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Insect pests are responsible for 20%–40% annual agricultural production losses
globally, leading to an over-reliance on pesticides in farming practices. This has
resulted in the overuse of pesticides which adversely affect the environment, human
health, and natural resources. Integrated Pest Management has been utilized to
enhance insect pest control, decrease the excessive use of pesticides, and enhance
the output and quality of crops. The integration of remote sensing in pest
management presents an alternative and cost effective tool to enhance insect
pest monitoring and targeted management. This study provides a systematic
review of remote sensing technologies for insect pest monitoring. The study
analyzed 103 studies published between 2014 and 2024 indexed in Scopus and
Web of Science databases. The results showed that insect pest monitoring studies
using remote sensing increased annually in the past decade. Furthermore, findings
revealed that MODerate resolution Imaging Spectroradiometer (MODIS), Landsat 7
Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager
(OLI) and The Thermal Infrared Sensor (TIRS) are mainly used sensors to detect and
monitor the impact of insect pests on vegetation. Most studies reported that insect
pests have been detected in forests and croplands, with newer sensors such as
Sentinel-2 MultiSpectral Instrument and PlanetScope holding potential for
systematic assessments in the future. United States of America and China are
leading with insect pest monitoring research contributions. However, the analysis
highlighted the lackof research contributions in SouthAmerica andAfrican countries,
which highlight the need for increased research efforts on insects pest monitoring,
particularly as they are increasingly impacting on food security and biodiversity in
sub-Saharan Africa, where food insecurities are rife and biodiversity threatened by
myriad of factors. Overall, recent advances in remote sensing emphasizes the need
formore research incorporating new sensors and predictivemodelling inmonitoring
and assessment of insect pest such as the notorious Brown Locust in South Africa.
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Introduction

In 2021, an alarming 2.3 billion individuals faced food
insecurity, with up to 828 million people suffering from hunger,
as reported by the World Health Organization (2022). Among the
critical threats to global hunger are agricultural insect pests, which
reduce crop yields and quality, exacerbating hunger and
malnutrition (Chakraborty and Newton, 2011). According to the
Food and Agriculture Organization (FAO) of the United Nations,
13% of the global population in developing nations grapple with
hunger. Specifically, in 2021, an estimated 425 million individuals in
Asia (9.1% of the population) and 278million in Africa (20.2% of the
population) dealt with food insecurity (FAO et al., 2022). Therefore,
tackling insect pest outbreaks is essential for achieving Sustainable
Development Goal 2 (SDG2), which aims to eliminate world hunger
(United Nations, 2023).

One of the major challenges in managing insect pests is climate
change, which threatens agricultural productivity and intensifies the
dynamics of pest populations. Changes in temperature, rainfall, and
extreme weather events directly affect insect reproduction, survival,
migration, and interaction with host plants and enemies (Ward and
Masters, 2007). Moreover, global warming, recurrent droughts, and
fluctuating atmospheric carbon dioxide (CO2) levels have been
linked to the frequency and severity of pest outbreaks (Lin et al.,
2022). As ectotherms, insects regulate their body temperature
through behavioral strategies such as selecting microhabitats with
varying temperatures which may increase their susceptibility to
climate fluctuations (Clavijo-Baquet et al., 2022). Consequently,
temperature influences the geographical distribution, population
dynamics, and physiology of insects (Colinet et al., 2015). This
dependence can result in shifts in population distribution, increased
generations, longer life cycles, and a greater likelihood of invasions
by non-native pests (Castex et al., 2018). The proliferation of insect
pest populations and frequent outbreaks triggered by climate-related
changes have detrimental effects on crop productivity and
availability jeopardizing food security (Subedi et al., 2023).
Developing countries, in particular, face challenges due to
increased prices caused by crop destruction (Malaguit et al., 2023).

In response to these rising pest pressures, many farmers rely heavily
on pesticides. Globally, insect pests are responsible for 20%–40% annual
agricultural production losses, driving the widespread use of pesticides
(Ribeiro et al., 2023). Pesticides aim to decrease target organisms’
abundance by raising mortality rates or lowering their reproductive
capacity (Fleeger et al., 2003). Although effective in increasing
agricultural productivity, pesticides can harm the environment and
human health, affecting non-target organisms and ecosystems (Serrão
et al., 2022; Tudi et al., 2021). The long-term use of pesticides raises
sustainability concerns, underlining the need for Integrated Pest
Management (IPM) strategies that minimize environmental impact
(Kaur et al., 2019). IPM is structured around three
components–prevention, monitoring and control. Prevention
strategies focus on reducing pests through biological and cultural
practices, such as conserving natural enemies and modifying habitats
(Zhang andHunter, 2017). Monitoring is crucial within IPM, providing
real-time data on the pest’s status (presence, abundance, and geographic
distribution), guiding decision-making and optimizing control
measures (Preti et al., 2021). Pest control is the final step,
incorporating biological, mechanical and chemical methods when

pest populations exceed the economic or ecological threshold (del
Águila et al., 2015). These strategies are developed to improve insect
pest management through sustainable practices that overall reduce
pesticide use (Green et al., 2020). Additionally, these strategies aim
to provide farmers with effective decision-making tools regarding pests
(Preti et al., 2021). The success of IPM relies on the accuracy of the
selected pest monitoring methods, as precise data ensures targeted and
efficient pest control measures (Lima et al., 2020). Improving the
efficiency of agricultural pest control relies on the ability to quickly
identify pests in the field and implement localized treatments. This
necessitates timely and precise information about insect pests and the
extent of their infestations (Rano et al., 2022).

Traditionally, insect pest monitoring relied on visual inspections,
manual surveys, pheromones, and sticky and light traps, among others.
For instance, Pachkin et al. (2022), used light traps to monitor the
fluctuations of soybean pests to develop a protection system against key
phytophagous insects. Additionally, Cruz-Esteban et al. (2020)
optimized a binary pheromone blend to enhance the monitoring of
Spodoptera frugiperdamales inMexico, demonstrating how pheromone
traps can be tailored to specific regions for improved efficiency. Visual
inspections (or surveys) are conducted by documenting the presence of
a species or counting the number of each species observed during a
standardized survey (Montgomery et al., 2021). These methods, while
effective at localized scales, are labor-intensive, time-consuming and
often limited in spatial coverage (Kariyanna and Sowjanya, 2024). This
challenge is particularly evident inmonitoring grasshoppers and locusts,
which require rapid surveys over vast areas due to their short life cycles.
For example, large-scale surveys in Central Asia, targeting species such
as C. italicus, Locusta migratoria, and D. maroccanus, have covered
nearly 12 million hectares annually to assess population dynamics
(Latchininsky, 2013). Though effective, these traditional methods
often require continuous manual effort and are limited in large-scale
monitoring, highlighting the need for technological advancements in
pest monitoring techniques.

Advancements in technology have been integrated into IPM systems,
marking a new agricultural revolution focused on using digital
technologies to enhance productivity and resource management
(Subeesh and Mehta, 2021). Precision agriculture (PA) comprises
advanced information and data analysis techniques to improve crop
production and reduce water and nutrient loss and negative
environmental impacts (Sishodia et al., 2020). Data is collected by
sensors and is stored on digital platforms to aid decision-making,
allowing farmers to analyze the spatiotemporal variability of factors
affecting crop production (Pedersen and Lind, 2017). Remote sensing
facilitates the implementation of PA as it allows for a non-destructive
acquisition of the earth’s information (Sharma et al., 2023).

For instance, pest infestation can be detected using remote
sensing technology, which is effective for monitoring pests over
large areas (Cressman, 2013), as traditional ground-monitoring
methods often fail to provide reliable spatiotemporal data on pest
development and distribution at such a scale (Latchininsky, 2013).
This limitation poses challenges for implementing precise
prevention and control measures, especially for biological control,
leading to decreased application efficiency. Remote sensing
technologies offer better spatial and temporal resolution
complimenting conventional methods, such as sex pheromone
traps, light traps and suction traps for tracking migration
patterns of insect pests (Brockerhoff et al., 2023). Additionally,
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incorporating machine learning into these methods allows for more
accurate analysis of data, helping to identify patterns and predict
pest behavior more accurately. However, there is a lack of studies
that review the latest developments in the applications of both
remote sensing and advanced machine learning techniques for
monitoring insect pests that affect agriculture. Such reviews
would elucidate emerging themes, trend topics, detailed overview
of; and identify research gaps in, the remote sensing of insect pests,
providing an opportunity for more focused future research and
development activities, particularly targeting problematic insert
species in various specific regions. To address this gap, this paper
aims to provide an overview of remote sensing techniques and
multi-source data used in insect pest monitoring using bibliometric
analysis and systematic review approaches. Moreover, we draw
lessons from literature for brown locust monitoring and control
in South Africa.

Materials and methods

This study conducted a systematic literature review and
bibliometric analysis to identify remote sensing data sources and

techniques for monitoring insect pests that affect agricultural
productivity. The studies included in this systematic literature
review were retrieved through an extensive search of articles
published on the Web of Science (WoS) and Scopus. The
following search strategy was used in both databases (“remote
sensing” AND “insect pest” OR “locust”) OR (“satellite imagery”
AND “insect pest” OR “locust”) OR (“earth observation” AND
“insect pest” OR “locust”) OR (“geospatial” AND “insect pest” OR
“locust”). These search terms were extracted from the article title,
abstract and keywords. This search was conducted from 2014 to
2024 to highlight the latest advancements and to provide an
understanding of the current state of research in this field. Only
articles were added to this review and were limited to the English
language. Furthermore, keywords relating to “animal” or “animals”
were excluded. A total of 92 articles from Scopus and 30 in WOS
were collected. Following the literature search, the retrieved articles
(n = 122) were combined and underwent screening.

The screening process first involved removing duplicates using
the ‘Bibliometrix’ package within R statistical software version 4.4.1,
where 11 duplicates were removed. Secondly, essential information
from the title and abstract of the remaining articles (n = 111) was
examined to check whether the studies involved monitoring insects

FIGURE 1
PRISMA diagram showing the workflow used to retrieve the documents for review.
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using remote sensing. Upon title and abstract screening, irrelevant
articles (n = 8) were excluded. The remaining 103 articles were
assessed for eligibility and were included in this systematic review.
The process of bibliometric data mining workflow is visually shown
in the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) diagram in Figure 1.

Results

Description of data retrieved from the
Scopus and WoS databases

The total number of analyzed published studies from Scopus
and Web of Science (WOS) database were 103 documents between
2014 and 2024, originating from 69 diverse sources. The research
output in this field has been growing at an annual rate of 18.22%,
indicating a significant increase in this field. The evaluation of these
documents revealed a total of 527 author appearances averaging
about 3 authors per document and 17.49 co-authors per document.
Furthermore, there is evidence of international collaboration among
authors with 3.883% of the documents having international co-
authorship. Table 1 shows the data description of the Scopus and
WOS documents.

Annual scientific production

There has been an oscillation and an overall increasing annual
scientific production trend in the past decade (2014–2024) for
remote sensing insect pest monitoring studies (Figure 2). The
publication output declined in 2015, 2017, 2019 and 2020,
respectively. The decline in annual scientific production
suggests an inconsistency in remote sensing and insect
monitoring research over the years. There is a noticeable
increase witnessed from 2021, with the highest number of
documents published in the year 2023.

Scientific publication distribution and
countries collaboration

Figure 3 shows the spatial distribution of the published
documents production in remote sensing and insect pest
monitoring research. Most articles originated from China (94),
followed by the USA (25), India (8), Germany (7), Italy (6), and
Spain (4), among others. Several other countries, including Brazil,
Belgium, Canada, and Finland, have also made significant
contributions with two article publications. Additionally,
countries such as Algeria, France, Netherlands, Morocco and
South Africa, each had only one publication. However, some
parts of Southern America and Africa still lack research outputs
in remote sensing and insect pest monitoring.

Most globally cited articles on remote
sensing and insect pest monitoring research

Table 2 summarizes the top 10 globally cited scientific articles on
remote sensing of insect pest monitoring research during the survey
period. Vanegas et al. (2018) developed a Uncrewed Aerial vehicles
(UAV)-based remote sensing methodology to improve pest
surveillance in vineyards, specifically targeting grape phylloxera.
Their approach combined hyperspectral, multispectral, and RGB
sensors with UAV and ground data to create a predictive model for
detecting infestations. Kaya and Gürsoy (2023) proposed a novel
Deep Learning (DL) approach for plant disease detection by fusing
RGB and segmented images, achieving an F1-score of 98.12%. Zhou
et al. (2017) investigated the impact of different Grey Level Co-
occurrence Matrix (GLCM) parameters on the estimation of Leaf
Area Index (LAI) using texture features derived from Quickbird
high-resolution satellite imagery. Müllerová et al. (2017) assessed the
potential ability of UAV data to map invasive black locust (Robinia
pseudoaccacia). On the other hand, Yu et al. (2021) developed a 3D-
Res Convutional Neural Network (CNN) model to improve early
detection of pine wilt disease (PWD) using UAV-based
hyperspectral imagery. This model outperformed others,
accurately identifying early infected pine trees, even with limited
training. Waldner et al. (2015) created satellite-based greenness
maps to detect desert locust habitats using Satellite Pour
l’Observation de la Terre (SPOT) and Moderate Resolution
Imaging Spectroradiometer (MODIS) data. These maps were
more accurate (F1-score = 0.64–0.87) in summer breeding areas
but less in winter (F1-score = 0.28–0.40). Escorihuela et al. (2018)
developed and validated algorithms to produce a 1 km resolution
soil moisture dataset for desert locust management using the
DisPATCH methodology applied to Soil Moisture and Ocean
Salinity (SMOS) data. They also created a high-resolution
(100 m) soil moisture product from Sentinel-1 data, which
showed high accuracy and could be integrated into early warning
systems for desert locusts. Similarly, Piou et al. (2019) used soil
moisture to observe desert locust presence/absence at 1 km
resolution. They found that an increase in soil moisture followed
by a decrease can predict locust presence 70 days later, improving
early warning timing by 3 weeks compared to vegetation imagery.
Skawsang et al. (2019) used Artificial Neural Network (ANN),
Random Forest (RF) and Multiple Linear Regression (MLR) to

TABLE 1 Data description of Scopus documents.

Description Results

Period 2014–2024

Sources 69

Documents 103

Annual growth rate 18.22%

Keywords plus (ID) 700

Authors’ keywords (DE) 476

Authors 527

Average citations per doc 17.49

Authors of single-authored doc 2

International Co-Authorship 3.883%

Articles 103
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forecast brown planthopper (Nilaparvata lugens) using weather and
host-plant phenology factors. Lastly, Renier et al. (2015) developed a
method using MODIS data to detect vegetation senescence in near-
real-time, improving desert locust habitat monitoring.

Co-occurrence network

The co-occurrence network was carried out in the VOS viewer
software (van Eck and Waltman, 2010). This software enables

visualization by grouping keywords into interconnected clusters.
In these visualizations, lines represent connections between different
terms, with the thickness of the lines indicating the frequency of co-
occurrence; thicker lines signify a stronger connection (Kirby, 2023).
The process of generating a map in VOS viewer involves four steps,
(1) choosing a counting approach, either binary or full counting, (2)
setting a threshold for the minimum times a term must be appear to
be included, (3) determining a relevance score and selecting themost
relevant ones based on this score, (4) creating and displaying the
final map using the selected terms. The analysis of the co-occurrence

FIGURE 2
Annual scientific production of remote sensing insect monitoring studies (2014–2024)

FIGURE 3
Spatial distribution of studies on the use of remote sensing in the monitoring of insect pests.
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network map in Figure 4 categorizes the author’s keywords into
three clusters of concepts. The green cluster has the key terms
“remote sensing”, “pest control”, “spectroscopy”, “soil moisture”,
“desert locust”, “locust”, “agriculture”, and “monitoring”. The
connection between these terms indicates the application of
remote sensing technologies for detecting and monitoring pest
outbreaks, especially related to locusts in agricultural settings.
The presence of terms like “spectroscopy” and “soil moisture”
suggests using environmental variables in identifying favorable
habitats or outbreak areas for pests like the desert locust. The red
cluster is characterized by a wide range of keywords, although its
primary focus centers around vegetation monitoring, particularly in
forest and ecosystem contexts as evidenced by terms like “forest” “,
ndvi”, “drought”, “, remote sensing data”, “random forest”, and
“ecosystem”. Including “random forests” suggests that machine
learning is used for classification or predicting vegetation or
drought patterns. The blue cluster has its key terms related to
“machine learning”, “satellite imagery”, “support vector
machine”, “decision trees” and “classification”. This cluster uses
advanced machine learning techniques for processing satellite
imagery, particularly classification tasks like identifying pest-
infested areas, land cover types or vegetation stress. Algorithms
like support vector machines and decision trees suggest a
computational focus, where models are trained to detect patterns
or classify imagery data for pest-related research.

Species of interest

The majority of the studies as shown in Figure 5 focus on locust,
particularly the desert locust (33%) and the general locust category
(27%), followed by the black locust (10%), with fewer studies

addressing species such as the brown locust (2%), the Italian
locust (2%), and the Moroccan locust (2%). Moths represent the
second most studied group (19%), including species likeHelicoverpa
armigera and Spodoptera exigua, while planthoppers (5%), aphids
(6%), and beetles (6%) were each covered in fewer studies.

Application areas, common variables and
sensors used

Figure 6 illustrates the application areas in remote sensing and
insect pest monitoring research during the literature survey period.
The commonly highlighted application areas include forest,
cropland, grasslands, urban and built-up environments. This
study shows that crop-related applications are dominant,
constituting 48% of the total number of studies. Other
application areas include forest-related studies, which constitute
37%, followed by grassland (10%), urban and built-up (5%),
respectively. There is a substantial interest in forest and cropland
agricultural research regarding monitoring insect pests using remote
sensing technologies. However, grassland, urban areas, and built-up
areas are still emerging research avenues among other
application areas.

Numerous variables are commonly used in remote sensing
applications for insect pest monitoring. As shown in Figure 7,
temperature and precipitation are the most dominant
environmental variables, appearing in approximately 22% and
17% of the reviewed studies. These climatic variables are essential
for understanding the driving factors behind insect pest outbreaks.
Following these, vegetation indices are widely adopted due to their
ability to detect plant stress and changes in canopy condition. The
Normalized Difference Vegetation Index (NDVI) and Enhanced

TABLE 2 Top 10 globally cited published articles on remote sensing of insect pest monitoring research from 2014 to 2024. TC denotes total citations.

Rank Articles title TC Insect type References

1 A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops
Using UAV-Based Hyperspectral and Spatial Data

169 Grape phylloxera (Daktulosphaira
vitifoliae Fitch)

Vanegas et al. (2018)

2 A novel multi-head CNN design to identify plant diseases using the fusion of RGB
images

96 General insect pest Kaya and Gürsoy
(2023)

3 The Effects of GLCM parameters on LAI estimation using texture values fromQuickbird
Satellite Imagery

68 Black locust (Robinia pseudoaccacia) Zhou et al. (2017)

4 Unmanned aircraft in nature conservation: an example from plant invasions 61 Black locust (Robinia pseudoaccacia) Müllerová et al.
(2017)

5 Three-Dimensional Convolutional Neural Network Model for Early Detection of Pine
Wilt Disease Using UAV-Based Hyperspectral Images

53 Pine wood nematode (Bursaphelenchus
xylophilus)

Yu et al. (2021)

6 Operational Monitoring of the Desert Locust Habitat with Earth Observation: An
Assessment

49 Desert locusts (Schistocerca gregaria) Waldner et al. (2015)

7 SMOS based high resolution soil moisture estimates for desert locust preventive
management

47 Desert locusts (Schistocerca gregaria) Escorihuela et al.
(2018)

8 Soil moisture from remote sensing to forecast desert locust presence 44 Desert locusts (Schistocerca gregaria) Piou et al. (2019)

9 Predicting Rice Pest Population Occurrence with Satellite-Derived Crop Phenology,
Ground Meteorological Observation, and Machine Learning: A Case Study for the
Central Plain of Thailand

43 Brown planthopper (Nilaparvata
lugens)

Skawsang et al.
(2019)

10 A Dynamic Vegetation Senescence Indicator for Near-Real-Time Desert Locust Habitat
Monitoring with MODIS

42 Desert locusts (Schistocerca gregaria) Renier et al. (2015)
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Vegetation Index (EVI) are used in over 15% of studies, while
indices like Soil Adjusted Vegetation Index (SAVI), Radar
Vegetation Index (RVI) contribute roughly 5% each. Other

advanced indices, such as Normalized Difference Red Edge
(NDRE) and Green Normalized Difference Vegetation Index
(GNDVI) were also employed, though less frequently. Soil

FIGURE 5
Total number of species categorized by species of interest.

FIGURE 4
A co-occurrence network showing topical concepts in pest monitoring studies using authors’ keywords.
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moisture, land use/land cover (LULC), and drought indices like
Standardized Precipitation Index (SPI) and Standardized
Precipitation Evapotranspiration Index (SPEI) represent moderate
use. This reflects a growing interest in linking soil and drought stress
with insect pest outbreaks. Less common variables include elevation,
Green Vegetation Fraction (GVF), Normalized Difference Built-up
Index (NDBI), Modified Normalized Difference Water Index
(MNDWI), each contributing to a small fraction of the literature.

Discussion

Overview of insect monitoring systems

The monitoring of insect pests is a standard activity in Integrated
Pest Management (IPM) and early warning systems (Sciarretta and
Calabrese, 2019), aiming to assess the presence, abundance, and
distribution of pests (Preti et al., 2021). Techniques for monitoring

include visual inspections, suction traps, and passive methods, with
passive methods like pitfall and sticky traps being the most frequently
used (Green et al., 2020). These traps can be chromotropic or baited
with attractants like pheromones or food (Preti et al., 2021).
Inspections are performed regularly to identify and count insects
through remote analysis of captured images, as explored by Ünlü et al.
(2019). This manual process requires a high level of expertise, and it is
time-consuming, leading to low efficiency, increased labor demands,
and delays in data usage (Kariyanna and Sowjanya, 2024). Recent
advancements in information and communication technologies, like
sensor networks and the Internet of Things, have automated pest
monitoring (Vijaya and Vigneswari, 2022). Automated monitoring
systems, also known as intelligent systems, consist of a network of
wireless sensor nodes strategically positioned to continuously track
insect activity at agricultural locations (Rustia and Lin, 2023). This
system architecture includes sensor nodes that gather data on insect
populations, specifically designed to detect and identify insects. This
data is transmitted to a server over the internet for analysis, aiding
integrated pest management. Farmers receive this information
through a mobile app or web interface, which can provide real-
time insect counts for each site, the distribution of various insect
species, and decision-making recommendations. These systems
improve efficiency by facilitating remote access to trap data and
often employ machine learning algorithms for insect identification.
For instance, Chen and Lin (2023) created a framework that improved
classification accuracy while minimizing manual labelling using
Gaussian Mixture Model (GMM) and Convolution Neural
Network (CNN) CNN based models. Potamitis et al. (2018), on
the other hand, used plastic traps that identify insects by their
wing beat frequencies. Genoud et al. (2018) utilized a Light
Detection and Ranging (LiDAR) system to differentiate between
mosquito species by analyzing their wing beat frequencies using a
Bayesian approach. The monitoring system for migrating insects
operates differently by utilizing radar technology to track their
migration and analyze large-scale movement patterns. This method
has been shown to be the most effective for observing insect migration
due to its benefits, including a wide detection range and the ability to
function at night (Noskov et al., 2021). Moreover, there are several

FIGURE 7
A summary of commonly used variables from the review.

FIGURE 6
The distribution of application areas in remote sensing and insect
pest documents.
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commercially available automated monitoring systems that enable
farmers to remotely track pest populations, including Trapview
(https://trapview.com/), developed by EFOS d. o.o in Slovenia,
which allows for real-time tracking of pest activity; iScout (https://
metos.global/en/iscout/), created by Pessl Instruments Ges.m.b.H. in
Austria; Z Trap (https://www.winfieldunited.com/news-and-insights/
z-trap-system), offered by Spensa Technologies Inc. In the USA and
FruitflyAfrica (https://www.fruitfly.co.za/) offered by the Stellenbosch
University in South Africa.

Remote sensing sensors for monitoring of
insect pests

Satellite imagery provides the ability to continuously monitor
surface conditions, especially in remote or inaccessible areas, to
enhance ground observations (Adams et al., 2021). Remote sensing
technologies have proven increasingly valuable for insect pest
monitoring and management, offering an efficient way to
automate the surveillance of insect outbreaks over large regions
(Alsadik et al., 2024). Such large-scale monitoring would be
prohibitively costly and time-intensive if conducted solely
through traditional field surveys (Filho et al., 2022).

Optical and thermal sensors for insect pests
monitoring

Remote sensing sensors vary in terms of the spatial, spectral,
radiometric, and temporal resolutions, often requiring a trade-off
between spatial and temporal resolutions (Kganyago et al., 2024) as
shown in Table 3. MODerate resolution Imaging Spectroradiometer
(MODIS) provides frequent daily data but a course resolution
(250 m–1,000 m), while Landsat mission, provides medium-
spatial resolutions (<30 m), at a relatively low-temporal
resolution (i.e., 16 days). In terms of spectral coverage, the
sensors in the optical range (i.e., from 400 to 2,500 nm, also
called optical sensors) are dominant and in the case of Landsat
mission, can include additional sensors, particularly covering the
thermal infrared (TIR) region (i.e., from 8 to 14 µm). The thermal
sensors capture radiation that surfaces reflect or emit, allowing for
the analysis of the Earth’s surface from a distance (Berger et al.,
2022). The spectral resolution of instruments varies based on their
application. It can range from panchromatic (a single wide band)
and standard red, green, and blue (RGB) cameras (which capture
three bands) to multispectral and hyperspectral sensors that can
include anywhere from a dozen to hundreds of narrow spectral
bands. Insect pest monitoring at regional scales requires high-

temporal resolution sensors, which can provide multispectral
bands, while more localized monitoring (e.g., field-scale) may
require sensors capable of providing both high-spatial and
temporal resolutions. In recent times, such sensors (that can
provide high-spatial and high-temporal resolutions) are available,
enabled by constellations such as Copernicus Sentinels and
PlanetScope Doves, which have been hailed as groundbreaking
events in remote sensing (Kganyago et al., 2024).

In the reviewed documents, optical sensors such as MODIS,
Landsat 7(ETM+)/8(OLI/TRS) and Sentinel-2 (MSI) were the most
predominant in insect pest monitoring. This predominance can be
attributed to their ability to provide valuable information about
vegetation characteristics, which are closely linked to insect habitat
and activity. A key variable derived from these sensors is the
Normalized Difference Vegetation Index (NDVI) (Rouse et al.,
1974), which helps detect the presence and health of green
vegetation, a crucial factor in insect pest monitoring. NDVI is
widely applied, including in studies detecting Desert locusts Piou
et al. (2013) and examining the impact of prior vegetation growth on
locust populations Lawton et al. (2022). Moreover, it is an indicator
of photosynthetic activity and defoliation in trees (Soukhovolsky
et al., 2023). These optical sensors differ in spatial resolution and
temporal resolution. Sentinel-2 has a higher spatial resolution of up
to 10 m compared to Landsat and MODIS, which have a spatial
resolution of 30 m and 250 m. However, research using Sentinel-2 is
limited, due to its shorter data record, which spans from 2016 to the
present. In contrast, MODIS was launched in 1999, and Landsat,
with its first satellite, i.e., Multi-Spectral Scanner (MSS), launched in
1972, provides long-term data records that extend back several
decades. This long-term record is crucial for monitoring
vegetation health, growth, and development trends (Adams et al.,
2021). In contrast, Sentinel-2 was largely used on forest health
assessment. Its red-edge bands are suitable for vegetation health
applications related to pest and disease damage detection. Kumbula
et al. (2019) mapped the occurrence of the Cossid Moth
(Coryphodema tristis) in Eucalyptus Nitens Plantations of
Mpumalanga province in South Africa using Sentinel-2 images.
Similarly, (Prabhakar et al., 2022), investigated the damage caused
by the fall armyworm in farm fields of India using Sentinel-2. Insect
feeding activity causes biomass loss and a plant stress response,
which can be detected by means of their spectral reflectance.
Therefore, effects such as defoliation and plant stress symptoms
caused by insects are often easy to detect (Soukhovolsky et al., 2023).

The wide use of MODIS and Landsat can also be attributed to
their capability to provide data in the TIR range of the
electromagnetic spectrum. According to Messina and Modica

TABLE 3 A summary of common sensors used in insect pest monitoring.

Satellite Sensor Spectra coverage Spatial resolution Revisit period Availability

Terra/Aqua MODIS VNIR/SWIR 250m – 1 km <1 day 2001 – to date

Landsat 7 ETM+ VNIR/SWIR 30 m 16 days 1999–2022

Landsat 8 and 9 OLI VNIR/SWIR 30 m 16 days 2014–present

Sentinel 2 MSI RE/SWIR 10 m–60 m 5 days 2016–present

Pleiades HiRi VNIR 2 m 1 day 2011–present

Frontiers in Remote Sensing frontiersin.org09

Mpisane et al. 10.3389/frsen.2025.1571149

https://trapview.com/
https://metos.global/en/iscout/
https://metos.global/en/iscout/
https://www.winfieldunited.com/news-and-insights/z-trap-system
https://www.winfieldunited.com/news-and-insights/z-trap-system
https://www.fruitfly.co.za/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1571149


(2020), elements in the landscape, including vegetation, soil, and
water, emit TIR radiation primarily within the 3.0–14 μm range. The
emitted radiation can be converted into surface temperature.
Typically, satellite-derived Land Surface Temperature (LST) has
been used and its popularity as a critical data source for insect
population models has increased over the years. This is because
satellite data can provide extensive coverage across large geographic
areas, which often overcomes the limitations of ground-based
meteorological stations (Blum et al., 2015). These stations are
often sparse and separated by significant distances, usually more
than 10 km, which can limit the assessment of temperature
variations across different landscapes. Other TIR sensors that can
be used are Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) and ECOsystem Spaceborne Thermal
Radiometer Experiment on Space Station (ECOSTRESS),
however, their use in insect pest monitoring has been limited.

Active sensors in insect pest monitoring
Radio Detection and Ranging (RaDAR) is an active sensing

technology that uses microwave radiation to detect and characterize
objects by analyzing reflected backscatter from emitted pulses
(Rhodes et al., 2022). The properties of this backscatter,
including wavelengths and polarizations, provide valuable
information about the structure and dielectric properties of
objects, making RaDAR valuable in fields like entomology. It has
been effective in monitoring airborne insects, with studies using
weather surveillance systems to track insect pest populations (Van
Klink et al., 2022). RaDAR helps understand the navigation
behaviors of insects flying hundreds of meters above the ground,
even in low-light conditions (Drake et al., 2017). Recent
advancements in RaDAR technology have introduced novel
techniques for entomological research (Dwivedi et al., 2020). For
instance, harmonic radar can track low-flying insects by tagging
individuals, although its application is limited to one insect at a time
and is most effective in flat landscapes (Maggiora et al., 2019).
Vertical-looking radar, on the other hand, is designed for long-term
monitoring of high-altitude insects, providing crucial data on large-
scale migration patterns. Additionally, upgrades to weather radar
systems, particularly dual-polarization (dual-pol) technology, have
improved insect detection capabilities. Dual-pol RaDAR transmits
and receives signals in both vertical and horizontal planes, making it
more effective at identifying insects based on their unique
reflections. This improvement is especially useful for monitoring
mass insect movements, which were previously challenging to detect
with single-polarization systems.

RaDAR operates in different bands, including X-band (3 cm),
C-band (5 cm), and S-band (10 cm), each offering unique trade-offs.
Smaller wavelengths, such as X-band, are sensitive enough to detect
small particles such as insects but have limited range. In contrast,
longer wavelengths, such as S-band, are better for large-scale
surveillance but less effective for small targets (Bauer et al.,
2024). Drake et al. (2017) demonstrated that RaDAR can identify
insects by analyzing their radar cross-section (RCS) and polarization
patterns, particularly at X-band frequencies (9.4 GHz) revealing that
small insects produce consistent polarization patterns, while larger
ones exhibit variability. On the other hand, Hao et al. (2020)
suggested that the Zenith-Pointing Linear-Polarized Narrow-
Angle Conical Scan (ZLC) configuration offers unique

capabilities for tracking individual insects and retrieving detailed
trajectory information.

LiDAR (Light Detection and Ranging) is another active remote
sensing technology that operates in the optical spectrum, offering
unique capabilities for insect monitoring and habitat assessment
(Song et al., 2020). Unlike RaDAR, which primarily tracks high-
altitude insect migrations, LiDAR detects insects at lower altitudes
(10–600 m) (Van Klink et al., 2022), making it a suitable tool for
studying localized insect activity and interactions with vegetation.
One key advantage of LiDAR is its ability to provide high-resolution
3D information about vegetation structure, critical for
understanding insect habitats and responses to environmental
changes (Karim et al., 2024). For instance, airborne LiDAR is
widely used in forest inventory assessments to measure the 3D
distribution of vegetation within canopies (White et al., 2016). By
capturing structural changes in forest canopies, such as defoliation
caused by herbivorous insects, LiDAR data can provide information
on the impact of insect infestations on forest health and ecosystem
dynamics. Recent advancements in LiDAR technology have further
expanded its applications in entomology. Traditional LiDAR
systems are limited to single-wavelength sensors in the near-
infrared (NIR) spectrum (Fernandez-Diaz et al., 2016). This
restricts their potential for species identification and detailed
canopy health assessments due to their inability to capture varied
backscatter responses and spectral signatures. However, the
development of multi-wavelength LiDAR sensors, such as the
Optech Titan multispectral LiDAR system, has significantly
enhanced the capability of LiDAR in this domain (Hakala et al.,
2015). These systems operate across multiple wavelengths, enabling
tree-level health assessments and a more comprehensive
understanding of vegetation conditions. Airborne hyperspectral
LiDAR (AHSL) has also emerged as a valuable tool for
monitoring insect-related forest disturbances, allowing researchers
to simulate disturbance scenarios and analyze damage locations and
stress levels (Zhao et al., 2023). Overall, LiDAR remote sensing
provides a transformative approach to insect monitoring, offering
scalable, high-resolution data for assessing both insect activity and
its impact on ecosystems. Compared to traditional field surveys,
which are timely and labor-intensive, LiDAR presents a more
efficient and realistic method for monitoring insect-induced
defoliation and other forest disturbances.

UAVs for insect monitoring
Aerial imaging has become increasingly popular for data

collection with the rise of Uncrewed Aerial Vehicles (UAVs),
commonly known as drones. These include multi-rotor, fixed
wing, and hybrid systems (Osco et al., 2021). UAVs offer distinct
advantages over traditional orbital sensing methods, operating at
lower altitudes with minimal atmospheric interference and reduced
costs. As a result, they are widely used in both commercial and
scientific applications (Osco et al., 2021). While conventional UAVs
are equipped with RGB cameras limited to the visible spectrum,
modern UAVs feature advanced sensors such as multispectral
cameras. For instance, (Westbrook et al., 2016), used a fixed-
wing UAV equipped with RGB and near-infrared cameras to
identify individual cotton plants, which serve as habitats for boll
weevils. These cameras achieved a remarkably low misclassification
rate of 0.125 and 0.146. Additionally, UAVs can be equipped with
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hyperspectral and thermal cameras, as well as lightweight LiDAR,
enabling efficient and accessible data collection across diverse
remote sensing applications (Yao et al., 2019). Yu et al. (2021)
further demonstrated the potential of UAV-based hyperspectral
imaging for detecting Pine Wilt Disease.

Applications of machine learning algorithms
in insect pest monitoring

Machine Learning (ML) is a branch of artificial intelligence that
enables systems to learn from data, identify patterns and make
decisions without explicit programming (Safonova et al., 2023). It
excels in analyzing complex systems where theoretical knowledge is
lacking, but data is abundant. ML has transformed pest management
by offering robust algorithms that can handle complex datasets and
improve predictive accuracy. ML enhances species distribution by
improving predictive accuracy, handling complex variable
interactions, and managing large ecological datasets efficiently.
Often, ML algorithms outperform traditional statistical models
when it comes to predictive performance (Breiman, 2001). For
instance, General Linear Regression (GLM) requires variables to
follow normality and linearity, necessitating transformation (Ryo,
2022), while ML algorithms automatically identify nonlinearity
without such requirements (Ryo and Rillig, 2017). These
algorithms adapt and improve their performance as they process
more data (Taye, 2023). The ML algorithms can be classified into
three major groups: tree-based, kernel and deep-learning
approaches (Rivera-Caicedo et al., 2017).

Common tree-based approaches include Random Forest (RF)
and eXtreme Gradient Boosting (XGBoost). RF combines regression
and classification using a resampling method called bagging,
creating multiple decision trees from randomly selected subsets,
and determining the final prediction through majority voting or
averaging (Gomes et al., 2017; Breiman, 2001). RF offers high
prediction accuracy while mitigating overfitting and handling
noise (Belgiu and Drăgu, 2016). eXtreme Gradient Boost (XGB)
is a tree-based method that builds trees sequentially, with each new
tree aiming to correct the errors of the previous one. This iterative
approach aims to rectify previous errors, ultimately enhancing the
overall predictive accuracy of the model (Lv et al., 2021).

In contrast, Deep Learning (DL) approaches rely on Artificial
Neural Networks (ANNs) with multiple layers to learn complex
patterns in data. Each artificial neuron has a weight and bias
associated with neurons from the previous layer, with
connections acting as weights for inputs (Achieng, 2019). An
ANN contains an input layer that receives data, a final output
layer that produces predictions, and several hidden layers where
target outputs are not explicitly defined (Kala, 2024).

DLmodels eliminate the need for manual feature engineering, as
they can learn complex patterns from raw labelled image data. By
processing numerous labelled images, these models enable
computers to recognize and understand visual information with
speed, robustness, and high accuracy (Safonova et al., 2023). Insect
species can appear similar, especially when they are at similar stages
of development, making traditional manual identification less
accurate and more time-consuming (Høye et al., 2021). Visual-
based machine learning algorithms effectively address this issue, and

recent advancements have made insect pest classification from
images a significant research focus (Gao et al., 2024).

Numerous automated recognition systems utilizing machine
learning have been developed for insect pest management in
agriculture (Gomes and Borges, 2022). Kalfas et al. (2022)
detected Drosophila suzukii by utilizing an optical sensor to
record wingbeats and training Convolutional Neural Network
(CNN) classifiers to distinguish it from Drosophila melanogaster.
Their “Inceptionfly” model achieved a balanced accuracy of 92.1%
and 91.7% on independent datasets, facilitating early pest detection.
CNNs are widely utilized deep learning models due to their ability to
automatically extract features and handle large datasets (Zhang
et al., 2019). Similarly, Maharlooei et al. (2017) used image
processing to detect and count soybean aphids (Aphis glycines), a
significant pest in North America. Park et al. (2023) explored UAV’s
and image analysis to assess a beet armyworm (S. exigua) outbreak
in soybean fields in South Korea.

Modelling has been extensively utilized for forecasting species
range (de Oliveira et al., 2024), and ecological niches (Carrell et al.,
2023) under the present and projected climate scenarios. For many
species, travel distances are determined by vegetation. Dkhili et al.
(2019) studies how vegetation arrangement affects locust collective
movement. Habitat suitability modelling is a technique used to
identify areas suitable for the survival of populations and
identification of the environmental conditions necessary for
those areas (Fadda et al., 2023). As ectotherms, insects’ life
history is significantly affected by temperature. For instance,
locusts digest food more slowly at low temperatures, but as
their body temperature rises, digestion accelerates, allowing for
more energy absorption (Harrison and Fewell, 1995).
Consequently, global warming can impact on the spatio-
temporal dynamics of insect populations, with factors like
humidity, temperature, precipitation, and wind also influencing
suitable habitats. Régnier et al. (2023) observed that climate change
could either benefit or hinder pest development, depending on the
optimal temperature for species growth.

Lessons for Brown locust infestations
monitoring in South Africa

Plague locusts have historically posed a significant economic
threat to crops and grazing areas, in South Africa for over 380 years
(Price, 2021). The Locustana pardalina (Brown locust) is
particularly notorious among other locust pests in South Africa
such as the Locusta migratoria migratorioides (African migratory
locust), the Nomadacris septemfasciata (red locust) and the
Schistocerca gregaria flaviventris (southern African desert locust).
With its efficient feeding habits, a swarm of locusts spanning 20 km2

and averaging 60 million adults per km2 can consume as much in
1 day as would sustain 2,500 people for an entire year (Food and
Agriculture Organization of the United Nations, 2020).

These swarms threaten sheep grazing land in the Nama Karoo
and irrigated crops, with key maize and wheat areas at risk from
invasions emanating from the eastern Karoo (Price, 2021). Over the
last century, outbreaks of Brown locusts have created serious
challenges that have necessitated extensive use of control
measures in order to safeguard food security (Price, 2023). The
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repeated application of pesticides has not only harmed the
environment but has also raised concerns about resistance in
locust populations, complicating future management. To mitigate
these risks, there is an urgent need for monitoring methods.
Utilizing remote sensing technologies can provide a more
sustainable approach to tracking Brown locust populations
enabling early outbreak detection and targeted interventions that
minimize ecological damage and safeguard food security in
South Africa.

The review of literature showed that only 2% of the insect pest
studies focused on the Brown Locust, which emphasizes the need for
further research on this species. Additionally, remote sensing offers a
powerful tool for early detection, especially in tracking changes in
vegetation that indicate potential breeding grounds for locusts (Klein
et al., 2021). The reviewed studies show a strong reliance on optical
sensors like Landsat 7 (ETM+)/8 (OLI/TRS) and MODIS; therefore,
exploring other sensors such as Sentinel-2 (MSI), PlanetScopeDoves and
Worldview-4 would offer better precision in identifying locust breeding
grounds, particularly in smaller, more localized areas. Very-High-
resolution sensors such as RapidEye, PlanetScope Doves and
Worldview-4 provide greater detail, allowing for more accurate
monitoring of environmental changes that signal locust population
growth. However, the inflated cost of acquiring such satellite data
can be a significant barrier. To overcome this, partnerships with
governmental and international entities could subsidize the cost,
making the technology more accessible to local researchers and pest
control initiatives. For example, Kganyago andMhangara (2019) showed
that Single License-Multi-User Agreement (SLMA) between satellite
data providers and African space agencies, e.g., South African National
Space Agency and Airbus Defense and Space SPOT agreement, may
increase affordability and accessibility of very-high-resolution data.
Incorporating additional vegetation indices beyond the commonly
used NDVI, such as the red-edge indices, could further improve the
detection and monitoring of locust habitats. These indices overcome
limitations of traditional VNIR indices and correlate better with
biophysical and biochemical parameters of vegetation, thus offer a
deeper understanding of vegetation health, which directly impacts
locust behavior and breeding patterns. Remote sensing, when
combined with predictive modelling powered by machine learning,
can enhance the forecasting ability of locust outbreaks. These models
analyze key environmental factors like rainfall, soil moisture, and
vegetation growth to predict potential locust activity, providing
critical early warnings that enable farmers and policymakers to act
before infestations reach damaging levels.

In South Africa, there are commercially available insect pest
monitoring systems, but none specifically designed for locusts.
These systems include Koppert (https://www.koppert.co.za/), Fruit
Fly Africa (https://www.fruitfly.co.za/), and SMARTSENZ (https://
smartsenzipm.co.za/). Fruit Fly Africa is not an automated system;
instead, it uses baits to eliminate female fruit flies before they canmate,
thereby limiting the reproduction of the adult population. In contrast,
Koppert is an automated system that aids in detecting insect pests
through a mobile application. The monitoring of brown locusts would
benefit from an automated system, which would also facilitate early
outbreak warnings. Automated monitoring systems that utilize
remote sensing data and machine learning algorithms could be
implemented for real-time tracking of locust pests. These systems
enable automated data collection, minimizing the need for labor-

intensive manual monitoring and providing farmers with timely
information for effective pest control. Additionally, developing
mobile applications that deliver alerts, locust distribution maps,
and control recommendations would be highly beneficial. This
would help farmers, especially in remote areas, to respond
promptly to locust threats. By adopting these strategies, South
Africa can improve its capacity to monitor Brown locust
infestations, safeguarding crops and securing food supplies.

Conclusion

This study reviewed 103 documents from Scopus and Web of
Science, revealing significant advancements and trends over the
past decade (2014–2024). Specifically, a bibliometric analysis
showed a steady growth in research output, with an annual
increase of 6.68%. The USA and China lead research
contributions in insect pest monitoring. The limited
collaboration involving developing countries suggests a
potential area for growth in collaborative research. Forest-
related studies dominate, followed by cropland applications,
while grasslands and urban environments remain
underexplored. Although, climate variables i.e temperature and
precipitation are mostly used, there is a need to explore other
variables which may explain the occurrences of the pest
infestations. Landsat, MODIS, and Sentinel-2 emerged as the
most utilized sensors, with NDVI being the primary derived
variable. Advanced technologies, including machine learning
and deep learning, are increasingly integrated to improve pest
detection and monitoring. For Brown locust monitoring in South
Africa, the review recommends technology-driven methods using
remote sensing and predictive modelling. South Africa can
enhance its capacity for monitoring and early detection while
minimizing environmental impacts, as the infestation
management can be more targeted. This strategic integration
will not only protect and improve crops and livestock
productivity, but it will also promote sustainable agriculture in
the country. Moving forward, fostering partnerships to reduce
costs and increase accessibility to these advanced monitoring
technologies will be essential for protecting agricultural
livelihoods against the growing threats of locust outbreaks. This
study contributes essential information about progress in remote
sensing of insect pests in the last decade, identifying regions and
themes that are limitedly researched, thus providing research gaps
to direct future research.
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