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Estimation of Chlorophyll-a concentration (Chl-a) across diverse aquatic systems
using Moderate Resolution Imaging Spectroradiometer-Aqua (MODIS-A) data
has posed challenges, particularly the inability of existing algorithms to maintain
consistent accuracy across varying optical water conditions, from oligotrophic
clear waters to highly turbid productive systems. Traditional Blue/Green ratio
approaches often show limitations over optically complex waters where colored
dissolved organic matter and suspended sediments interfere with phytoplankton
signal detection. In contrast, Red/NIR (Near-Infrared) models perform relatively
well in productive coastal domains but are less effective in open ocean waters
where phytoplankton absorption is too weak to produce detectable signals in
these longer wavelengths. To address these challenges, we developed a
Combination Of Neural Network models for Estimating Chlorophyll-a over
Turbid and clear waters (CONNECT model) based on the principle that
different Optical Water Types (OWTs) require specialized bio-optical
algorithms. The methodology involves the development of two Multi-Layer
Perceptron (MLP) models (NN-Clear & NN-Turbid) that are trained and
evaluated on a comprehensive in-situ dataset with simultaneous
measurements of Remote Sensing Reflectance (Rrs) and Chl-a gathered in
various environments from clear to ultra-turbid waters (N = 5,358) with Chl-a
ranging between 0.017 and 838.24 µg.L-1. These specialized models are then
combined through a weighted blending approach to produce unified Chl-a
estimates that adapts to the optical conditions of various water types. In
particular, the algorithm merging process involves the use of probability
values corresponding to 2 groups of Optical Water Types as the blending
coefficients. Accuracy evaluations performed on both in-situ and matchup
datasets indicate a remarkable advancement of the CONNECT model

OPEN ACCESS

EDITED BY

Nan Xu,
Hohai University, China

REVIEWED BY

Hongtao Shi,
China University of Mining and Technology,
China
Jiapeng Huang,
Liaoning Technical University, China

*CORRESPONDENCE

Manh Duy Tran,
manh-duy.tran@univ-littoral.fr

Vincent Vantrepotte,
vincent.vantrepotte@univ-littoral.fr

RECEIVED 04 February 2025
ACCEPTED 08 August 2025
PUBLISHED 01 September 2025

CITATION

Tran MD, Vantrepotte V, El Hourany R,
Jorge DSF, Kampel M, Cardoso dos Santos JF,
Oliveira EN, Paranhos R and Jamet C (2025)
Combination of neural network models for
estimating Chlorophyll-a over turbid and clear
waters (CONNECT).
Front. Remote Sens. 6:1570827.
doi: 10.3389/frsen.2025.1570827

COPYRIGHT

© 2025 Tran, Vantrepotte, El Hourany, Jorge,
Kampel, Cardoso dos Santos, Oliveira, Paranhos
and Jamet. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Remote Sensing frontiersin.org01

TYPE Methods
PUBLISHED 01 September 2025
DOI 10.3389/frsen.2025.1570827

https://www.frontiersin.org/articles/10.3389/frsen.2025.1570827/full
https://www.frontiersin.org/articles/10.3389/frsen.2025.1570827/full
https://www.frontiersin.org/articles/10.3389/frsen.2025.1570827/full
https://www.frontiersin.org/articles/10.3389/frsen.2025.1570827/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2025.1570827&domain=pdf&date_stamp=2025-09-01
mailto:manh-duy.tran@univ-littoral.fr
mailto:manh-duy.tran@univ-littoral.fr
mailto:vincent.vantrepotte@univ-littoral.fr
mailto:vincent.vantrepotte@univ-littoral.fr
https://doi.org/10.3389/frsen.2025.1570827
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2025.1570827


compared to the traditional Blue/Green approaches over different trophic
conditions with an improvement of 49.65% on the matchup validation
considering the Symmetric Signed Percentage Bias (SSPB) metric.
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chlorophyll-a, machine learning, optical water types, coastal eutrophication, MODIS-
aqua, ocean color remote sensing

1 Introduction

Reliable estimation of Chlorophyll-a concentration (Chl-a) from
remotely sensed data is essential for monitoring the health of aquatic
ecosystems and supporting environmental policy decisions (El Serafy
et al., 2021; Melet et al., 2020; Muller-Karger et al., 2018). One of the
major ecological concerns related to Chl-a is eutrophication, which
occurs due to the presence of excessive nutrients within the water
bodies. This leads to a sequence of negative events including increased
phytoplankton growth, harmful algal blooms (HABs), oxygen
depletion, and ultimately water quality degradation (Anderson et al.,
2002; Smith and Schindler, 2009). Additionally, phytoplankton
communities play a key role in the global carbon cycle by
consuming carbon dioxide (CO2) from the atmosphere to produce
their own biomass through the process of photosynthesis (Behrenfeld
et al., 2006). This biological pump acts as a natural mechanism for
modulating the Earth’s climate by mitigating the greenhouse effect
(DeVries et al., 2012). The assimilation of satellite archives throughChl-
a estimations can help detect regions at risk of eutrophication, monitor
the progression of HABs and effectively support the development of
environmental strategies (Schaeffer et al., 2013).

Moderate Resolution Imaging Spectroradiometer - AQUA
(MODIS-A) satellite data, operational since 2002, provides the
longest available time series from a single sensor. While the merged
products such as those from the Ocean Colour Climate Change
Initiative (OC-CCI) (Sathyendranath et al., 2021) and the
GlobColour projects by the European Space Agency (ESA) and
ACRI-ST, respectively, aim to combine data from multiple space
sensors to produce comprehensive time series. The reliability of
such products for long-term monitoring purposes still needs to be
evaluated, especially for coastal waters, in terms of consistency due to
the integration of data from multiple satellite sensors with different
characteristics (e.g., different spatial and temporal resolutions, spectral
bands, and calibration methods) (Mélin et al., 2017). Therefore,
MODIS-A remains the only platform currently providing the most
comprehensive continuous time series data considering mono-
sensor products.

The traditional inversion algorithms for estimating Chl-a based
on the Blue/Green ratio (i.e., Gohin et al., 2002; O’Reilly et al., 1998;
O’Reilly and Werdell, 2019) have proven the effectiveness in
oligotrophic to mesotrophic waters typically known as Case-1
waters where variations in the optical properties of the water are
predominantly characterized by phytoplankton community
(IOCCG, 2000; Morel and Prieur, 1977). Such approaches,
however, often fail to produce accurate predictions over turbid
productive regions. This failure largely stems from the high
turbidity and the presence of optically active constituents such as
suspended particulate matter (SPM) and colored dissolved organic
matter (CDOM) in Case-2 waters, which significantly alter the
inherent optical properties (IOPs) of the seawater (Dierssen and

Karl, 2010; Lavigne et al., 2021; Loisel et al., 2017; Neil et al., 2019;
Tran et al., 2023).

In addition, the spectral range between 665 nm and 709 nm
appears as an important region for Chl-a retrievals in optically
complex environments, as it captures the signature of
phytoplankton absorption while minimizing the effects of SPM
and CDOM. Typical Red/NIR (Near-Infrared) algorithms
(i.e., Mishra and Mishra, 2012; Tran et al., 2023) rely on the
advantages of this spectral range to empirically derive Chl-a for
operational sensors such as Envisat MEdium Resolution Imaging
Spectrometer (MERIS) and Ocean and Land Colour Instrument
(OLCI). However, the absence of the 709 nm spectral band in
MODIS-A observations, indeed, makes it more difficult to infer
information about phytoplankton biomass accurately.

Since the performance of Blue/Green and Red/NIR band ratios
varies across different water types, it is necessary to develop
systematic approaches to establish bio-optical algorithms that
facilitate the use of ocean color data by end-users. Several studies
have utilized machine learning-based approaches and/or combined
multiple inversion algorithms tailored to multiple groups of Optical
Water Types (OWTs) to achieve seamless predictions of Chl-a
across various trophic conditions (Lavigne et al., 2021; Pahlevan
et al., 2020; Smith et al., 2018; Tran et al., 2023). These methods,
however, have not been specifically optimized for MODIS-A
applications. In addition, the significant variability in the
performance of existing models over different water bodies, along
with the challenges associated with optically complex waters
highlight a critical gap in the conventional methodological
approaches, necessitating the development of adaptive and/or
more sophisticated models (Schofield et al., 2004).

In response to the challenges to retrieve Chl-a from ocean color
archives including the spectral limitations of MODIS-A, algorithmic
inflexibility of a single bio-optical model for various water types, and
spatial discontinuity issues that potentially arise when performing
algorithm switching, this paper proposes a novel methodological
approach that involves the combination of two Multi-Layer
Perceptron (MLP) neural network models to improve Chl-a
retrievals from MODIS-A observations and to better exploit its
long time series for comprehensive environmental monitoring
applications. These models are designed to specialize in two
groups of OWTs aiming at enhancing the accuracy of Chl-a
estimation by taking advantage of machine learning’s capabilities
to model non-linear patterns in the data. By integrating two neural
networks, this approach aims to dynamically adjust to the optical
characteristics of both oceanic and coastal waters, thereby
overcoming the limitations of the conventional inversion
algorithms. The following sections of this manuscript provides a
detailed description of the datasets used to develop and validate the
neural network models, the development of the Chl-a inversion
algorithm, and its performance assessment through an inter-
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comparison with historical models. Finally, the matchup validation
and discussion on the visual assessment are provided for practical
monitoring of Chl-a across multiple OWTs of seawater using
MODIS-A satellite archives.

2 Materials and methods

The overall methodological approach employed in this study is
illustrated in Figure 1, which presents the comprehensive workflow
for the development and validation of the CONNECT model.

2.1 In-situ dataset

The in-situ dataset (used as a training and validation dataset for
the Chl-a inversion model development) is composed of different
data subsets including (Tran et al., 2023; Lehmann et al., 2023;
Valente et al., 2022; Oliveira et al., 2016). The geographical
distribution of the in-situ measurements (Figure 2) includes very
contrasted water bodies in terms of optical properties as illustrated
by the coverage of five OWTs implying clear to ultra-turbid waters
previously defined in (Tran et al., 2023). The sampling locations
encompass diverse eutrophic states and turbidity levels of the

FIGURE 1
Flowchart of the methodological framework showing the development and validation process of the combined Chl-a model.

FIGURE 2
Spatial distribution of the whole in-situ dataset (DS-W) gathering simultaneous Chl-a and radiometric measurements.
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aquatic ecosystems including inland, coastal, and open ocean
environments worldwide distributed.

Following a standard quality control procedure documented in
(Lehmann et al., 2023; Tran et al., 2023), which accounts for the
flagged measurements (e.g., noisy and negative spectra, uncertain
samples, etc.), this dataset contains 5,358 paired observations of both

radiometric hyperspectral and multispectral remote sensing
reflectance (Rrs) and surface Chl-a concentrations ranging from
0.017 to 838.24 µg.L-1 with an average of 17.67 µg.L-1. The summary
statistics of the in-situ Chl-a is provided in Table 1.

The whole dataset (DS-W) was randomly partitioned into three
subsets: (1) a development dataset (DS-D, 70%) for training; (2) a

TABLE 1 Summary statistics of the in-situ Chlorophyll-a dataset across five OWTs.

OWT Mean (µg.L-1) Median (µg.L-1) Chl-a range (µg.L-1) N

1 0.30 ± 0.32 0.18 0.017–2.35 594

2 1.16 ± 2.01 0.73 0.05–28.06 371

3 2.42 ± 2.49 1.74 0.05–40.57 1,689

4 34.95 ± 57.6 16.63 0.13–838.24 2,478

5 14.92 ± 23.7 6.66 0.08–173.62 226

Overall 17.67 ± 42.71 3.43 0.017–838.24 5,358

FIGURE 3
Frequency distribution of the Chl-a concentration on (a) the development dataset (DS-D), (b) the validation dataset (DS-V), and (c) the test datasets
(DS-T).

FIGURE 4
Spatial distribution of the Matchup Dataset (DS-M).
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validation dataset (DS-V, 15%) for generating noise simulations to
perform the atmospheric sensitivity validation of the two neural
network models; and (3) a test dataset (DS-T, 15%) serving as an
independent dataset for evaluating the developed Chl-a model
against existing inversion algorithms (Figures 1, 3).

2.2 Matchup dataset

A matchup dataset (DS-M) was constructed by integrating
exclusively in-situ Chl-a measurements from the (Lehmann et al.,
2023; Valente et al., 2022) datasets for which the corresponding
radiometric data for MODIS-A wavebands are not available (these
data points are not included in the DS-D and DS-V), and additional
Chl-a samples from the long lasting data collected in the framework
of French monitoring programs including the Network Monitoring
Phytoplankton (REPHY, https://www.seanoe.org/data/00361/
47248) and Coastal Environment Observation Service (SOMLIT,
https://www.somlit.fr/en/) (Figure 4). To ensure the robustness of
the evaluation, the DS-M and DS-T are independent from the
development of the algorithm and have in common 228 data points.

In this matchup validation, the daily level L1A MODIS-A
archives with 1 × 1 km2 spatial resolution of visible wavebands
were collected from the database of Ocean Biology Processing Group
of National Aeronautics and Space Administration (OBPG of
NASA, https://oceandata.sci.gsfc.nasa.gov/) according to the dates
and times when in-situ measurements were acquired. Here, we
utilized two atmospheric correction (AC) processors including
Ocean Color - Simultaneous Marine and Aerosol Retrieval Tool
(OC-SMART) (Fan Y. et al., 2021) and Sea, earth, atmosphere Data
Analysis System (SeaDAS) to retrieve Level-2 Rrs data. The selection
of these processors in the present study is based on their specific
advantages. The SeaDAS processor, developed and officially
supported by NASA, implements the traditional ocean color
approach (Mobley et al., 2016) and is known as the standard
atmospheric correction for MODIS-A. On the other hand, OC-
SMART, employing MLP neural networks, appears to be a
promising machine-learning-based model for retrieving Rrs from
satellite data in optically complex environments (Bui et al., 2022;
Valerio et al., 2024).

In practice, to perform the matchup validation analysis, the
collected in-situ datasets were matched with correspondingMODIS-
A satellite images to extract data from a 3 × 3-pixel window centered
on the in-situ measurements. The selection of matchup data was
controlled using a standard protocol (Werdell et al., 2009) including
the following criteria:

• The time difference between the satellite observations and the
in-situ data collection was limited to less than 3 h.

• The coefficient of variation (CV) within each 3 × 3-pixel
windowwas kept below 30%. This threshold was established to
ensure the spatial homogeneity of the satellite data.

• The matchup extraction process also requires that the number
of valid pixels within each 3 × 3-pixel window is spatially
representative defining a limit of at least five valid pixels.

The median value of all valid pixels was then calculated for the
matchup exercise. In addition, these criteria were applied specifically

to the Rrs at 547 nm, as the retrieved errors are typically lowest at this
band due to its less absorption by water constituents compared to
those in blue or red regions (Goyens et al., 2013; Jamet et al., 2011;
Mograne et al., 2019). After applying these selection criteria, the
resulting dataset consists of 701 data points, as shown in Figure 4,
with Chl-a concentrations ranging from 0.029 to 119.724 µg.L-1 with
an average of 6.88 ± 15.643 µg.L-1.

2.3 Historical Chlorophyll-a algorithms

2.3.1 OC3M algorithm
The OC3M algorithm is an empirical algorithm with adapted

wavebands of MODIS-A sensor. This Chl-a model is developed
based on the relationship between the maximum band ratio (MBR)
of the blue-to-green reflectance (Equation 2) and Chl-a through a
fourth-order polynomial function (Equation 1) (O’Reilly et al.,
1998). The updated coefficients and the formulation of the
OC3M algorithm follow the recent study by (O’Reilly and
Werdell, 2019) and can be described as below:

Chl-a � 10a0+a1×R+a2×R
2+a3×R3+a4×R4

(1)
where

R � log10
max Rrs 442( ),Rrs 488( )( )

Rrs 547( )( ) (2)

The coefficients for this model are a0 = 0.26294, a1 = − 2.64669,
a2 = 1.28364, a3 = 1.08209, a4 = − 1.76828.

2.3.2 OC5-Gohin algorithm
The OC5-Gohin model refers to a five-channel model introduced

in (Gohin et al., 2002), whichwas designed to correct the overestimation
of Chl-a estimated by the OC4model (O’Reilly et al., 1998) over coastal
environments with the presence of moderately turbid conditions
associated with high CDOM levels. This model relies on sensor-
specific look-up tables (LUTs) developed from an extensive in-situ
dataset to empirically retrieve Chl-a.

2.3.3 MuBR algorithm
The MuBR model is a band-ratio-based algorithm recently

proposed by (Tran et al., 2023) to retrieve Chl-a for Sentinel-2/
MSI and Sentinel-3/OLCI. In this study, the coefficients of this
algorithm were re-tuned for MODIS-A sensor by considering an
additional band ratio of reflectance between the red andNIR spectral
bands. The model (Equation 3) incorporates four band ratios
(Equations 4–7) that capture different spectral signatures across
the visible and NIR spectrum.

ChlMuBR � 10a0+a1R1+a2R2+a3R3+a4R4 (3)
where

R1 � log10
Rrs 488( )
Rrs 442( )( ) (4)

R2 � log10
Rrs 547( )
Rrs 488( )( ) (5)

R3 � log10
Rrs 667( )
Rrs 547( )( ) (6)

Frontiers in Remote Sensing frontiersin.org05

Tran et al. 10.3389/frsen.2025.1570827

https://www.seanoe.org/data/00361/47248
https://www.seanoe.org/data/00361/47248
https://www.somlit.fr/en/
https://oceandata.sci.gsfc.nasa.gov/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1570827


R4 � log10
Rrs 748( )
Rrs 667( )( ) (7)

and a0 = 1.4203, a1 = −3.2205, a2 = 2.4194, a3 = 0.5486, a4 = 0.3391.

2.4 Multinomial Logistic Regression (MLR)

Multinomial Logistic Regression (MLR) (Hausman and Wise,
1978) is a supervised classification approach used to predict
categorical outcomes from one or more independent variables. In
this study, we employed MLR to associate each observation with to
the corresponding OWT, where the categorical outcomes are the
defined OWTs, and the independent variables are the normalized
Rrs (Rnorm

rs ) values at different wavelengths. The MLR model
estimates the log-odds values (Equation 8) corresponding to each
OWT through a fitting process in the log-odd transformed axis. The
log-odds for OWTi can be expressed using the following equation:

Zi � βi0 + βi1X1 + βi2X2 + . . . + βinXn (8)
where Zi is the log-odd values of OWTi, n is the number of spectral
bands involved in the classification, βi0, βi1,. . ., βin are the optimized
coefficients, and X1, X2, . . . , Xn are the independent variables
(Rnorm

rs ). The coefficients are estimated through an iterative
process to maximize the likelihood function (Murphy, 2012).

Once the log-odds are obtained, the probability Pi(X) of a given
data point to belong to the OWTi can be then computed through
softmax normalization (Equation 9):

Pi X( ) � ezi∑K
j e

zj
(9)

where K is the total number of defined OWTs, ezi is the
exponentiated log-odds for OWTi, and ∑K

j e
zj is the sum of the

exponentiated log-odds for all OWTs. Each observation is then
assigned to the OWT according to the highest probability yielded
from the MLR.

2.5 Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP) is a type of Artificial Neurals
Networks (ANNs) that is particularly effective in solving regression
problems. Its application has immensely contributed to the
facilitation of intricate and non-linear patterns in the data in
various practical scenarios, including those related to the field of
ocean color remote sensing (D’Alimonte and Zibordi, 2003; Doerffer
and Schiller, 2007; Gross et al., 2000; Jamet et al., 2012; Rubbens
et al., 2023). The architecture of an MLP typically involves an input
layer (here the MODIS-A Rrs), one or more hidden layers, and an
output layer (Chl-a). Each layer is composed of fully connected
neurons through adjustable weights. These weights or connections
are optimized as the network is trained through an iterative back-
propagation process (Bishop, 1995).

In regression tasks, the input layer captures the input data of
independent variables, which is then passed and processed through
the hidden layers. Each neuron in these layers employs an activation
function on its inputs, allowing the network to learn complex

features of the data (Bishop and Nasrabadi, 2006). The output
layer subsequently produces continuous output values,
representing the prediction from MLP. During the training
process, the MLP adjusts weights of the neural network to
minimize the error between the it’s prediction and the actual
data, which is typically calculated through a loss function
(Bishop and Nasrabadi, 2006).

Historical neural network approaches to retrieve Chl-a have
typically relied on a single model to estimate the entire range of
Chl-a (Chen et al., 2024; D’Alimonte and Zibordi, 2003; Pahlevan
et al., 2020). In an effort to better exploit the advantages of machine
learning, this study contributes to the optimization of Chl-a retrievals
from satellite data through the development and combination of MLP
models. This combination was performed by using the weights for
different groups of OWTs with the aim to obtain more accurate and
seamless Chl-a estimates across various trophic conditions.

2.6 Statistic indicators

To evaluate the performance of the considered models, we
adopted a set of statistical indicators computed between in-situ
observations and model-derived estimates. The computation of
these performance metrics can be expressed as follows:

R2
log � 1-

∑N
i log10 yobsi( )- log10 ymod

i( )( )2∑N
i log10 yobsi( )- 1N∑N

i�1log10 yobsi( )( )2 (10)

Slopelog �

																																																				∑N
i�1 log10 yobsi( )-log10 yobsi( ) × ( log) 10 ymod

i( )-log10 ymod
i( )( )∑N

i�1 log10 yobsi( )-log10 yobsi( )( )2⎛⎜⎜⎝ ⎞⎟⎟⎠
×

∑N
i�1 log10 ymod

i( )-log10 ymod
i( )) × ( log10 yobsi( )-log10 yobsi( )( )∑N

i�1 log10 ymod
i( )-log10 ymod

i( )( )2⎛⎜⎜⎝ ⎞⎟⎟⎠
2

√√√√√√√√
(11)

MAPD � median
ymod-yobs
∣∣∣∣ ∣∣∣∣

yobs
( ) × 100% (12)

SSPB � sign median
log10 ymod( )
log10 yobs( )( )( ) × 10

median
log10 ymod( )
log10 yobs( )( )∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣-1⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ × 100%

(13)
where yobs represents the in-situ observations and ymod is the model-
derived estimates. R2

log and Slopelog are the determination coefficient
and the Slope of type II regression calculated from the
logtransformed data, respectively (Equations 10, 11). MAPD
represents Median Absolute Percentage Difference computed in
linear scale and SSPB stands for Symmetric Signed Percentage
Bias (Equations 12, 13). Here, we also used the radar chart
derived from the normalized values (Equations 14-18) of the
mentioned metrics and the number of not valid (NV) data points
that a model can output to assess the performance of the candidate
model j (Nguyen et al., 2024; Tran et al., 2023).

R2
norm j( ) � min R2

log j( ), j � 1, k( )
R2
log j( ) (14)

Slopenorm j( ) � 1-Slopelog j( )∣∣∣∣∣ ∣∣∣∣∣
max 1-Slopelog j( )∣∣∣∣∣ ∣∣∣∣∣, j � 1, k( ) (15)
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MAPDnorm j( ) � MAPD j( )
max MAPD j( ), j � 1, k( ) (16)

SSPBnorm j( ) � SSPB j( )∣∣∣∣ ∣∣∣∣
max SSPB j( )∣∣∣∣ ∣∣∣∣, j � 1, k( ) (17)

NVnorm j( ) � NV j( )
max NV j( ), j � 1, k( ) (18)

The area computed from the radar chart, (Equation 19) denoted
as areanorm, will then be used as a score metric to rank the accuracy of
the inversion algorithms considered in the inter-comparison. A
lower areanorm indicates better overall algorithm performance, as
it represents smaller errors across all statistical indicators. This
metric represents the synthetic information of the five mentioned
statistical indicators and can be computed as:

areanorm � 1
2
×
π
5
× R2

norm j( ) × Slopenorm j( ) + Slopenorm j( )[
× MAPDnorm j( ) +MAPDnorm j( ) × SSPBnorm j( )
+ SSPBnorm j( ) × NVnorm j( ) + NVnorm j( ) × R2

norm]
(19)

3 Results and discussion

3.1 Development of CONNECT algorithm

In response to the challenges posed by differences in optical
properties between Case-1 and Case-2 waters as aforementioned,
adopting and/or merging multiple bio-optical models along with the
use of appropriate blending approaches have proven the
effectiveness in better retrieving precise information about water
constituents such as SPM (i.e., Han et al., 2016) and Chl-a
(i.e., Lavigne et al., 2021; Smith et al., 2018). This adaptive
approach, which applies different bio-optical algorithms based on
their performance in specific water types, allows more precise
quantification of water constituents across diverse aquatic
environments (Stramski et al., 2023).

The principle of developing multiple neural network models or
ensemble learning for solving regression problems relies on its
advantages to optimize the accuracy and robustness compared to
a single model as eachmodel can capture different aspects of the data
and eventually mitigate individual model biases and errors (Moreira
et al., 2012; Yang et al., 2013). This is also demonstrated through the
results obtained from our initial test where the combination of the
two neural network models, tailored to different groups of OWTs
exhibits an improvement compared to the case of a single model
trained on the entire in-situ dataset.

For this reason, the first model, referred to as ‘NN-Clear’, was
trained to specifically estimate Chl-a over clear to moderately turbid
waters. This model requires Rrs at six MODIS-A visible bands
(412 nm, 443 nm, 488 nm, 531 nm, 547 nm, and 667 nm) as the
inputs. Here, Rrs (748) was excluded from the NN-Clear model since
water-leaving radiance at NIR wavelengths is typically negligible in
open ocean waters, following the black pixel assumption (Gordon
and Wang, 1994; Goyens et al., 2013). The second model (NN-
Turbid) is designed particularly for turbid and ultra-turbid waters
with parameterization of seven variables including Rrs values at six

MODIS-A visible bands and the NIR band at 748 nm. In addition,
we also considered the OWT-specific probability in the development
of each neural network model to ensure the spatial continuity in the
Chl-a maps.

3.1.1 Optical water type labelling technique
In this study, we further extend the work done by (Tran et al.,

2023), in which OWTs 1 to 3 were identified as clear to moderately
turbid waters, while OWTs 4 and 5 are related to higher level of Chl-
a and SPM, typically associated with coastal and inland waters. To
retrieve the OWTs, an MLR model was established using the same
training dataset of the 5 OWTs used in (Tran et al., 2023), with a
specific adaptation considering the spectral bands of MODIS-A
sensor. Such method was applied to the normalized Rrs (Rnorm

rs ) to
obtain the probability values that represent the degree of
membership to each OWT as detailed in section 2.4. In this way,
the model provides information about the confidence level of a given
pixel or data point to belong to each defined OWT, which is valuable
for the model training and merging processes. In addition, our tests
suggest that the MLR approach can provide relatively balanced
probability values, which is theoretically beneficial to produce fine
gradient in the transition zone where one algorithm switches
to another.

3.1.2 Development of two neural network models
The data preprocessing step involves the division of the DS-W

into DS-D and DS-V for development and validation purposes (see
section 2.1). Then, we applied the z-score standardization technique
on the input Rrs data using a standard scaler as it is less sensitive to
outliers compared to the min-max normalization method (Fan C.
et al., 2021). This data transformation step is crucial for accelerating
training convergence as well as enhancing overall model
performance (Ioffe and Szegedy, 2015; Jamet et al., 2012, Jamet
et al., 2005; Jamet et al., 2004). The z-score standardization of the
input Rrs (λ) can be expressed as in the following equation:

Rrs λ( )scaled � Rrs λ( )-μ
σ (20)

where Rrs (λ)scaled is the scaled Rrs at the wavelength λ (nm), Rrs (λ)
is the raw input reflectance, µ is the mean, and σ is the standard
deviation of the input Rrs data (Equation 20). Besides, we also
applied a logarithmic transformation to the Chl-a data for two
keys reasons: 1) Chl-a concentrations in natural waters tend to
follow a lognormal distribution (Campbell, 1995; Mélin and
Vantrepotte, 2015). 2) log-transforming the data allows for a
more effective training process (Feng et al., 2014).

The training process was implemented using Adaptive Moment
Estimation (ADAM) optimizer (Kingma and Ba, 2017) available
within the tensorflow library for machine learning in Python
(Raschka and Mirjalili, 2019). Here, we used the Neural
Architecture Search (NAS) technique where the number of
hidden layers and the associated neurons of the MLP were
dynamically tested along with the iterative adjustments of the
L2 regularization values (Neumaier, 1998) to avoid the risk of
getting an over-fitting issue. The Rectified Linear Unit (ReLU)
activation function was employed to transform the propagated
data in each hidden layer, allowing the network to learn complex
patterns of the data (Agarap, 2019). To further improve the model’s
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predictive consistency across diverse aquatic environments, we also
adopted dropout and early stopping techniques during the training
phase (Prechelt, 1998). The objective of this comprehensive training
procedure is to generate a set of candidate models, which were then
evaluated to select the most pertinent MLP model to predict Chl-a
concentrations. To accomplish this, we incorporated random
Gaussian noise into the validation dataset through
100 simulations following the work of (Nguyen et al., 2024) to
simulate the uncertainties stemming from atmospheric disturbances
based on the mean MAPD values derived from the in-situ and
satellite-derived Rrs matchups of OC-SMART and SeaDAS AC
algorithms (see Table 3). Then, these noise-augmented datasets
were then used as indicators for the sensitivity assessment where
the model yielded the lower standard deviation value on the
simulated noisy datasets exhibits lower sensitivity to atmospheric
interference.

The selection of model architectures for NN-Clear and NN-
Turbid models was performed independently through the NAS
process, which objectively identifies the optimal number of layers
and neurons from the prediction error on the DS-V. The NAS
algorithm determined that NN-Turbid required a deeper
architecture (three hidden layers with 17, 8, and 4 neurons)
compared to NN-Clear (two hidden layers with 12 and
6 neurons) due to the greater complexity of the regression
problem for OWTs 4 and 5, which represent turbid and ultra-
turbid waters. In these conditions, the relationships between Rrs

and Chl-a are typically influenced by optical contributions from
other co-existing constituents such as suspended sediments and
CDOM, making the retrieval of Chl-a more challenging. The
increased architectural complexity of the NN-turbid reflects the
need for a more complex neural network to accurately estimate
Chl-a in optically complex environments, while a simpler network
suffices for the case of clear to medium turbid waters (OWTs 1–3)
where the optical signal is mainly driven by
phytoplankton biomass.

To ensure the complementarity of the two MLP models, while
allowing the possibility for each model to specialize in one group of
OWTs, we incorporated weights corresponding to the probability of
belonging to each group of OWTs in the loss function (see Equation
9; Equation 21). More specifically, the NN-Clear model was trained
on the entire DS-D with the incorporation of the probability values
corresponding to OWTs 1, 2, and 3, whereas the NN-Turbid model
was trained by considering of the probability values for OWTs 4 and
5. The integration of OWT-specific probability values into the loss
function allows each model to optimize its performance in its
designated water types while preserving gradual transitions
between two OWT groups. As a result, this helps to avoid the
spatial discontinuity issue potentially appears in the Chl-a map
when combining multiple inversion models.

Thus, the mathematical formulation of the loss function,
Lweighted, for the training process is defined as:

Lweighted � 1
N
∑n
i�1
P × ymod

i -yobsi( )2 (21)

where p is the probability values for the designated group of OWTs
(e.g., P � p1 + p2 + p3 for NN-Clear and P � p4 + p5 for NN-Turbid,
in which p1, p2, p3, p4, and p5 are the probability values

corresponding to the five OWTs) and yobs represents the in-situ
Chl-a observations and ymod is the model-derived estimates after
each training iteration.

The performance of NN-Clear on the DS-D and DS-V is shown
in Figure 5 where the Chl-a estimates demonstrate a consistency on
both datasets, implying an effective avoidance of overfitting with the
approximate MAPD values of 38.58% and 41.69% on the DS-D and
DS-V, respectively. Furthermore, the establishment of the NN-
Turbid model leads to a good performance on the in-situ dataset,
as evidenced by the Slopelog and MAPD values of 0.91% and 38.54%
on the DS-V (Figure 6b). The inclusion of the OWT 4 and OWT
3 data points for the NN-Clear and NN-Turbid models, respectively,
in the scatterplots is to ensure that our trained models did not result
in any artificial saturation effects at the boundaries with the
complementary OWT group, demonstrating the effectiveness of
incorporating probability values in the loss function.

3.1.3 Combination of two neural network models
The combination of the two trained neural network models for

estimating Chl-a was conducted using the sum of the probability
values corresponding to each group of OWTs obtained from the
MLR model. In this way, the CONNECT model presented here,
utilizes these probability values as the blending coefficients to
perform the algorithm merging process, which can be expressed
in the following equation:

Chl-a � p1 + p2 + p3( ) × Chl-aclear + p4 + p5( ) × Chl-aturbid (22)
where p1, p2, p3, p4, and p5 are the probability values corresponding
to the five OWTs (see section 2.5), Chl-aclear and Chl-aturbid are the
Chl-a estimates obtained from the NN-Clear and NN-Turbid
models, respectively (see section 3.1.1). In practice, for any given
water pixel, the MLR model assigns probability values (p1 to p5) to
the five predefined OWTs. These probabilities represent the
likelihood of the water pixel to belong to one of the OWTs, with
the sum equals to 1 (or 100%). Then, the twoMLPmodels NN-Clear
and NN-Turbid independently estimate the Chl-a concentration
(Chl-aclear and Chl-aturbid) for the same pixel. However, instead of
simply choosing one estimate over the other, themodel used aweighted
average based on the water type probabilities (Equation 22). The
primary objective of this combination process is to incorporate the
Chl-a estimates from both MLP models without introducing artificial
discontinuity in the final Chl-a maps. Consequently, the approach
maintains a smooth spatial transition between different water
conditions, resulting in a more realistic representation of the Chl-a
distribution across multiple OWTs.

3.2 Intercomparison and performance
evaluation

The inter-comparison of the accuracy of Chl-a retrievals for
MODIS-A sensor between CONNECT and the historical algorithms
on the in-situDS-V is illustrated in Figure 7. The estimated Chl-a for
each model is calculated according as described in section 2.3. More
detailed information about the statistical metrics (see section 2.4) for
each considered Chl-a model with respect to five OWTs is presented
in Table 2.
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The results obtained from this investigation show that the
CONNECT model generally outperforms the existing models, as
evidenced by the smallest area (0.173) on the radar chart as well as its
superior performance found for all metrics considering the entire
DS-T. The scatterplots in Figures 7b–d further emphasize the lower
performance of typical Blue/Green algorithms (i.e., OC3M, OC5-
Gohin) over turbid coastal and inland waters, indicated by higher
uncertainties associated with OWTs 4 and 5 (Table 2). This finding
aligns with previous studies as the Blue/Green approaches are better
suited to offshore clear environments where the optical signal is
dominated by phytoplankton pigments (Dierssen and Karl, 2010;
Neil et al., 2019; Tran et al., 2023). In addition, the OC5-Gohin
model appears to be more reliable than the OC3M model in
retrieving Chl-a over moderately turbid water (OWT 3) while the
opposite situation was found in clearer environments (OWT 2). This
difference is understandable given that the OC5-Gohin model was
specifically adapted for French coastal waters. Although the MuBR
model generally yields a satisfactory performance over mesotrophic

conditions with a relatively good Slope value of 0.82 recorded for
OWT 3, the machine learning-based algorithm introduced in
the present study shows clear improvements over all trophic
levels in the DS-T, especially for eutrophic waters (OWT 4)
where the Chl-a can reach up to 838.236 µg.L-1. This indicates
that the combination of adapted OWT-specific neural network
models represents a remarkable enhancement in retrieving Chl-a
in our in-situ dataset.

3.3 Matchup analysis

3.3.1 Performance of atmospheric
correction methods

Before studying the quality of the Chl-a estimates fromMODIS-
A sensor, two atmospheric correction algorithms (SeaDAS and OC-
SMART) were validated, as shown in Figure 8. The statistical
parameters per wavelength are provided in Table 3.

FIGURE 5
Relationship between the in-situ vs. estimated Chl-a from the NN-Clear model on the in-situ observations corresponding to OWTs 1, 2, 3, and 4 in
(a) the DS-D dataset (N = 3,596) and (b) the DS-V dataset (N = 764).

FIGURE 6
Relationship between the in-situ vs. estimated Chl-a from the NN-Turbidmodel on the in-situ observations corresponding to OWTs 3, 4 and 5 in (a)
the DS-D dataset (N = 2,500) and (b) the DS-V dataset (N = 545).
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FIGURE 7
Scatterplots (log–log scale) of the in-situChl-a (DS-T) vs. Chl-a estimated from different Chl-a models (a)CONNECT, (b)OC3M, (c)OC5-Gohin, (d)
MuBR. (e) Summary of the performance of the Chl-a inversion models where the lowest area of the polygon associated with each model represented in
the radar plot corresponds to the best model.
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TABLE 2 Statistical indicators evaluating the Chl-a retrieval performance of the CONNECT model vs. the 3 Blue/Green models: OC5-Gohin, OC3M, and
MuBR. The metrics were computed using in-situ DS-T Chl-a measurements and model-derived estimates over the five OWTs.

Class R2
log Slopelog MAPD (%) SSPB (%) N Not valid areanorm Model

OWT 1 0.526 0.700 41.183 4.050 95 0 0.640 CONNECT

0.457 0.769 49.301 −72.214 95 0 1.248 MuBR

0.466 0.653 33.139 12.504 95 0 0.767 OC3M

0.380 0.697 36.376 −8.952 91 4 1.228 OC5-Gohin

OWT 2 0.573 0.753 43.434 3.344 50 0 0.386 CONNECT

0.660 0.564 37.341 −50.905 50 0 0.601 MuBR

0.538 0.249 36.973 −3.842 50 0 0.603 OC3M

0.282 0.291 38.501 −21.872 50 0 1.064 OC5-Gohin

OWT 3 0.351 0.669 37.569 1.487 283 0 0.612 CONNECT

0.196 0.825 44.990 −18.499 283 0 0.712 MuBR

0.152 0.655 55.836 36.955 283 0 1.427 OC3M

0.197 0.743 46.237 9.863 283 0 0.803 OC5-Gohin

OWT 4 0.702 0.870 33.802 −3.737 344 0 0.148 CONNECT

0.515 0.597 51.498 −35.330 344 0 0.745 MuBR

0.152 0.572 63.927 −58.791 344 0 1.427 OC3M

0.208 0.788 61.950 −49.994 340 4 1.717 OC5-Gohin

OWT 5 0.643 0.664 42.244 21.630 32 0 0.198 CONNECT

0.012 0.562 230.281 226.145 32 0 1.427 MuBR

0.416 0.615 100.211 100.022 32 0 0.554 OC3M

0.208 0.987 82.071 64.594 31 1 0.457 OC5-Gohin

Overall 0.870 0.961 36.769 1.168 804 0 0.173 CONNECT

0.777 0.963 49.477 −31.877 804 0 0.548 MuBR

0.699 0.780 56.138 −3.469 804 0 1.000 OC3M

0.698 0.857 51.441 −15.322 795 9 1.556 OC5-Gohin

Bold values indicate the best performance for each metric

FIGURE 8
Performance of (a) SeaDAS and (b) OC-SMART AC algorithms to retrieve Rrs on the DS-M (concomitant matchups).
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Although OC-SMART retrieved more matchups without
producing negative Rrs compared to SeaDAS (l2gen) (not
shown), we only highlighted the analysis on the common
matchups to obtain a fair performance evaluation of these two
AC processors on the same data samples of 2,125 data points across
all considered wavelengths. Scatterplots in Figure 8 indicates that
OC-SMART and SeaDAS processors exhibited a fairly comparable
accuracy in retrieving Rrs from the TOA signals, evidenced by an
approximation in the MAPD values (SeaDAS: 27.8%, OC-SMART:
25.16%). Detailed information about different statistical metrics,
considering each individual wavelength as shown in Table 3,
generally shows better accuracy of retrieving Rrs in the green
bands and a lower performance towards the blue and NIR bands,
which is in good agreement with earlier studies (Mograne et al.,
2019; Pahlevan et al., 2021). Results from this examination also
indicate that OC-SMART exhibits a fairly better performance
compared to SeaDAS in the visible spectral bands. The lower
performance found for both AC methods at the wavelength of
748 nm emphasizes the need to improve the AC in the NIR
domain (Mograne et al., 2019).

3.3.2 Chl-a retrieval accuracy
Although the OC3M model showed limitations to derive

accurate Chl-a estimates over coastal turbid environments as
shown in our examination on the in-situ observations (see
section 3.3.1), this model has been known as one of the standard
Chl-a algorithms for MODIS-A and its reliability in terms of
accuracy has been extensively evaluated in various studies (Clay
et al., 2019; Pereira and Garcia, 2018; Tilstone et al., 2013).
Therefore, in this analysis, a cross comparison between OC3M

and CONNECT models was performed using the common
matchups, defined by simultaneously applying the flags produced
by both OC-SMART and SeaDAS AC processors (see section 3.3.1).

The scatterplots in Figures 9a–d illustrate the overall
performance of the CONNECT and OC3M models with respect
to the two considered AC approaches. The areas in the radar chart
Figure 9e) suggest an overall better performance of the machine
learning-based approach presented in this work compared to the
OC3M Chl-a algorithm considering both clear and turbid
environments. This is further illustrated by higher R2

log values
(SeaDAS: 0.85, OC-SMART: 0.83) and Slopelog (SeaDAS: 0.99,
OC-SMART: 0.94) and lower values of SSPB (SeaDAS: 11.65%,
OC-SMART: 15.71%) for the CONNECT model (N = 701). In
addition, the OC3M model produced consistently overestimated
Chl-a concentrations for water bodies classified as OWT 3,
regardless of the atmospheric correction method applied. The
CONNECT model, on the other hand, successfully overcame this
overestimation issue and provided more accurate Chl-a retrievals
over such moderately turbid waters which is typically associated
with coastal environments. This finding aligns with the statistical
analysis on our in-situ dataset presented in Table 2, where OWT-3
data points processed by the OC3M model exhibited a remarkably
high SSPB value of 36.9%.

Regarding clear to moderately turbid waters (OWTs 1, 2, and 3),
Chl-a retrievals from Rrs SeaDAS and OC-SMART processing
exhibit a comparable accuracy considering both CONNECT and
OC3M Chl-a models with fairly approximate R2

log values (e.g.,
CONNECT & SeaDAS: 0.73, CONNECT & OC-SMART: 0.72)
and MAPD values (e.g., CONNECT & SeaDAS: 40.9%,
CONNECT & OC-SMART: 42.8%), respectively. Interestingly, in

TABLE 3 Statistical metrics evaluating the Rrs retrieval performance of the SeaDAS and OC-SMART AC processors. Themetrics were computed using in-situ
Rrs measurements and satellite-derived estimates consideringMODIS-A’s spectral bands. The difference in number of data points for eachwavelength here
is attributed to the availability of our in-situ Rrs measurements.

Spectral bands R2
log Slopelog MAPD (%) SSPB (%) areanorm N Model

Rrs (412) 0.352 1.138 30.252 −13.213 1.219 295 SeaDAS

0.418 0.991 30.002 −16.892 0.533 OC-SMART

Rrs (443) 0.381 1.120 28.526 −20.450 1.427 334 SeaDAS

0.518 0.926 23.059 −14.366 0.704 OC-SMART

Rrs (488) 0.493 1.127 25.864 −21.049 1.427 409 SeaDAS

0.603 0.918 22.385 1.773 0.302 OC-SMART

Rrs (531) 0.683 0.976 22.083 −19.297 0.784 307 SeaDAS

0.691 0.925 21.124 5.586 0.732 OC-SMART

Rrs (547) 0.715 1.033 22.491 −22.288 0.921 281 SeaDAS

0.712 0.931 21.741 1.357 0.532 OC-SMART

Rrs (667) 0.774 0.921 30.620 −21.508 0.917 363 SeaDAS

0.807 0.829 28.586 3.681 0.564 OC-SMART

Rrs (748) 0.580 0.696 51.549 4.756 0.773 136 SeaDAS

0.589 0.791 58.440 14.301 1.122 OC-SMART

Bold values indicate the best performance for each metric
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FIGURE 9
Chl-a matchup validation of the CONNECT (a,c) and OC3M (b,d) models using the Rrs obtained from SeaDAS (a,b) and OC-SMART (c,d) AC
processors. (e) Summary radar chart comparing normalized performance metrics.
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turbid waters (OWTs 4 and 5), Chl-a estimations obtained from
OC-SMART demonstrates a remarkable improvement, emphasizing
the reliability of this AC algorithm in turbid coastal environments,
evidenced through the recorded SSPB values (CONNECT & OC-
SMART: 7.94% vs. CONNECT & SeaDAS: 17.58%) and MAPD
values (CONNECT & OC-SMART: 36.58% vs. CONNECT &
SeaDAS: 40.47%).

In addition, the result obtained for the CONNECT and
OC3M models in extremely turbid waters should be
interpreted with caution due to very limited sample size for
OWT 5 (only five matchup data points) given the poor
performance of the OC3M model in the in-situ dataset for this
OWT (see section 3.2; Figure 7). Another explanation is that high
uncertainties associated with the retrievals of Rrs in the NIR
region particularly at the waveband 748 nm by OC-SMART
might contribute to the lower performance of the bio-optical
algorithms over such optically complex environments (Pahlevan
et al., 2021).

3.4 Visual assessment of Chl-a
CONNECT product

To further understand the spatial distribution of Chl-a generated
by the CONNECT model as well as its sensitivity to different AC
methods on Chl-a products, several MODIS-A scenes covering three
different locations were examined across different trophic levels and
optical conditions with coastal to offshore gradients associated with
multiple OWTs. The selected area were the Guanabara Bay (turbid,
ultra-eutrophic waters (Martins et al., 2016; Oliveira et al., 2016)),
the English Channel (moderately turbid, mesotrophic waters (Gohin
et al., 2020, Gohin et al., 2019)), and the lower Mekong River (ultra-
turbid, mesotrophic waters (Loisel et al., 2017, Loisel et al., 2014)).
This visual assessment is conducted considering the same inputs
with previous sections, where the CONNECT model is compared to
OC3M with respect to the SeaDAS and OC-SMART AC processors.

Figure 10 illustrates the MODIS-derived Chl-a products and
their corresponding OWTs over the Bay of Rio on 13th July 2019.

FIGURE 10
Comparison of MODIS-A ocean color data processing methods and their results for the coastal region near the Bay of Rio on 13th July 2019 (a) True
color composite image from satellite data showing the study area. (b) SeaDAS-derived OWTs: Ocean Water Types (OWTs) classified using the SeaDAS
software. (c) OC-SMART-derived OWTs: Ocean Water Types (OWTs) classified using OC-SMART AC method. (d) SeaDAS CONNECT: Chl-a
concentration estimated from the CONNECT algorithm using the SeaDAS AC method. (e) OC-SMART CONNECT: Chl-a concentration estimated
from the CONNECT algorithm using the OC-SMART AC method. (f) SeaDAS OC3M: Chl-a concentration derived from the OC3M algorithm using the
SeaDAS AC method. (g) OC-SMART OC3M: Chl-a concentration derived from the OC3M algorithm using the OC-SMART AC method.
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When comparing the bio-optical algorithms, it is evident that the
CONNECT model, paired with the OC-SMART AC method,
successfully produces Chl-a products that are more closely
aligned with the actual conditions in the Guanabara Bay at
approximately 43° W, 23° S where the Chl-a level was recorded
up to approximately 500 µg.L-1 in our in-situ dataset (Oliveira
et al., 2016). In contrast, the OC3M model yields lower Chl-a
concentrations, suggesting a potential underestimation in its Chl-
a retrievals in eutrophic waters as previously observed in the
analysis performed on the in-situ dataset (Figure 7). From the
MODIS maps Figure 10d and historical research findings, it can

be inferred that the results from the CONNECT are more
consistent with the documented eutrophic gradient between
Guanabara Bay and Sepetiba Bay, with higher Chl-a levels
observed in Guanabara Bay (Cotovicz et al., 2018; Rezende
et al., 2010). Furthermore, the consistency in the Chl-a
distribution derived from the OC3M and CONNECT models,
especially in the transition areas between OWTs 3 and 4, confirms
a smooth transition where the NN-Clear switches to NN-Turbid
(see sections 3.1.1 and 3.1.2). This result demonstrates the spatial
effectiveness of using probability values as blending weights to
combine multiple bio-optical models, ensuring gradual changes

FIGURE 11
Same as Figure 10 but only for OC-SMART. MODIS-A scenes capturing (a-d) the English Channel on 14th September 2023 and (e-h) the lower
Mekong River on 30th December 2023. The unretrieved pixels along the Vietnamese coast in panels (f–h) due to the saturation effect of the MODIS-A
sensor in extremely turbid water are masked and replaced as the true color of the image.
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in Chl-a estimations across different water types (Mélin et al.,
2011; Tran et al., 2023; Vantrepotte et al., 2012).

In addition, our analysis reveals limitations in SeaDAS’s retrieval
accuracy of Rrs in turbid waters with nutrient-rich environments, as
evidenced through the misclassification observed in Guanabara Bay.
More specifically, water pixels in this region were identified as OWT
1, which is mainly attributed to the negative Rrs produced by
SeaDAS over the visible wavebands. This is further confirmed via
the absence of Chl-a retrievals for these pixels from OC3M
(Figure 10e). Moreover, OC-SMART yields more valid pixels
around cloud-adjacent areas than those produced by SeaDAS,
which partly explains why more matchup samples were found
for OC-SMART as aforementioned in section 3.3.1.

Two examples over the English Channel and the lower Mekong
River, representing moderately and highly turbid environments
featuring lower Chl-a concentrations, are described in Figure 11
to better understand the sensitivity of the CONNECT model to
different trophic states. In this analysis, we focus exclusively on the
OC-SMART ACmethod owing to its suitability for coastal waters as
discussed in the previous sections. Overall, a consistency in the
distribution of Chl-a level between the two models was found across
the studied regions. The main difference is, however, observed over
OWT 4 pixels where the estimated Chl-a concentrations derived
from OC3M processing were higher than those generated by
CONNECT. For instance, the OC3M model tends to produce
higher Chl-a estimates in the river plume from the Orne River
mouth at ~ 0.3° W, 49.4° N and the western coast of the Mekong
Delta at ~105° E between 9° N and 10° N (Figure 11c,g). This reflects
a potential overestimation posed by OC3M model over turbid
coastal waters associated with low levels of Chl-a, which is
consistent with our findings from our examination on the in-situ
and matchup datasets (sections 3.2 and 3.3.2). In addition, the
presence of missing values detected along the river mouths and
coastal zone of the lower Mekong Delta in Figures 11.e–h (also
visible in the Rrs data, not shown) highlights a limitation of the
MODIS-A sensor in retrieving useful information over OWT
5 pixels. This observation also helps to explain the lack of data
points in extremely turbid waters (OWT 5) from our matchup
analysis (Figure 11).

4 Conclusion

This work presents an innovative machine learning-based
inversion algorithm to optimize the estimation Chl-a over
multiple trophic states for MODIS-A observations based on the
combination of two MLP models designed specifically for clear
toward turbid waters. This neural network algorithm (CONNECT,
https://github.com/manhtranduy/Chl-CONNECT/) has
demonstrated superior performance over conventional Blue/
Green models in both in-situ and matchup validation analyses.
Although the model OC3M performs well in clear waters, this model
showed limitations to derive accurate information about
phytoplankton biomass in optically complex environments. The
OC-SMART AC processor has shown a more reliable accuracy in
retrieving Rrs over coastal turbid waters, whereas a comparable
situation is found in clear to moderately turbid environments
considering both OC-SMART and SeaDAS AC methods.

Furthermore, the MODIS-A sensor showed a limitation due to
unretrieved pixels over extremely turbid waters, leading to
missing information of Chl-a estimates in such aquatic systems.
The results of this study suggest that the CONNECT algorithm is
relevant for retrieving more accurate Chl-a over various water
conditions for the MODIS-A sensor. This integrated approach
represents an improvement in Chl-a observations from space,
offering more precise and reliable data for environmental
monitoring and research.
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