamics.
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1 Introduction

Applications of remote sensing have helped advance the modeling of earth surface
processes and related impacts like crop yield estimation and food security, forest
management practices and ecology, drought and water resource management, and
carbon budgets (Wolter et al., 1995; Lark and Stafford, 1997; Jung et al., 2006; Rogan
et al., 2010; Bhaga et al., 2020; Lechner et al., 2020; Karthikeyan et al., 2020). Landsat
observations of Earth surface phenomena have revolutionized our understanding of Earth
system science (Goward and Williams, 1997; Wulder et al., 2022). Acquiring information
about land cover and associated changes to surface properties remains a fundamental
motivation to sustain continuity of spaceborne observations, such as the Landsat program,
into the future (Williams et al., 2006; Loveland and Dwyer, 2012; Radeloff et al., 2024).
Defining best practices utilizing such a valuable archive of Earth surface observations is
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fundamentally important when assessments of land cover and land
cover change inform decisions on how limited natural resources are
managed (Brown et al., 2020). Spaceborne observations from
satellites of our spherical three-dimensional Earth surface are
depicted as two-dimensional images containing pixels on flat
map surfaces through a broad set of transformations in the
process of geospatial data projection. No matter the map
projection, some level of distortion is inevitable, including when
resampling a dataset into a new/different projection. Thus, methods
of data handling, processing, and techniques that characterize global
land change dynamics require careful consideration because
something as common as reprojecting satellite data into different
map projections inherently alters pixel values (Seong, 2010),
especially when a dataset covers a large geographical area
(Steinwand et al., 1995; Yang et al., 1996; Mulcahy, 1999; Usery,
2000; Seong and Usery, 2001; Usery and Seong, 2013). However,
little is known about if and how input data resampling affects
higher-order data products such as land cover. The aim of this
study is to gain a better understanding of how pre-processing of
Landsat input data (e.g., surface reflectance, surface temperature)
potentially propagates into differences in detection of land cover and
land cover change metrics. Specifically, this research investigates
how Landsat input data resampling impacts output of higher-order
data products of land cover classification or land cover change.

Enhanced ability to analyze atmospheric, earth surface, and
subsurface properties of Earth from spaceborne sensors is
undeniably beneficial for natural resource monitoring (Wulder
et al., 2022). The Landsat program is currently the longest
continuously acquired collection of space-based moderate-
resolution land remote sensing data, beginning with the launch
of the Earth Resources Technology Satellite (ERTS-1) (later
renamed Landsat 1) in 1972. Land change monitoring is a well-
established scientific endeavor (Anderson et al., 1976; Foody, 2002;
Friedl et al., 2002; Hansen et al., 2000; Homer et al., 2004; Loveland
et al., 2000; Wulder et al., 2008; Willis, 2015; Brown et al., 2020), but
initial data processing steps in Landsat imagery development and
management may require additional pre-processing by users
depending on the application. Recognizing the importance of
data management and potential issues related to resampling (or
reprojection), the U.S. Geological Survey (USGS) produces two sets
of Landsat data representing converted raw signals (Level-0)
detected onboard Landsat spacecraft, to top-of-atmosphere
(TOA) radiance (Level-1), to surface reflectance (Level-2)
products: (1) U.S. Landsat Analysis Ready Data (ARD; in an
Albers Equal Area Conic projection) tiled in a gridded system for
the conterminous United States, Hawaii and Alaska (Earth
Resources Observation and Science Center, 2021), and (2)
Landsat scenes (in Universal Transverse Mercator (UTM)
projection) tied to the global World Reference System-2
(i.e., Path/Row) grid which includes the global Landsat archive in
its entirety (Earth Resources Observation and Science Center, 2020a;
Earth Resources Observation and Science Center, 2020b; Earth
Resources Observation and Science Center, 2020c; Earth
Resources Observation and Science Center, 2020d).

To reduce initial steps in data processing, increase accessibility,
and facilitate analysis, the USGS recognized a need for pre-packaged
and pre-processed Landsat data by creating U.S. Landsat ARD
(hereafter referred to as simply “ARD” for this report) for the

Landsat archive from 1982-present (Dwyer et al., 2018). ARD
contains data for the conterminous United States (CONUS),
Alaska, and Hawaii that are tiled (5,000 × 5,000 pixel tiles or
grids), georegistered, TOA radiance, and atmospherically
corrected products defined in a common projection (Albers
Equal Area Conic) for immediate use in monitoring and
assessing landscape change (Dwyer et al., 2018). The use of ARD
data has become a foundational input to large-scale (CONUS-wide)
time series analyses of USGS land change science such as the Land
Change Monitoring, Assessment, and Projection Initiative
(LCMAP). LCMAP aimed to build a multi-decadal land cover
mapping and monitoring capability for CONUS based on the
strategy of utilizing every available cloud-free observation in the
Landsat 30-m data record from 1982-present using a time-series
analysis approach (Brown et al., 2020; Xian G. Z. et al., 2022). The
ARD was developed in part to support LCMAP by providing
coverage for CONUS in a single equal-area projection while
minimizing projection-related data loss and simplifying data
retrieval for time-series analysis (Dwyer et al., 2018).

The USGS publishes Landsat scenes from the global archive only
projected in UTM. Alignment of UTM scene-based data with
datasets in a different projection requires resampling. Resampling
raster data via up- or down-scaling spatial resolution or simply
through reprojection is common in remote sensing although users
should understand the resulting impacts of reprojection and
resampling on their results depending on the application,
geographical extent, and phenomena being analyzed (Steinwand
et al., 1995; White, 2008; Seong, 2010).

2 Materials and methods

2.1 Study site

The study region (i.e., ARD tile, hereafter referred to as the
“Atlanta tile”) for this research in the southeast United States,
encompassing the city of Atlanta, Georgia, was selected because it
exhibits a variety of fragmented land cover types with substantial
land cover change over the study period (Figure 1). Also, this
region’s land use diversity has inspired previous research on
urban growth (U.S. Geological Survey, 2024) and potential urban
heat island impacts (Xian G. et al., 2022), highlighting the need to
better understand the impacts of pixel resampling and reprojection.

2.2 Landsat data preparation

Passive optical imaging sensors onboard Landsat satellites (Landsat
5: Thematic Mapper (TM); Landsat 7: Enhanced Thematic Mapper
Plus (ETM+); Landsat 8–9: Operational Land Imager (OLI)) gather
photons of visible, near infrared, and shortwave infrared radiation that
are spectrally dispersed to excite focal plane arrays which are translated
into electrical signals (in the form of digital numbers (DNs)) leading to
the formation of meaningful images or “scenes.” The process of
radiometric calibration uses algorithms and processes to convert
DNs (Level-0 data) for each pixel in a scene to spectral radiance (at
the sensor, or TOA radiance) (Level-1 data). Geometric correction is
applied to each pixel using ground control points (GCPs) and digital

Frontiers in Remote Sensing frontiersin.org02

Healey et al. 10.3389/frsen.2025.1570580

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1570580


elevation model (DEM) data to correct for displacements caused by
topographic relief. Atmospheric correction algorithms then compensate
for scattering and absorption effects of the atmosphere. Once applied to
TOA radiance values, a per-pixel fraction of reflected incoming solar
radiation from Earth’s surface to the Landsat sensor is calculated and
distributed as a Level-2 Bottom of Atmosphere (BOA) Surface
Reflectance (SR) product by the USGS.

The Landsat archive has undergone a secondmajor reprocessing
effort (Collection 2) representing a culmination of improvements in
absolute geolocation accuracy of the global ground reference dataset,
updated global digital elevation modeling sources, and calibration
and validation updates Crawford et al. (2023). Information about
Collection 2 processing, geometric, and radiometric improvements
can be found in a series of publications released by the USGS (Earth
Resources Observation and Science Center, 2020a; Earth Resources
Observation and Science Center, 2020b; Earth Resources
Observation and Science Center, 2020c; Earth Resources
Observation and Science Center, 2020d). For this study, two
Collection 2 datasets are analyzed: (1) ARD as published by the
USGS and (2) reprojected (UTM into the ARD Albers Equal Area
Conic) scene-based Level-2 Landsat data using the exact same
source scenes that made up the ARD data (hereafter referred to
as “REP”).

Resampling of Landsat data for this study is defined as
reprojecting Landsat scenes in UTM into ARD’s Albers Equal
Area Conic projection using cubic convolution. Although scale
distortion increases in distance away from the standard parallel,
Albers Equal Area Conic is a preferred projection for land cover
analyses over large areas in mid-latitude regions since it preserves
relative sizes of areas across the map. To ensure consistency, spatial
extents were defined by the ARD tile boundaries and the same
source scenes that comprised each ARD tile were utilized in the
geometric transformation from UTM to Albers Equal Area Conic.
This procedure resulted in two datasets comprised of identical
Landsat data in an ARD grid-defined area where one had been
reprojected/resampled (REP), and one had not (ARD).

2.3 Continuous change detection and
classification (CCDC)

The Continuous Change Detection (CCD) and Classification
(CCDC) (Zhu and Woodcock, 2014) algorithm of time series
analysis for land cover monitoring utilized in this study is
specifically designed to utilize all available Level-2 Landsat
surface reflectance, surface temperature, and associated quality

FIGURE 1
Study site location in this study, as defined by the U.S. Landsat Analysis Ready Data (ARD) grid, includes the Atlanta, Georgia (United States)
metropolitan area, part of the Chattahoochee National Forest, various reservoirs (e.g., Lake Sydney Lanier, Lake Oconee, and Hartwell Lake), and
surrounding private cropland.
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data. CCDC is widely used in land cover studies focused on detecting
land cover change pertaining to a variety of topics including forestry,
agriculture, and urban development to name a few (Arevalo et al.,
2020; Brown et al., 2020; Bullock et al., 2022; Friedl et al., 2022; Tang
et al., 2024). Harmonic regression models characterizing the spectral
response of each input band at every pixel are generated after clouds,
cloud shadows, and snow are masked from all available imagery.
Temporal segments of stable periods are determined by the
harmonic model fits throughout the time series. Land cover
change is associated with each instance where a divergence from
past patterns in a temporal segment occurs, referred to as a model
break. Abrupt changes leading to model breaks are often associated
with phenomena like wildfires, logging practices, and surface mining
operations, whereas gradual changes leading to model breaks can be
associated with more slowly progressing processes like forest
succession, insect infestations, or debilitating diseases. A new
model is fit to each stable temporal segment of Landsat spectral
observations that are separated by different model breaks. Once
CCD has completed, stable segments are assigned land cover labels
according to a classification algorithm paired with training data for
each Landsat pixel. Land cover class definitions can be found in the
Supplementary Material. For this study, we attempted to follow the
data processing methodology of the USGS LCMAP program (U.S.
Geological Survey, 2022) given its well documented metrics of
accuracy, as well as errors and biases (Brown et al., 2020;
Stehman et al., 2021). CCDC parameters and settings were taken
from the LCMAP Algorithm Description Document (U.S.
Geological Survey, 2022) without adjustment for specific land
cover types, and the training data selection strategy also followed
established protocols from LCMAP as described in Zhou et al.
(2020). Here, a sample of 15.2 million randomly distributed training
data pixels was generated within the ARD tile boundaries using the
2001 National Land Cover Database (NLCD) (Homer et al., 2004)
aggregated to closely align with broad Anderson Land Cover
Classification System Level 1 based classes (Anderson et al.,
1976). Annual maps of thematic land cover for 1985–2023 were
produced from CCDC using an “eXtreme Gradient Boosting”
(XGBoost; Chen and Guestrin, 2016) classification model and
continuous change detection (CCD) model results. All data were
processed in a cloud-based environment (AmazonWeb Services) via
a Python-based library from the U.S. Geological Survey that
implements CCDC algorithm (PyCCD; U.S. Geological Survey,
2024). CCDC has been reported previously to achieve a high
level of accuracy (77.0% ± 2.0%) in North America as well as
strong agreement (80%) with other global mapping endeavors
like the European Space Agency (ESA) WorldCover product
(Friedl et al., 2022), and the use of PyCCD in LCMAP to map
eight different land cover classes has shown an accuracy of 82.5%
(Stehman et al., 2021).

3 Results

3.1 Level-2 surface reflectance comparisons
after resampling

As a first step, scatter plots of computed surface reflectance of
the ARD and REP datasets for each Landsat band (excluding

thermal infrared) were compared (Figure 2). Each scatter plot
depicts the average surface reflectance values for each Landsat
band, for each pixel within the Atlanta tile (25 million pixels
total), for the entire study period (1985–2023). Coefficients of
determination (R2) values range from 0.993 to 0.996, with Mean
Absolute Differences (MAD) ranging from 0.0012 to 0.0020 and
Mean Absolute Percent Differences (MAPD) ranging from 0.4%
to 0.7%. The highest agreement between datasets, based on
MAPD, was in the green band, and the lowest agreement was
in the two shortwave infrared (SWIR1 and SWIR2) bands.
Analysis of each band across the entire ARD tile indicate that
the median and interquartile range percent differences are very
near zero yet, a selection of outliers had differences in SR ranging
from −11% to +15% (Figure 3). However, the difference between
upper and lower quartiles of the 25 million pixels
remains below 1%.

3.2 CCDC comparisons after resampling

After comparison of surface reflectance values, each dataset
was processed through the CCD algorithm. Figure 4 shows how
slight differences in surface reflectance propagate into differences
in the number of model breaks generated. However, the difference
of annual total number of model breaks for all pixels within the
Atlanta tile remains small with an R2 value of 0.9989, MAD of
17,314, and MAPD of only 3%. Across the Atlanta tile, the annual
total number of model breaks generated by CCD is similar
between the ARD and REP datasets (Figure 4), and the
distribution of model break abundance for the entire timeseries
follows similar patterns spatially (Figures 5A,B). Of the 25 million
pixels in the tile, most experience either no breaks (i.e., no land
cover change from 1985 to 2023), or as few as two breaks. Some
areas of the Atlanta tile showed heightened model break
abundance. Most of these areas had three to eight model
breaks, with some pixels experiencing a maximum of 18 total
model breaks throughout the time series. An example of a location
experiencing heightened abundance of model breaks is
highlighted in Figures 5C–E.

3.3 Classification comparisons after
resampling

Pixel values in land cover categories resulting from the CCDC
algorithm following class definitions outlined by the USGS LCMAP
program (U.S. Geological Survey, 2020) show close agreement
between the ARD and REP input datasets. The highest
agreement of land cover classification between the two datasets
was for pixels being classified as Tree Cover, followed by Developed,
and Cropland (Figure 6). Barren land and Water had the next
highest agreement. The greatest disagreements were when
processing of one dataset resulted in pixels classified as Tree
Cover and the other resulted in a classification of either
Developed or Barren classes.

Overall, tile-level annual land cover composition resulted in
similar outputs between the ARD and REP datasets (Figure 7). Land
cover trajectories were closely mimicked by both datasets through
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FIGURE 2
Comparison of average surface reflectance values from the U.S. Landsat Analysis Ready Data (ARD)-based data and the reprojected scene-based
data (Universal Transverse Mercator (UTM) to ARD) for each Landsat pixel (25,000,000 pixels total) and each band (A) Blue; (B) Green; (C) Red; (D) Near
Infrared; (E) Shortwave Infrared 1; (F) Shortwave Infrared 2) within the Atlanta ARD tile.

FIGURE 3
Box and whisker plots of average scene-wide differences (%) in surface reflectance values for each Landsat band in the Atlanta tile. Each data point
represents a single pixel’s average value from 1985 to 2023.
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time, and both show that Tree Cover, Developed, and Cropland are
the three classes covering the largest area of the Atlanta tile,
respectively (Figure 7, also refer to Supplementary Material).
Both datasets show increases in Developed land, Grass/Shrub,
Cropland, and Water throughout the time series. Results show a
decrease in Barren, Tree Cover, and Wetland classes (Table 1).
Interannual variations in land cover composition, and computed
differences between the outputs (ARD vs. REP), are shown in greater
detail in the Supplementary Material. These Supplementary plots
show a steady increase in Developed land and substantial decreases
in Water. Differences between ARD and REP composition are quite
small with R2, MAD, andMAPD values ranging from 0.923 to 0.999,
5–75 km2, and 0.5%–5.7%, respectively (refer to
Supplementary Material).

Differences in annual classifications are noticeable in years
surrounding periods of land cover change. Figure 8 shows an
example of a pixel from the region in Figure 5 that experienced
heightened model breaks. The associated land cover classification of
the CCDC outputs resulting from the ARD and REP input datasets
are similar yet clearly not identical. This example shows a forested
location that is harvested in the late 1990s, followed by a
regeneration period, and then the location is harvested again in
the middle 2010s.

FIGURE 4
Annual number ofmodel breaks fromU.S. Landsat Analysis Ready
Data (ARD) and for scene-based data (i.e., reprojected from Universal
Transverse Mercator (UTM) to ARD using the exact same scenes that
were used in the creation of the ARD data) for the Atlanta tile
from 1985 to 2023 derived from the Continuous Change Detection
and Classification (CCDC) algorithm.

FIGURE 5
Annual number of model breaks from U.S. Landsat Analysis Ready Data (ARD) (A) and for reprojected scene-based data (REP) (B) for the Atlanta ARD
tile region from 1985 to 2023 derived from the Continuous Change Detection and Classification (CCDC) algorithm. A true color image (C) of a location
showing some of the highest number of model breaks in this region is shownwith detailed depictions of the differences between the ARD (D) and REP (E)
outputs at a location experiencing rotational timber harvest in north central Georgia, USA.
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4 Discussion

Anytime remotely sensed data are resampled or reprojected, an
unavoidable transformation occurs that alters the original pixel
values. In this study, Landsat Collection 2 UTM data are

FIGURE 6
Average confusion matrix for classifications derived using the Continuous Change Detection and Classification (CCDC) algorithm for the Atlanta tile
representing classifications of all 25 million pixels per year from 1985 to 2023. Land cover class abbreviations: TC = Tree Cover, DV = Developed, CP =
Cropland, GS = Grass/Shrub, WL = Wetland, WR = Water, BN = Barren, No Data = no classification derived from CCDC.

FIGURE 7
Annual Atlanta tile land cover composition for the U.S. Landsat
ARD-based data (ARD) and scene-based (i.e., reprojected) data (REP)
for 1985 to 2023 (Land cover class abbreviations: TC = Tree Cover,
DV = Developed, CP = Cropland, GS = Grass/Shrub, WL =
Wetland, WR = Water, BN = Barren). Plots of individual land cover
classes are available in the Supplementary Material.

TABLE 1 Differences in area (km2) of each land cover type for the
reprojected scene-based dataset (REP) and the U.S. Landsat ARD-based
dataset (ARD) calculated by subtracting the 2023 value from the 1985 value.

Land cover type ARD REP

Developed 799 946

Grass/Shrub 585 499

Cropland 183 251

Water 28 38

Barren −1,126 −1,186

Tree Cover −822 −869

Wetland −4 −34
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reprojected into the ARD Albers Equal Area Conic projection using
cubic convolution as provided by the Rasterio python library (Gillies
et al., 2013), where the new value of each pixel is calculated by fitting
a smooth curve based on the surrounding pixels. While other
resampling methods exist, cubic convolution is generally accepted
to be most appropriate for use when reprojecting continuous field
satellite imagery and is the method used by the USGS when
producing Landsat products (Earth Resources Observation and
Science Center, 2020a; Earth Resources Observation and Science
Center, 2020b; Earth Resources Observation and Science Center,
2020c; Earth Resources Observation and Science Center, 2020d).
When raster data are reprojected using calculations within a
geometric transformation model, images are warped from the
original projection space (here: UTM) to the desired projection
space (here: ARD Albers Equal Area Conic). This is well established
in remote sensing, although the impacts of such transformations in
higher levels of data processing are less well understood, hence the
motivation for this study. The resulting reprojected pixel values are
similar although this research demonstrates that they are clearly not
the same. Previous research by Steinwand et al. (1995) indicates that
a potential reason for the difference in pixel values between datasets
in this study being so small is related to a limited amount of
geometric distortion when reprojecting from UTM to a conical
projection for the southeastern United States. Changes to pixel
values are expected during reprojection, but the degree to which
changes in surface reflectance impacts local and regional scale
features produced in subsequent data processing such as
classification of land cover was unreported prior to this study.
The results of this study indicate that small changes in surface
reflectance due to reprojection have fine-scale impacts on input data

but do not significantly alter land cover classification or detection of
changes in land cover in large-scale analyses.

Differences in change detection produced by CCDC after input
data reprojection are subtly important, depending on the scale of the
application of land cover outputs. Large-scale metrics from this
study indicate that the change is quite small (MAPD = 3%) when
anywhere from ~50,000 to 1,200,000 model breaks occur annually
across the entire Atlanta tile. Small-scale investigations into the
results from this study indicate that the abundance and timing of
CCDC model breaks can vary depending on the input dataset.
Previous studies without input data reprojection have noted
similar difficulty in detection of small-scale land cover change
timing as well as classification confusion. For example,
classification labeling uncertainty for early successional forest has
been confused with cropland, and recently logged areas with little
detectable vegetation can lead to classifications of grassland or bare
soil (i.e., Barren) (Kinnebrew et al., 2022). Small-scale, gradual
spatiotemporal changes, like insect infestations in forests, are
challenging to quantify (Pouliot et al., 2014; He et al., 2024).
Nevertheless, small differences in the abundance and timing of
model breaks does not significantly impact delineation of
landscape features (forests, urban areas, etc.) or changes at larger
(i.e., ARD tile-level) scales. Applications focused on small-scale
geospatial changes (pixel-level) to land cover will notice that
resampling pixels can have a greater influence on results than
applications focused on more large-scale (ARD tile-level) analyses
of land cover dynamics. Areas where there are three or more breaks
commonly represent areas experiencing natural (e.g., water-level
fluctuations in a lake/reservoir or drought impacts on national
forests) or anthropogenic influences (e.g., forestry, mining, or
urbanization) on land cover dynamics. For instance, interannual
water level rise and fall along shorelines of lakes/reservoirs increases
model break potential (i.e., land cover change), and areas where
commercial timber production is occurring inherently experience
greater probability of model breaks occurring. In the context of this
example, finer-scale analyses of lake surface area or small-scale tree
stand monitoring will vary, depending on whether the input data
have been resampled. In a larger, more landscape-scale context, the
fluctuation of model breaks and resulting land cover classes on a
proportionally small number of pixels relative to the entire tile
comprised of 25 million pixels, will be less impactful on overall
landscape-level analyses of land cover change through time,
regardless of whether the data were resampled or not. Our
results show that both ARD and REP datasets show similar
large-scale change abundance and timing.

For this particular region, our results indicate that analyses
focused on large- or regional-scale Tree Cover, Developed, and
Cropland compositional dynamics would likely obtain similar
results in terms of CCDC outputs of change detection and
classification/composition after input data are reprojected.
However, discrepancies in classification associated with all other
classes begin to increase after input data have been reprojected and
run through the CCDC algorithm.We highlight a fine-scale example
of a location experiencing commercial timber production where
land cover classification and model breaks (i.e., land cover change)
through the time series are quite similar, but some important
distinctions are revealed. For example, the timing of Tree Cover
removal (i.e., timber harvest) is captured by both sets of results, but

FIGURE 8
Output for an example pixel (−83.1244 W, 33.6830 N) of annual
land cover composition using the U.S. Landsat ARD-based data (ARD)
and reprojected scene-based data (REP) for 1985 to 2023 (A). Location
of the example pixel is identified by a box in (B–F). (Land cover
class abbreviations: TC = Tree Cover, GS = Grass/Shrub, BN = Barren,
CP = Cropland).
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the REP data output classified the pixel as Barren for 2 years prior to
becoming Grass/Shrub whereas the ARD remained tree cover and
switched abruptly to Grass/Shrub. Both datasets captured the
transition timing from Grass/Shrub to Tree Cover in the same
year, but when the plot was harvested a second time, the ARD
data converted to Barren for the final 4 years of the time series
whereas the REP data remained Tree Cover for three of the last
4 years before converting to Cropland. Clearly, this location is not
used as Cropland, but the final year of the time series of the REP data
resulted in an unrealistic classification. This artifact of reprojection
could be very important if research is focused on very fine
geographic scales or plot-level dynamics. If natural resource
managers are relying on land cover mapping using CCDC for
assessment of large-scale compositional changes through time,
reprojection will not likely invalidate such an approach.
However, reprojection is shown to alter the time series of events
related to timing of model breaks (i.e., land cover change) and
resulting classification, so caution should be exercised if a
reprojection of the input data occurs.

Limitations to this study include the fact that only one ARD tile
has been investigated. However, with 25 million pixels to survey
over a study period of 38 years, we consider this sample size to be
adequate for this study. Future research could investigate a variety
of ARD tiles representing a diverse spectrum of biogeographical
conditions that have been impacted by land cover change in
different ways. The land cover classes in this study are
intentionally broad in their definitions, which could be adjusted
in future work to understand how resampling of input data may
impact more specific land cover classes (e.g., Tree Cover versus
Deciduous/Evergreen Trees). We also only considered the
geometric transformation and associated resampling of imagery
from UTM to an Albers Equal Area Conic projection. We expect
that other land cover monitoring applications would apply a
similar equal area conic projection (e.g., Lambert) if UTM was
unsatisfactory and that the impact of transformation and
resampling would be similar. Applications where impacts of
input data resampling need to be rigorously quantified may
seek to repeat investigations we have demonstrated here for
applications-specific projections, geographies, and/or output
data types.

In conclusion, the observed time-series models and resulting
land cover outputs from REP data are not significantly different
from ARD inputs on larger scales. Surface reflectance values
change during the resampling procedures in reprojection of
raster data pixels, and these differences propagate through the
CCDC algorithm by producing varying levels of change detection
model breaks and varying land cover classification of interannual
pixel values. The scale of applications is important when
considering the impacts of input data reprojection. On small
spatial scales (i.e., pixel to plot level) differences in model
breaks and land cover classification could complicate
interannual analyses on land cover dynamics. On larger spatial
scales (regional to tile-wide), the differences introduced by input
data reprojection are relatively small. In summary, caution should
be exercised when interpreting the results of algorithmic outputs of
land cover change and composition, depending on the scale of the
analysis and research goals.
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