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Monitoring water levels is crucial for managing water resources and addressing
climate change challenges. The new Surface Water and Ocean Topography
(SWOT) mission provides unprecedented spatial and temporal resolution
estimates of water surface elevations (WSEs) globally. This study evaluates the
accuracy of SWOT WSE estimates over Lake Léman, Switzerland. We evaluated
the SWOT L2-HR-Raster product from the calibration and nominal phases using
in situ measurements of water levels and compared its performance with other
missions, including Sentinel-3A (S3A), Sentinel-3B (S3B), Sentinel-6 (S6), and
Global Ecosystem Dynamics Investigation (GEDI) altimetry. From over
141 acquisitions, SWOT achieved a root mean squared error (RMSE) ranging
from 13 cm to 21 cm compared to in situ water levels, depending on the
measurement quality reported in the product. Data flagged as good quality
had an RMSE of 19 cm and a correlation coefficient (R) of 0.8, although these
represented only 42% of the total measurements. When considering WSE
estimates of all quality levels and applying a median outlier filter, the RMSE
reaches 21 cm, with a correlation coefficient of 0.79, while retaining
approximately 83% of the dataset. A consistent bias of −10 cm was observed
across the time-series. An analysis of SWOT accuracy relative to instrumental
parameters revealed that nadir and near-nadir acquisitions (viewing angle near 0°)
exhibited very high uncertainty, withmean absolute differences from in situwater
levels potentially exceeding 5m. To explore the sources of errors in SWOTWSE, a
random forest analysis showed that atmospheric perturbations had the most
significant impact on the SWOT WSE estimation accuracy. These perturbations
were linked to dry tropospheric delays affecting interferometric height
measurements and atmospheric effects on the Ka-band sigma0 values.
Compared to other missions, SWOT demonstrated slightly better accuracy
than S3A, S3B, and S6, with an RMSE of 11 cm on a daily scale, compared to
13 cm, 18 cm, and 20 cm for these three Sentinel missions, respectively. All radar-
based missions (S3A, S3B, S6, and SWOT) exhibited correlation coefficients
exceeding 0.95 with in situ water levels. In contrast, GEDI LiDAR data showed
the highest RMSE (46 cm), a bias of 27 cm, and a correlation coefficient of 0.45.

KEYWORDS

surface water and ocean topography mission, radar altimetry, water surface elevation,
inland water monitoring, Lake Léman

OPEN ACCESS

EDITED BY

Nan Xu,
Hohai University, China

REVIEWED BY

Lijuan Song,
Sun Yat-sen University, China
Yao Li,
Southwest University, China

*CORRESPONDENCE

Henri Bazzi,
hassan.bazzi@agroparistech.fr

RECEIVED 06 February 2025
ACCEPTED 11 March 2025
PUBLISHED 09 April 2025

CITATION

Bazzi H, Baghdadi N, Ngo Y-N, Normandin C,
Frappart F and Cazals C (2025) Assessing SWOT
interferometric SAR altimetry for inland water
monitoring: insights from Lake Léman.
Front. Remote Sens. 6:1572114.
doi: 10.3389/frsen.2025.1572114

COPYRIGHT

© 2025 Bazzi, Baghdadi, Ngo, Normandin,
Frappart and Cazals. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Remote Sensing frontiersin.org01

TYPE Original Research
PUBLISHED 09 April 2025
DOI 10.3389/frsen.2025.1572114

https://www.frontiersin.org/articles/10.3389/frsen.2025.1572114/full
https://www.frontiersin.org/articles/10.3389/frsen.2025.1572114/full
https://www.frontiersin.org/articles/10.3389/frsen.2025.1572114/full
https://www.frontiersin.org/articles/10.3389/frsen.2025.1572114/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2025.1572114&domain=pdf&date_stamp=2025-04-09
mailto:hassan.bazzi@agroparistech.fr
mailto:hassan.bazzi@agroparistech.fr
https://doi.org/10.3389/frsen.2025.1572114
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2025.1572114


1 Introduction

Inland water bodies, including rivers, lakes, reservoirs, and
wetlands, are crucial components of the Earth’s hydrological and
ecological systems and serve as a life-sustaining resource not only for
humans by providing fresh drinking water and irrigation but also for
wildlife and ecosystems (Baron et al., 2002; Dudgeon et al., 2006).
Impacted by both human activities and climate change, inland water
bodies are subject to extreme events such as droughts and floods
(Alderman et al., 2012; Dudgeon et al., 2006; Merz et al., 2021; Reid
et al., 2019; Søndergaard and Jeppesen, 2007). Thus, accurate and
consistent monitoring of inland water levels is essential for
understanding hydrological dynamics, managing water resources,
and addressing the challenges and impacts of climate change
(Kreibich et al., 2022; Loizou and Koutroulis, 2016). The most
reliable method for monitoring water levels and, consequently,
water volumes involves operational networks (gauges) that track
changes by recording surface water elevations over time. Due to high
installation and maintenance costs, the number of these stations has
declined, resulting in most lakes remaining ungauged, especially
those that are difficult to access (Shiklomanov et al., 2002).

As a complement to these water level measuring networks,
remote sensing technologies have become an essential source of
information for monitoring inland water body levels at large scales
(Cretaux et al., 2023; Papa and Frappart, 2021). Particularly, active
remote sensing technologies, such as radar or light detection and
ranging (LiDAR), have shown high accuracy in monitoring water
surface elevations over the last four decades, with more than
20 different satellite missions (Biancamaria et al., 2017; Bogning
et al., 2018; Fayad et al., 2020; Nielsen et al., 2017). Currently, seven
radar altimetry missions are operational (namely, SARAL, Jason-2,
CryoSat-2, HY-2A, Sentinel-3, Jason-3, and Jason-CS/Sentinel 6)
along with two LiDAR missions, namely, Advanced Topographic
Laser Altimeter System (ATLAS) onboard the second-generation
Ice, Cloud, and Land Elevation Satellite (ICESat-2) and the Global
Ecosystem Dynamics Investigation (GEDI) onboard the
International Space Station (ISS).

Radar altimetry for water level estimation is obtained by deriving
the radar range, which is the distance between the satellite and the
surface, using dedicated algorithms known as re-trackers (Cheney,
2001). The major limitation of radar altimetry is the limited coverage
of the radar ground tracks for most of the missions. Currently, most
of the current radar altimetry missions are only able to monitor a
small portion of the Earth’s surface, principally because this
technique collects elevation measurements of the Earth’s surface
at the nadir direction (Cretaux et al., 2023). CryoSat-2, in contrast,
had better coverage but very low temporal resolution, with a 369-day
repeat orbit at the equator. Until recently, only radar altimetry
missions were capable of providing continuous, temporal, and
accurate monitoring of water levels (lakes and rivers) despite
their spatial and/or temporal limitations (Birkett, 1998; 1995;
Cretaux et al., 2023). Since the early 1990s, preliminary studies
have reported that satellite radar altimeters have the potential to
monitor height variations over inland waters using the NASA Radar
Altimeter (NRA) with high accuracy, reaching 11 cm, yet this
capability has been limited to only very large lakes and rivers
with widths greater than 1 km. As reported by Maillard et al.
(2015), the accuracy of lake water levels retrieved by satellite

radar altimeters could be affected by the lake size, surrounding
topography, and geographic locations. Detection limitations over
small lakes and rivers were later resolved using higher-frequency
radar signals and re-tracking algorithms such as the Ocean
Correction and Oceanographic (OCOG) and Sea Ice re-trackers,
thus obtaining good water level estimation accuracy on small lakes
and rivers (Baup et al., 2014; Sulistioadi et al., 2015).

Regarding radar technology used, most of the radar altimeters
operate in the conventional low-resolution mode (LRM), except for
Sentinel-3 and CryoSat-2, which operate in the synthetic aperture
radar (SAR) mode. Due to the adoption of the new SAR altimetry
technology, Sentinel-3 showed the highest accuracy in water level
retrieval in an evaluation of historical and operational satellite radar
altimetry missions for lake water levels performed by Shu et al.
(2021). This SAR altimetry technology improved the retrieval of
elevation information over more variable surfaces with different
object sizes (lakes and rivers sizes) by decreasing the along-track
footprint size from several kilometers to approximately 300 m. Xu
et al. (2024) also validated the use of Sentinel-3 level-2 land product
for monitoring monthly water levels over eight lakes in China. Their
comparison with in situ water levels showed that most lakes
exhibited a correlation coefficient (R) above 0.9 and RMSE below
0.5 m. They presented that Sentinel-3 data also showed consistent
seasonal trends over the multi-year study period. Kittel et al. (2021)
evaluated the possibility of extracting river surface elevation at the
catchment level from Sentinel-3A and Sentinel-3B radar altimetry
using level-1b and level-2 data. At six in situ stations on the Zambezi
River in Africa, the RMSE of the S3 products was less than 32 cm.
Nilsson and Nielsen (2024) validated the Sentinel-6 Michael Freilich
(MF) (S6MF) low- and high-resolution lake water levels with data
from 124 gauges in 85 lakes from the United States, Canada, Sweden,
and Australia. The unbiased RMSE (ubRMSE) for S6MF varied
between 6.4 cm and 31.3 cm for all data, with the best ubRMSE
achieved when using the high-resolution mode and the OCOG
re-tracker.

Since radar altimetry has been generally limited by spatial
coverage, temporal revisit, and water body sizes, LiDAR altimetry
appeared as complementary to radar altimetry where studies have
presented a high potential of LiDAR data in estimating water levels
(Fayad et al., 2020; Zhang et al., 2019). Contrary to radar altimetry,
LiDAR missions such as the ICESat-2 and GEDI provide
measurements over larger parts (higher spatial coverage) of the
Earth through their small footprints (higher spatial resolution).
ICESat-2 and GEDI showed acceptable accuracy in estimating
water levels (Fayad et al., 2022a) despite both being launched for
different objectives, with ICESat-2 designed to monitor elevation
changes in Greenland and Antarctica and GEDI intended to derive
forest vertical structures. Zhang et al. (2019) assessed both ICESat-1
and ICESat-2 altimetry over Qinghai Lake and reported an excellent
agreement with in situmeasurements with an RMSE reaching 10 cm
for data collected between 2003 and 2018. Ryan et al. (2020) also
assessed the first-year data of ICESat-2 altimetry over 3,712 global
reservoirs and found that ICESat-2 well-retrieved water level
changes with an accuracy reaching ±14 cm. Yuan et al. (2020)
also evaluated ICESat-2 altimetry over all lakes in China (with a
surface area >10 km2) and concluded that ICESat-2 greatly
improved the altimetric capabilities with a relative altimetric
error of 6 cm. GEDI became operational in 2019, and a study by
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Fayad et al. (2020) was among the first to assess GEDI accuracy for
inland water bodies. Over the eight largest lakes in Switzerland, a
small subset of GEDI data (available until 2020) showed that GEDI
elevation estimates exhibit overall good agreement with in situwater
levels, with a mean elevation bias of 0.61 cm and a standard
deviation (std) of 22.3 cm. Over the five North American Great
Lakes, Fayad et al. (2022a) analyzed the precision of the GEDI
elevations, which showed an average difference from in situ
elevations (bias) varying between 0.26 and 0.35 m and an RMSE
ranging between 0.54 and 0.68 m. Over the Great Lakes and lower
Mississippi River, Xiang et al. (2021) showed that the RMSE of GEDI
elevations compared to 22 gauging stations reached 0.28 m with a
bias of −0.10 m ± 0.23 m. However, they showed that GEDI had the
lowest accuracy against its competitor laser altimetric missions, such
as ICESat-1 and ICESat-2.

In December 2022, a collaboration between the French National
Center of Spatial Studies (CNES) and the National Aeronautics and
Space Administration (NASA) launched the first space mission
dedicated to continental hydrology, including the monitoring of
rivers and lakes: the Surface Water Ocean Topography (SWOT) (Fu
et al., 2024). To overcome previous limitations of spatial coverage
and water body sizes, SWOT is expected to provide new perspectives
for hydrology and hydrodynamics at unprecedented spatial and
temporal resolution as it permits obtaining an almost complete
monitoring of inland water bodies at a spatial resolution of 100 m
and a repeat cycle of 21 days (Biancamaria et al., 2016). The SWOT
mission provides global water surface elevation (WSE) and
inundation extent derived from high rate (HR) measurements
from the Ka-band Radar Interferometer (KaRIn) (Fjortoft et al.,
2014). The novelty of the SWOT mission is that it simultaneously
uses two SAR antennas operating at Ka-band and separated by 10 m
to perform interferometric SAR (InSAR) measurements, thus
obtaining 2D WSE maps.

The main objective of this study is to evaluate SWOT WSE
estimations over Lake Léman, the greatest lake in Europe, using the
Level-2 High-Rate Raster (L2-HR-Raster) product, which provides
WSE in geographically fixed scenes at a spatial resolution of 100 m.
SWOT WSE is compared to in situ gauge stations over the period
between 31 March 2023 and 01 September 2024, including data from
both the calibration/validation phase (daily orbits) and the nominal
phase (21 days orbit). In addition, the paper investigates the main
parameters explaining the errors affecting the SWOT WSE estimates.
This is achieved through an explanatory random forest (RF) analysis
that integrates instrumental and geophysical information provided by
the L2-HR-Raster product. Finally, the paper provides a comparison of
SWOT WSE to competitor radar altimetric missions (Sentinel-3A,
Sentinel-3B, and Sentinel-6) and LiDAR missions (GEDI). The main
findings provide end-users with a full understanding of the L2-HR-
Raster data quality and, thus, precautions for operational use.

2 Materials

2.1 Study area

2.1.1 Lake Léman
This study was carried out at Lake Geneva, also known as Lake

Léman (Figure 1a), the largest lake in Central Europe in terms of

both surface area and volume. Situated on the northern side of the
Alps, Lake Léman is shared between Switzerland, which accounts for
60% of its surface, and France, which covers the remaining 40%. The
lake has a total area of 580 km2, with an average depth of 80 m and a
maximum depth of 310 m, found in the expansive section between
Évian-les-Bains and Lausanne, located on the French side.

2.1.2 In situ water levels
The Hydrology Department of the Federal Office for the

Environment (FOEN) provides surface water levels through a
network of 260 gauging stations in Switzerland (www.hydrodaten.
admin.ch; accessed on 03 February 2025). Water levels of Lake
Léman were obtained from three gauge stations, namely, the Chillon
(ID 2026), the St-Prex (ID 2027), and the Sécheron (ID 2028) stations
(shown in Figure 1), and they were used to validate the SWOT, Sentinel,
and GEDI altimetry-based water level estimates. Over the studied
period between 2016 and 2024, the difference between the water
levels measured at the three stations was negligible. As shown in
Table 1, the mean difference in water levels between any two
stations did not exceed 2.2 cm, with a standard deviation ranging
between 1.1 and 1.5 cm over the whole period. For this reason, on each
date, the average water level from the three stations was considered
representative of the WSE at that given date.

2.2 Remote-sensing water level estimation

This section provides a detailed description of the remotely
sensed water level data used in the study. Table 2 summarizes the
primary characteristics of all products employed, including the SAR
(SWOT, Sentinel-3, and Sentinel-6) and LiDAR (GEDI) data. These
datasets are presented in the following subsections.

2.2.1 SWOT mission and product
The SWOT mission, jointly developed by the CNES and NASA,

with contributions from the Canadian Space Agency (CSA) and the
United Kingdom Space Agency (UKSA), was launched on
15 December 2022. The main objective of this mission is to
measure both ocean and continental surface water levels (rivers
and lakes), making it the first space mission dedicated to continental
hydrology (Fu et al., 2024). The SWOT mission’s operation began
with a 3-month phase for engineering checking (January–March
2023), followed by a calibration/validation phase of 3 months on a
daily sampling orbit (April–June 2023), and then the scientific phase
on an orbit with a 21-day repeat period since July 2023. The SWOT
mission mainly measures WSE and extent, which are used to derive
river longitudinal profiles and slopes, lake water levels, and the
shapes and extents of rivers and lakes between 78°N and 78°S. The
SWOT mission has a cycle of 21 days, with a temporal revisit
depending on the location on Earth (Biancamaria et al., 2016;
Fjortoft et al., 2014). The satellite payload is composed of several
instruments, including the KaRIn and Poséidon-3C nadir altimeter
operating at Ku- and C-bands. The KaRIn instrument is composed
of two synthetic aperture radars (SARs) operating at Ka-band. The
novelty of this mission is the simultaneous use of the two SAR
antennas separated by 10 m to perform interferometry (InSAR)
measurements, thus obtaining 2D WSE maps (Fjortoft et al., 2014).
Images have a spatial resolution of 6 m along the satellite direction
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FIGURE 1
(a) Location of Lake Lémanwith the three in situ gauge stations. White points on the lake’s surface represent the distribution of the GEDI shots. Black
points indicate the location of Sentinel footprints. (b) SWOT passing orbits (pass) crossing Lake Léman. The number in parentheses represents the
percentage of acquisition dates for each orbit relative to the total number of acquisitions used in this study.

TABLE 1 Differences in the water level between the three in situ gauge stations in Léman Lake.

Average difference of WSE (cm) Standard deviation of WSE (cm)

Stations 2026 and 2027 2.2 1.5

Stations 2026 and 2028 1.9 1.4

Stations 2027 and 2028 1.2 1.1
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and from 10 to 60 m in the range direction in the radar projection.
For the geolocated projection, the final pixel size is 22 m in the
azimuth direction.

A total of seven products for continental hydrology are freely
available from the CNES (https://hydroweb.next.theia-land.fr; last
access on 16/01/2025) and NASA data catalogs (https://search.
earthdata.nasa.gov/; last access on 16/01/2025):

• L2_HR_PIXC: water mask pixel cloud
• L2_HR_PIXCVec: water mask pixel cloud auxiliary data
• L2_HR_Raster: raster NetCDF at 100 m or 250 m spatial
resolution

• L2_HR_RiverSP: river single pass shapefile (reaches
and nodes)

• L2_HR_RiverAvg: river cycle-averaged pass shapefile (reaches
and nodes)

• L2_HR_LakeSP: lake vector single pass shapefile
• L2_HR_LakeAvg: lake vector cycle-averaged shapefile

The product used in this study is the “L2_HR_Raster” (latest version
C), which contains rasterized water-surface elevations and inundation
extent data from the HR data stream of the KaRIn instrument. This
product is generated using L2_HR_PIXC and L2_PIXCVec products.
Finally, the spatial resolution of the product is 100 m.

Over Lake Léman, a total of 141 acquisitions (each in the form of
gridded points of 100 m spacing) have been used from 31 March
2023 to 01 September 2024, with 89 acquisitions during the calibration/
validation phase (daily orbit, between 31 March and 31 July 2023) and
52 acquisitions during the nominal phase (21-day orbit, since August
2023). The passing orbits of the used SWOT acquisitions are presented
in Figure 1b, including the percentage of acquisitions for each orbit with
respect to the total number of acquisitions. In Figure 1b, each passing
orbit shows two squares (footprints), where each corresponds to an
observation to the left and right of the nadir. In this product, different
parameters are available, and the main ones are summarized in Table 3.
Other variables are described in the SWOT product description
(SWOT, 2024).

2.2.2 Sentinel-3 and Sentinel-6 SAR
altimetry missions

Radar altimetry missions are commonly used for monitoring the
elevation of inland surface water (Abdalla et al., 2021; Cretaux et al.,
2023). Among them, the more recent ones operating in SAR mode are

the altimetry missions developed by the European Space Agency (ESA)
in the framework of the Copernicus program of the European Union
(EU), including the Sentinel-3A (S3A), Sentinel-3B (S3B), and also as a
continuity of the NASA-CNES Topex/Poseidon and Jason missions for
Sentinel-6Michael Freilich (S6) (Bogning et al., 2018; Normandin et al.,
2018). These products use an a priori elevation [open-loop or digital
elevationmodel (DEM)] to reduce tracking loss, which is likely to occur
in mountainous areas (Biancamaria et al., 2017), and provide more
accurate estimates of water surface elevation than those operating in the
LRM. More details about these missions can be found in Frappart et al.
(2021). Over lakes, the Sentinel missions were found to have an RMSE
against in situmeasurements that was lower than that of LRMmissions
and generally below 0.10 m (Shu et al., 2021). In over 10 Swiss lakes,
including Lake Léman, comparisons made against in situ data exhibited
a stable bias (−0.17 ± 0.04) m, low RMSE (<0.1 m), and generally high
correlation coefficient (R) (greater than 0.85) (Frappart et al., 2021).

Time-series of water levels were derived from one Sentinel-3A
(0358), one Sentinel-3B (0741), and one Sentinel-6 (044) ground track
crossing Lake Léman using Altimetry Time Series (AlTiS) software
(Frappart et al., 2021). This software program permits users to visualize
and process the altimetry data contained in the geophysical data records
(GDRs) made available by the space agencies (i.e., orbit, range,
corrections to be applied to the range, and backscattering and
peakiness at Ku- and C-bands). It also derives the altimeter height
from the GDR data with all the necessary corrections to be applied over
land. A graphical user interface helps the user in selecting the valid data
to be used to obtain the time-series of water levels. This software
application is commonly used to derive surface water levels over lakes
and reservoirs (Aminjafari et al., 2024; de Fleury et al., 2023; Fuentes-
Aguilera et al., 2024; Oularé et al., 2022; Pham-Duc et al., 2022). In this
study, this software program was used to generate along-track profiles
and time-series of water levels on the five Sentinel ground tracks. The
geographical location of the water surface levels time-series of S3A, S3B,
and S6 are shown in Figure 1.

2.2.3 GEDI data
In this study, we also compare the precision of water surface

elevation provided by SWOT to elevations obtained by NASA’s
recent GEDI LiDAR sensor, a full-waveform LiDAR instrument
installed aboard the ISS. It is equipped with three 1,064 nm lasers,
allowing it to obtain eight tracks of data represented on the ground
by a series of 25-m-wide footprints spaced 60 m along the track and
600 m across the tracks (Dubayah et al., 2020). The echoed

TABLE 2 Summary of the main remote-sensing water level estimation products used in this study.

Mission Data
type

Spatial resolution Temporal
resolution (days)

Time coverage Number of
acquisitions (dates)

Source

SWOT Radar 100 m grid cells Validation: daily
Nominal: 21

April
2023–September 2024

141 https://hydroweb.next.
theia-land.fr

Sentinel
3A and 3B

Radar 300 m along track, few km
across-track

27 April 2016–June 2024 185 https://www.legos.omp.eu/
ctoh/https://gitlab.com/

ctoh/altis
Sentinel 6 Radar 300 m along-track and few

km across-track
10 January

2021–December 2024
94

GEDI LiDAR Footprint 25 m
60 m along-track
600 m across-track

Variable revisit April 2019–May 2021 72 https://lpdaac.usgs.gov/
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waveforms are digitized to a maximum of 1,246 bins with a vertical
resolution of 1 ns (15 cm).

NASA’s Land Processes Distributed Active Archive Center (LP
DAAC) processes and publishes GEDI data products of levels 1 and
2, which include the geolocated raw waveforms (L1B), footprint-
level elevation and canopy height metrics (L2A), and the footprint-
level canopy cover and vertical profile metrics (L2B). Two GEDI
data products were used in this study, namely, level 1B (L1B) and
level 2A (L2A). The GEDI L2A comprises metrics obtained with six
distinct algorithms, each utilizing various thresholds and smoothing
parameters on the received waveforms. From the release version
V2 of the L1B data product (Dubayah et al., 2021b) and L2A data
product (Dubayah et al., 2021a), we extracted the following variables
derived from the processing algorithm a1, which demonstrated the
best overall performance over water bodies (Fayad et al., 2022b).

• Latitude, longitude, acquisition time, and elevation of the
lowest mode (i.e., surface return)

• Latitude, longitude, and elevation of the instrument
• Number of detected modes (num_detectedmodes)
• Width of the Gaussian fit to the received waveform “rx_
gwidth” (hereafter referred to as gwidth)

• Amplitude of the smoothed waveform’s lowest detected mode
“zcross_amp”

• Amplitude of each detected mode within the waveform
“rx_modeamps”

• Mean and standard deviation of the background noise (mean
and std dev)

Next, the viewing angle (VA in degrees) and the signal-to-noise
ratio (SNR in decibels) were calculated for each GEDI shot (Fayad
et al., 2022b; Nie et al., 2014). To calculate the SNR, the maximum
amplitude within an acquired waveform, defined as the maximum of
up to 19 possible values of rx_modeamps, and the mean and
standard deviation of the noise are used. The distance between
the location of a GEDI shot and the location of the GEDI instrument
projected at the nadir onto the WGS84 reference ellipsoid and the
altitude of the GEDI instrument over the referenced ellipsoid at the
acquisition time of shot are used to calculate the viewing angle. VA
and SNR were further used to filter unreliable GEDI shots.

The GEDI dataset comprises 72 acquisition dates, spanning
from April 2019 to March 2023. Not all GEDI shots are usable since
LiDAR returns can be strongly degraded due to the presence of
clouds, water, and aerosols. Therefore, several filters were used to
remove non-viable shots, which are later explained in the methods
section (3.2 Filters for GEDI). The distribution of the GEDI shots
over Lake Léman is shown in Figure 1.

3 Methods

3.1 Transformation of elevations

SWOT, Sentinel-3A, B, and 6, and GEDI elevations refer to
different geodetic reference systems depending on the used geoid
model. SWOT and Sentinel elevations are referenced to geoidal
heights relative to the official Earth Gravitational Model EGM2008

TABLE 3 Main SWOT parameters available in the « L2_HR_Raster » product, version C.

Parameters Definition

wse Water surface elevation (WSE, in meters) is given relative to the provided model of the geoid with applied corrections (atmospheric, crossover,
and tidal effects)

wse_qual Quality indicator for the WSE parameter of a given raster water pixel. Values range from 0 to 3 (0, good; 1, suspect; 2, degraded; 3, bad
measurements)

wse_uncert One-sigma uncertainty for the WSE

sig0 Radar backscatter (sigma0) estimates given in linear units

sig0_qual Quality indicator for the sigma0. Values range from 0 to 3 (0, good; 1, suspect; 2, degraded; 3, bad measurements)

sig0_uncert One-sigma uncertainty for the sigma0

water_area Water surface area estimate (in km2) is the total estimated water surface area within the pixel, including detected water and any dark water that
was not detected as water in the SWOT observation

water_area_qual Summary quality indicator for the water surface area and water fraction of a given raster water pixel. Values range from 0 to 3 (0, good; 1,
suspect; 2, degraded; 3, bad measurements)

water_area_uncert One-sigma uncertainty in the water surface area

water_frac Water fraction estimate, including detected water and any dark water that was not detected as water by the SWOT observation

water_frac_uncert One-sigma uncertainty in the water fraction

dark_frac Fraction of water area covered by dark water. This value is between 0 (no dark water) and 1 (100% dark water)

inc Incidence angle (between 0° and 90°) is the angle of the look vector with respect to the local “up” direction where the look vector intersects with
the reference DEM.

cross_track Approximate cross-track location of the pixel with respect to the nadir point of the spacecraft reported as a signed distance, with positive values
indicating pixels to the right of the spacecraft and negative values indicating that the pixel is on the left side of the nadir track

geoid Model for geoid height above the ellipsoid reference. The geoid model is EGM2008
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(Pavlis et al., 2012) of the world geodetic system (WGS84), whereas
GEDI elevations are referenced to ellipsoidal heights relative to the
WGS84 ellipsoid. On the other hand, gauge stations of Lake Léman
are measured based on the local Swiss height system referring to the
CHGeo2004 Geoid model. To maintain elevation data consistency,
which allows for comparing elevation estimates between different
sources, it is important to first transform elevations from the
different missions (SWOT, Sentinel, and GEDI) into a unified
geodetic reference system. In this study, we chose to transform
all elevations from SWOT, Sentinel, and GEDI to the same geoidal
reference as the in situ gauges, specifically the local Swiss height
reference (CHGeo2004). Figure 2 illustrates the conversion from
ellipsoidal heights to geoidal heights for any reference geoidal model
by accounting for the geoid–ellipsoid difference (N) where geoidal
heights are given as follows:

H � h − N, (1)
where “N” represents the geoid undulation, “h” is the ellipsoidal
height (measured perpendicular to the ellipsoid), and “H” is the
orthometric height (measured from the geoid to the point
of interest).

SWOT and Sentinel-3A, B, and 6 data are already orthometric
geoidal heights (not ellipsoidal) but refer to different geoidal
references than the gauge stations (EGM2008 and CHGeo2004,
respectively). Thus, the conversion of SWOT and Sentinel altimetry
to Swiss geoidal based altimetry (CHGeo2004) requires an
intermediate step where the WSE of these data are first
reconverted to ellipsoidal heights referring to the
WGS84 ellipsoid by adding back the geoidal undulation of
EGM2008. Second, the WSE ellipsoidal heights are then
converted to the CHGeo2004 reference by subtracting the geoidal
undulation of the CHGeo2004 geoidal reference, as shown in
Equation 1. The final equation for the conversion of SWOT and
Sentinel WSE to the CHGeo2004 reference is provided as in
Equation 2:

WSESWOT|Sentinel CHGeo2004( ) � WSESWOT|Sentinel EGM2008( )
+ NEGM2008 − NCHGeo2004, (2)

Where WSESWOT|Sentinel(EGM2008) is the elevation provided by
either SWOT or Sentinel, NEGM2008 denotes the geoid undulation for
the EGM2008 system, representing the difference between the
EGM2008 geoid and the WGS84 ellipsoid, and NCHGEO2004

represents the geoid undulation (N) for the
CHGeo2004 Swiss system.

NEGM2008 is directly provided in the SWOT products for each
pixel (grid point elevation data), while for S3A, S3B, and S6, it was
computed using Delaunay linear interpolation based on the global
EGM2008 geoid model at 1′ resolution. The model can be accessed
at the EGM2008 geoid model (https://3df-eu.fra1.
digitaloceanspaces.com/geoids/EGM2008 - 1’.zip).

GEDI data are ellipsoidal heights; thus, the conversion of GEDI’s
elevations to Swiss geoidal elevations directly follows Equation 1,
with the N value being the geoid undulation derived from the
CHGeo2004 model. GEDI geoidal elevations are thus calculated
for the reference CHGeo2004 as in Equation 3:

WSEGEDI CHGeo2004( ) � WSEgedi EllipsoidWGS84( ) − NCHGeo2004,

(3)
Where WSEgedi(EllipsoidWGS84) represents the ellipsoidal

water-surface elevations provided by the GEDI data and
NCHGeo2004 represents the geoid undulation (N) for the Swiss
geoid system.

3.2 Filtering outliers for SWOT and GEDI

3.2.1 Outlier filter for SWOT
SWOT L2_HR_Raster product provides raster water-surface

elevations at 100 m resolution. Some grid points in each raster
(date) provide inaccurate WSE estimations due to, and not limited
to, instrumental factors, atmospheric factors, or errors related to the
WSE estimation method. As a result, some WSE data for certain
dates become unusable. In this study, we propose filtering the WSE
data of SWOT for each acquisition date to remove low-quality WSE
estimations and minimize the potential effect of such outliers. The
outlier filter used is based on the median absolute deviations (MAD),

FIGURE 2
Illustration of the conversion from ellipsoidal heights (h) to orthometric geoidal heights (H).
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a well-known robust dispersion estimator frequently used in similar
studies for filtering outliers (Höhle and Höhle, 2009; Jiang et al.,
2019; Leys et al., 2013). For each SWOT acquisition date (d), we first
calculate the median of all WSE from all pixels (Md), followed by the
absolute deviation of eachWSE at each pixel from the median (ADd)
as in Equation 4:

ADd � WSEpixel −Md

∣∣∣∣ ∣∣∣∣. (4)

We then calculate the median of the pixels’ absolute deviations
calculated in Equation 4 (MADd) and the standard deviation at each
date (σd) defined as in Equation 5:

σd � 1.4826 × MADd. (5)
According to Wilcox (2005), the standard deviation calculated

as the MAD scaled by 1.4826 is more robust for filtering outliers
when the distribution of the data is non-Gaussian.

We finally filter the data at each date by retaining only the pixels
having WSE within the range of [Md − 2σd,Md + 2σd]. This
procedure is carried out separately for each date. This filter is
later referred to as the “outlier filter.”

3.2.2 Filters for GEDI
The quality of the GEDI data is also subject to strong

degradations that are mainly related to atmospheric perturbations
on LiDAR data (clouds, water vapor, etc.). Some GEDI acquisitions
are consequently unusable, and filtering operations are required to
remove degraded elevation estimations. Filtering GEDI acquisitions
follows the propositions provided by Fayad et al. (2022a). First, three
general filters were applied to all GEDI shots, including
the following:

• Removing all acquired GEDI shots with the number of
detected modes different from one (num_detection_modes
≠ 1) since a footprint acquired over a water surface should only
have a single return.

• Removing shots with an elevation difference to the SRTM
DEM of more than 100 m.

• Removing shots with a signal-to-noise ratio equal to 0 (SNR =
0, noise).

Then, the median absolute deviation method (the same method
as for SWOT) is applied for each GEDI track by calculating the
median at each track (MT, T stands for track) using GEDI shots
acquired along a given beam on a given date. In this filter, only GEDI
shots within [MT − 2σT,MT + 2σT] were retained (σT is calculated
the same way as described in Section 3.2.1 but separately for each
GEDI track). A second filter, also based on the median absolute
deviation method, was then applied to the remaining GEDI points,
considering the median of all GEDI shots across all tracks (MAT)
(AT stands for all tracks) and retaining GEDI shots within the range
[MAT − 5σAT,MAT + 5σAT] (σAT is calculated as described in Section
3.2.1 but for all remaining GEDI shots from all tracks). Detailed
information on the filtering procedure can be found in Fayad
et al. (2022a).

In addition to the two outliers’ filters, Fayad et al. (2022b)
showed that the best criterion to filter less accurate GEDI waveforms
is based on the VA. They found that for acquisitions with a VA
higher than 3.5°, the root mean squared error of GEDI’s elevation in

inland water bodies was 2.5 times higher than for acquisitions with a
VA less than 3.5°. For this reason, after applying the two outlier
filters (by track and by all tracks), a third VA filter was applied by
removing all GEDI shots with a VA greater than 3.5°.

3.3 Accuracy metric for altimetric
evaluations

The accuracy of SWOT WSE, Sentinel-3A, B, and 6, and GEDI
elevations was evaluated using four metrics, namely, the bias
(Equation 6) showing the mean elevation difference between the
estimated and in situ gauge elevations, the RMSE (Equation 7), the
ubRMSE (Equation 8), and the Pearson correlation coefficient (R)
(Equation 9).

Bias � 1
N

∑N
i�1

Pi −Oi( ), (6)

RMSE �

����������∑N
i�1

Oi − Pi( )2

N

√√
, (7)

ubRMSE �
������������
RMSE2 − Bias2

√
, (8)

R �
∑N
i�1

Oi − �O( ) Pi − �P( )[ ]����������∑N
i�1

Oi − �O( )2√ ���������∑N
i�1

Pi − �P( )2√ , (9)

Where Oi and Pi are the observed (in situ) and estimated
(altimetry mission) WSE. �O and �P represent the mean of in situ
and estimated WSE, respectively.

For SWOT data, each grid point at each acquisition date was
considered an estimation of WSE (i.e., Pi), where the observed (in
situ) elevations are considered the same for all the grid points at the
same date (only one in situ measurement per day), and the four
accuracy metrics for SWOT were calculated accordingly. However,
the accuracy of the SWOT WSE product was assessed for several
data filtering configurations. Accuracy metrics were calculated for
data with and without applying the outlier filter, as well as for
different WSE quality levels (WSE_qual) provided by the SWOT
product, which include good (0), suspect (1), and degraded
estimations (2).

SWOT, GEDI, and Sentinel data are not on the same spatial
scale. Although SWOT provides raster data with several grid
points (WSE estimations) for each date and GEDI provides
several points (shots) at each date, each with an estimated
WSE, Sentinel data (S3A, S3B, and S6) provide only one WSE
estimation for each date. In order to compare accuracy metrics
between SWOT, Sentinel, and GEDI datasets, it is important to
maintain spatial consistency between the four missions (one
estimation point each date for Sentinel vs several pixels/shots
for SWOT/GEDI each date). Unique SWOT WSEs were
calculated at each available date by averaging the WSE of all
grid points within the lake at each SWOT acquisition date, and a
unique GEDI WSE value at each date was obtained by averaging
all GEDI WSE from all tracks at each available GEDI date. The
accuracy metrics are then calculated accordingly for the four
missions by considering one estimation Pi per date.
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4 Results

4.1 Assessment of SWOT elevations

Figure 3 presents the distribution of the absolute difference
between SWOTWSE and in situ water levels for different applied
filters. In Figure 3A, the raw data represent all measurements (all
grid points considered for each acquisition); approximately
78.3% of the estimated WSE had an absolute difference of less
than 25 cm, 8.8% had a difference between 25 and 50 cm, and
4.1% of the pixels showed an absolute difference of greater than
10 m. In Figure 3B, elevation data of good quality (WSE_qual = 0)
represented 41.93% of the dataset, with 92.2% of these pixels
having an absolute difference lower than 25 cm and 7.1% having
an absolute difference between 25 and 50 cm. Pixels considered
suspected estimation (moderate accuracy) with WSE_qual =
1 represented 17.25% of the whole data, where 80.7% of these
estimations have an absolute difference of less than 25 cm
(Figure 3C). Approximately 2.9% of the pixels with suspect
measurements have an absolute difference of greater than
10 m (Figure 3C). Degraded estimates with WSE_qual =
2 represented an important part of the dataset, reaching
40.82% (Figure 3D). However, not all these estimations were
inaccurate as 63% of these degraded estimates still had an
absolute difference of less than 25 cm and 9.6% between

25 and 50 cm. However, 18.4% of these bad measurements
had an absolute difference between 50 cm and 10 m and 8.8%
exceeded 10 m.

Applying the outlier filter (Section 3.2.1) while keeping all WSE_
qual data (0, 1, and 2) maintains 82.7% of the whole dataset, with
92.3% of these pixels having an absolute difference of less than 25 cm
and 6.3% having an absolute difference between 25 cm and 50 cm
(Figure 3E). Only 1.4% of the pixels exhibit a high absolute
difference between 50 cm and 5 m. These pixels could
correspond to specific acquisition dates where most SWOT
estimations (most of the grid cells) are abnormal and, thus, could
not be detected as outliers by the MAD outlier filter. When
considering only pixels with good (0) and suspect (1) qualities,
followed by the application of the outlier filter, 53.16% of the data are
retained, where 95.3% of these pixels showed an absolute difference
of less than 25 cm, 4.7% showed an absolute difference between
25 and 50 cm, and no estimations exceeded an absolute difference of
50 cm (Figure 3F).

4.2 Overall SWOT elevation accuracy

Table 4 summarizes the accuracy metrics calculated for SWOT
WSE compared to the in situ water level, considering different WSE
quality flags with and without applying the outlier filter. Figure 4

FIGURE 3
Distribution of the absolute difference between SWOT WSE and in situ water level for (A) all datasets, (B) pixels with WSE quality = 0, (C) pixels with
WSE quality = 1, (D) pixels with WSE quality = 2, (E) pixels filtered by the outlier filter, and (F) pixels with WSE quality either 0 or 1 with outlier filter applied.
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shows the scatter plots of SWOTWSE vs. in situwater levels for four
main configurations of Table 4. Data with good estimation quality
(wse_qual = 0) showed an average difference (bias) of −0.09 m from
in situ water levels with an RMSE of 0.19 m and an ubRMSE of
0.16 m. The correlation coefficient reached 0.8 for these pixels.
However, the scatter plot in Figure 4A shows that for these pixels,
some estimations may show significant differences (>1 m) from in
situ measurements. Applying the outlier filter to these pixels with

wse_qual = 0 slightly reduced the number of applicable pixels by
3.26% while reducing the RMSE by 6.1 cm to reach 0.13 m and
increasing the correlation coefficient to reach 0.93 (Figure 4B). Pixels
with suspected quality (wse_qual = 1) showed a very high bias, with
RMSE, ubRMSE, and mean bias values reaching 6.18, 65.80, and
65.51 m, respectively. Removing outliers from these data
significantly reduces the three metrics to −0.09, 0.13, and 0.09,
respectively, while removing 2.56% of these points identified as

TABLE 4 Accuracy metrics of SWOT WSE computed for different WSE qualities with and without outlier filter.

WSE_qual Bias (m) RMSE (m) ubRMSE (m) R % Pixels

Without outlier filter 0 −0.10 0.19 0.16 0.80 41.93%

1 6.18 65.80 65.51 −0.01 17.25%

0 and 1 1.73 35.53 35.49 0.00 59.18%

0,1 and 2 5.09 49.43 49.16 0.02 100%

With outlier filter 0 −0.10 0.13 0.09 0.93 38.67%

1 −0.10 0.16 0.12 0.90 14.69%

0 and 1 −0.10 0.14 0.09 0.93 53.16%

0,1 and 2 −0.09 0.21 0.19 0.79 82.70%

FIGURE 4
Scatter plot of in situ water levels and SWOT WSE for (A) data with good estimations (wse_qual = 0), (B) data with good estimation and outlier filter
applied, (C) data with good (0) and suspect (1) estimations with outlier filter applied, and (D) data with all WSE qualities outlier filter applied.
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outliers. Considering SWOT pixels with both good and suspect
qualities (0 and 1) without filtering the outliers still results in large
discrepancies compared to in situ water levels, with an RMSE of
35.53 m, a bias value of 1.73 m, and complete lack of correlation,
with R dropping to 0. Similar results with very high RMSE and bias
are shown when considering all the datasets with no quality control
(wse_qual 0, 1, and 2). The outlier filter enhanced the accuracy

metrics in both cases (wse_qual 0 and 1 or wse_qual 0, 1, and 2),
where the RMSE reached 0.16 and 0.14 m, respectively, as shown in
Table 4 and Figures 4C, D. However, considering all WSE qualities
and applying the outlier filter still showed few anomalous
estimations having differences from in situ water levels exceeding
1 m (scatter plot of Figure 4D). For the four scatter plots in Figure 4,
many points appear as vertical lines compared to the in situ WL.

FIGURE 5
Bias, RMSE, and ubRMSE per SWOT acquisition date for (a) all WSE qualities with an outlier filter and (b) good (0) and suspect (1) SWOTWSE qualities
with an outlier filter.
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Vertical lines in the scatter plot could be related to the availability of
only one in situ WL measurement corresponding to all the SWOT
grid cells (points) at each acquisition date, as mentioned in the
methods section. This consideration could lead to vertical lines in the
scatter plot, where we can obtain variable SWOT WSE estimations
at a given date, compared to the same in situ WL at this date.
However, the lake’s surface is generally flat, and the water levels are
considered spatially uniform across its entire extent.

4.3 SWOT elevation accuracy by date

The bias, RMSE, and ubRMSE values were calculated at each
SWOT acquisition date. Figure 5 shows the three accuracy metrics
per date for two configurations: first for data with allWSE qualities (0, 1,
and 2) filtered for outliers (Figure 5a) and second for data with good (0)
and suspect (1) qualities filtered for outliers (Figure 5b). For all WSE
qualities with an outlier filter (Figure 5a), the bias values across most of
the acquisition dates range between −5 cm and −18 cm. Some

exceptions are present, such as the cases of 14/11/2023 and 23/12/
2023, where bias values were positive and reached 60 cm and 1.9 m,
respectively, despite applying the outlier filter. The same trend of bias is
shown for the RMSE and ubRMSE, with homogeneous values across
most acquisitions and ranging between 7 cm and 20 cm, except for the
previously mentioned dates. For the second configuration, considering
the good and suspect qualities and applying the outlier filter, the bias
values range between −18 cm and −5 cm for almost all dates, except for
11/11/2023, showing a positive bias value of 17 cm. The RMSE and
ubRMSE for this configuration seem homogeneous across dates,
ranging from 7 cm to 21 cm for RMSE and from 4 to 13 cm
for ubRMSE.

Figure 6 summarizes the results presented in Figure 5, showing
the percentages of SWOT acquisitions (dates) for different ranges of
the three accuracy metrics, namely, bias, RMSE, and ubRMSE for
both the previously presented configurations in Figure 5. For the first
configuration, results in Figure 6a showed that 80% of the SWOT
acquisition dates had a bias value ranging between −15 cm
and −5 cm. Only 1.5% of the dates had a bias value greater than

FIGURE 6
Percentage of SWOT acquisitions (dates) as a function of bias, RMSE, and ubRMSE using (a) data with all WSE qualities (0, 1, and 2) with outlier filter
applied and (b) good and suspect SWOT WSE with outlier filter applied.
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20 cm. For the RMSE, 61% of the SWOT dates had an RMSE
between 10 and 15 cm and 21% had an RMSE between 15 and 20 cm.
A total of 7% of the SWOT dates had an RMSE greater than 20 cm.
The histogram of ubRMSE shows that 81% of the SWOT acquisition
dates had an ubRMSE between 5 and 10 cm, 14% had an ubRMSE
between 10 and 15 cm, and, finally, 3.5% had an ubRMSE greater
than 20 cm. Comparable results are presented for the second
configuration, considering only the good and suspect qualities
(Figure 6b). For this configuration, the bias value does not
exceed 20 cm, with no dates attaining a bias value greater than
20 cm. The ubRMSE for this configuration showed that 92% of the
acquisition dates had an ubRMSE between 5 and 10 cm. However,
using data with good and suspect qualities completely removes nine
acquisition dates from the dataset (132 dates instead of 141 dates
considering all WSE qualities), including the two dates of 14/11/
2023 and 23/12/2023, which showed significant bias and RMSE in
the first configuration. For all these nine dates, the WSE quality flag
of all data (pixels) was equal to 2. However, retaining these bad
quality data while applying the outlier filter resulted in reliable
estimations for seven dates out of nine dates, preserving the
continuity of the time-series. Only the cases of 14/11/2023 and
13/12/2023 remained with very high errors despite applying the
outlier filter. These two dates are deeply analyzed and discussed
further in the discussion section.

Figure 7 shows the time-series of the daily averaged SWOTWSE
(black line) and the in situ water levels for the same two previously
presented configurations (Figures 7A, B, respectively). The gray-
shaded region represents the minimum and maximum boundaries
calculated from the boxplot distribution at each acquisition date. For
all WSE qualities and with the application of an outlier filter
(Figure 7A), the two previously mentioned dates 14/11/2023 and
23/12/2023, with high bias and RMSE values, showed an average
SWOT WSE exceeding the in situ water levels by 0.74 and 1.97 m,
respectively. Regardless of these two dates for Figure 7A and despite
the negative bias across most acquisition dates, Figures 7A, B show
that the SWOTWSE estimations follow the trend and seasonality of
the lake WSE. For Figure 7B, the measured WSE throughout the
studied period from April 2023 to September 2024 varied by 0.97 m
from 371.50 to 372.47 m. This variation in the lake water level is
captured by the SWOT-estimated WSE, where both in situ
measurements and SWOT estimates showed the same increasing
and decreasing patterns. For example, from April 2023 to December
2023, the in situ water levels increased by 62 cm from an average of
371.73 m in April 2023 to 372.35 m in November 2023. A similar
increase of 62 cm is obtained using SWOT with WSE varying from
an average of 371.63 m in April 2023 to 372.25 m in December 2023.
From December 2023 to April 2024, the in situ water level decreased
by 78 cm from 372.35 m to reach a minimum of 371.57 in April

FIGURE 7
Time-series of SWOT WSE (black line) and in situ water levels (blue line) for (A) data with all WSE qualities with an outlier filter and (B) good and
suspect SWOT WSE with an outlier filter. The gray-shaded region represents the minimum and maximum boundaries calculated from the boxplot
distribution at each acquisition date.
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2024. The SWOT WSE showed the same decrease of 78 cm from
372.25 m in December 2023 to 371.46 m in April 2024. Generally,
SWOT WSE showed a systematic constant negative bias of
approximately −10 cm over the whole studied period. This
constant bias value could be either due to a systematic error in
the elevation extraction methods used by SWOT or could be related
to the geoidal transformation errors due to the conversion of SWOT
elevations to the same geoidal grid for the in situ data.

5 Discussion

5.1 Explanation of SWOT WSE and in situ
water level differences

We tried to analyze the differences between SWOTWSE and in situ
water levels using the instrumental, atmospheric, and geophysical
parameters associated with the WSE in the L2_HR_Raster. Some
associated parameters include atmospheric variables such as, and not
limited to, the sigma0 atmospheric attenuation (sig0_cor_atmos_
model) or corrections due to delays from atmospheric propagation,
i.e., ionosphere and dry and wet tropospheric delays (iono_corr, gim_
ka, model_dry_tropo_cor, and model_wet_tropo_corrections). Other
parameters are instrumental, such as the incidence angle, the cross-
track, or the sigma0 values. Some parameters are related to geophysical
corrections such as the tide heights (solid_earth_tide). All parameters
(19 parameters in total) available in the L2_HR_Raster product were
integrated into an RF model to explain the differences between SWOT
WSE estimations and in situ water level measurements. All pixels from
all dates were included in the RF regressor after considering WSE
qualities of 0, 1, and 2 and applying the outlier filter. Data were
randomly shuffled and split into 50% for training and 50% for
validation. Assessing the feature importance in the explanatory
random forest helps identify the variables that have the most
significant impact on the difference between SWOT WSE and in
situ water levels.

Figure 8 presents the feature importance in RF regression for all
considered parameters. The parameter showing the highest
importance in explaining the differences between SWOT and in
situwater levels (0.44) appeared to be related to the dry tropospheric
delay correction (model_dry_tropo_cor), followed by the
atmospheric correction of the sigma0 values (sig0_cor_atmos_
model) with a feature importance reaching 0.16. Cross-track
values (distance between nadir and pixel positions related to the
incidence angle) were ranked third, with an importance of
approximately 0.07. Surface height displacement from load tide
(load_tide_got) and ionospheric path delay correction had a
contribution reaching approximately 0.06 and 0.04, respectively.
The remaining parameters had no significant contribution as their
importance dropped below 0.04.

The dry tropospheric correction (DTC) applied to the SWOT
grid points’ heights refers to the height’s corrections due to the
propagation delay from the dry troposphere. This correction value
was obtained from an independent SWOT information computed
using the surface pressure from the European Center for Medium-
Range Weather Forecasts (ECMWF) models. Several studies have
reported the effect of tropospheric delays on interferometric height
measurements (Doin et al., 2009; Yang et al., 2023). Correcting the
propagation delays requires information on the surface pressure,
which is usually estimated using weather models such as those from
the ECMWF. Doin et al. (2009) reported that the average dry
tropospheric delay over Lake Léman calculated using the
ECMWF data ranges between −2.10 and −2.20 m, confirming the
average value of the dry tropospheric correction in our dataset,
which reached −2.20 m. However, in their study, they also report
that this delay correction is subject to a standard deviation varying
between 10 and 15 cm for our study site. In addition, the
sigma0 atmospheric correction (sig0_cor_atmos_model) is a
radiometric correction of sigma0 obtained from the numerical
weather prediction model of the ECMWF. Contrary to the ocean
case, where DTC is very accurate (1–2 cm), larger errors that occur
over inland water due to interpolation errors of the correction

FIGURE 8
RF feature importance of the L2_HR_Raster parameters used to explain the difference between SWOT WSE and in situ water levels.
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derived from coarse resolution meteorological fields related to
along-track effects were identified for nadir altimetry (Fernandes
et al., 2014). This source of error also impacts wide-swath altimetry,
affecting both along-track and across-track measurements due to
similar interpolation issues. As highlighted by Mehran et al. (2017)
regarding the wet tropospheric correction, meteorological model
outputs cannot achieve sub-kilometric spatial resolution. Therefore,
the two most significant variables affecting the SWOT WSE
estimations are mainly related to atmospheric conditions
affecting the backscattered sigma0 values and, thus, the heights’
estimations. Atmospheric perturbation could be the reason behind
the highly visible errors for the date 14/11/2023 (Figures 5, 7). To
understand the atmospheric perturbations or probably the
meteorological conditions of this date, we analyzed the rainfall
data derived from the ERA-5 (ECMWF reanalysis fifth
generation) daily data for the whole studied period. Rainfall data
showed that on 14/11/2023, a heavy rainfall event was encountered
with a cumulative amount of 53 mm in 1 day. This value was the
highest recorded rainfall event during the period between March
2023 and September 2024. As a direct effect of this rainfall event, in
situ water levels showed an increase in the lake’s elevation by 35 cm
between 11/11/2023 and 15/11/2023. This heavy rainfall condition
could explain the heavily charged atmospheric conditions, leading to
high perturbation in the SWOT sigma0 values and, thus, higher
errors in the WSE estimations.

5.2 Effect of cross-track on SWOT accuracy

In this section, we analyze the effect of the SWOT cross-track on
the accuracy of SWOT measurements as cross-track variations
appear to impact SWOT WSE estimates, as shown by the
variable importance in the RF model (Figure 8). Cross-track
provides a signed distance (positive and negative) from the pixel
to the spacecraft nadir point, where negative values indicate that the
pixel is at the left side of the nadir. Cross-track and incidence angle
are correlated, where low cross-track values (negative or positive)
are near-nadir acquisitions with a low incidence angle and high
absolute cross-track values are far-nadir acquisitions with a high
incidence angle (in the right or left directions). Figure 9 shows the
boxplots of the differences between SWOT WSE and in situ water
levels for each 5 km range of cross-track values for three filtering
configurations: (a) for data with good and suspect WSE qualities, (b)
for data with all WSE qualities and an outlier filter, and (c) for data
with only good WSE qualities. Over the lake, cross-track values
varied from approximately −65 km (65 km to the left of the nadir) to
65 km to the right of the nadir. Figure 10 completes Figure 9 by
showing the mean absolute difference for all pixels (data) for the
same range of cross-tracks and the same three filtering
configurations. For data with good and suspect qualities
(Figure 9A), the boxplot shows that at nadir (cross-track
between −5 and 0 km), large error values could be obtained
ranging from −0.6 m to 0.6 m, and an absolute average error is
shown in Figure 10A exceeding 10 m (the boxplot does not show
outliers). The range of error values then starts to decrease as we
move away sides from the nadir (both negative and positive cross-
tracks), reaching a smaller variation at 25 and 30 km (on both sides)
and an absolute difference decreasing to reach a value between

0.1 and 0.13 m for cross-tracks between 20 and 40 km. As we move
far from the nadir with larger cross-track values greater than 50 km,
the range of differences between SWOT and in situ expands and
obtains a very large distribution (between −0.65 and 0.62) for very
far cross-tracks exceeding 55 km on both sides. This pattern is valid
in both directions, where the absolute difference for extreme cross-
track values in Figure 10A also increases to reach 0.33 and 0.27 for
the left and right directions, respectively.

Applying the outlier filter while preserving all WSE qualities
(Figure 9B) significantly reduces the errors observed before at the
nadir point (cross-track between −5 and 5 km), with an average
absolute difference in Figure 10B reaching 13 cm. As observed
before, the differences between SWOTWSE and in situ water levels
decrease as move away from the nadir point in both directions but
increase again at greater distances in both directions. While
Figure 9B shows the boxplots expanding as we move farther,
Figure 10B shows that for very high cross-track values on the left
side of the nadir (>55 km), the absolute error increases to 38 cm
compared to 9 cm at distances between −25 and −30 km from the
nadir. The same pattern is observed for the data with only goodWSE
qualities, as shown in Figures 9C, 10C, except that the WSE quality
filter for good data completely removes pixels at the nadir point
(empty boxplots) and at a very high extent (−60 km and 60 km) from
both sides. Removing these points decreased themean absolute error
to a range between 16 cm for high cross-tracks and 9 cm for near
nadir cross-tracks (20–30 km).

The cross-track effect is highly visible for the date 23/12/2023,
where high bias and RMSE values reaching approximately 2 m were
observed (Figures 5A, 7A) for data with all WSE qualities and an
outlier filter applied. The two maps in Figure 11, which represent
cross-track values andWSE differences for 23 December 2023, show
that while the cross-track values of this date ranged between −30 km
and −60 km (with no nadir data and no positive cross-tracks), the
differences between SWOT and in situ water levels reached 1 m for
moderate cross-track values (−30 km) and gradually increased as the
distance from the nadir grew, reaching approximately 2.85 m for far
cross-tracks (<−60 km).

The effect of near-nadir measurements on WSE is presented in
Figure 12, showing an example of unreliable nadir WSE on 13 April
2023 (the date is only an example among many similar ones).
Despite considering only pixels of good (0) and suspect (1)
qualities (such as the case of Figure 9A), which removed an
important part of nadir pixels (the gray area on the map), some
near-nadir measurements (cross-track near 0) still persist and show
a high difference from in-situ WSE (between 4 and 10 m). This
indicates that for such irrelevant remainingWSE, after being filtered
by the WSE quality, the outlier filter could be a relevant solution to
exclude such abrupt WSE estimations.

5.3 Comparison with Sentinel-3, Sentinel-6,
and GEDI altimetry-based water levels

In this section, we compared the SWOT accuracies to those
obtained with competitor altimetry missions: S3A, S3B, S6, and
GEDI. Table 5 summarizes the bias, RMSE, ubRMSE, and R
obtained for each satellite mission. Since S3 and S6 data were
obtained as unique daily measurements, the GEDI and SWOT
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acquisitions at each date were averaged for all tracks (GEDI) and pixels
(SWOT), respectively, to obtain a unique daily value for each
acquisition (see Section 3.3 in Methods), and the four accuracy
metrics are calculated accordingly. For SWOT data, only pixels
with good (0) and suspect (1) qualities were kept, and an outlier
filter was applied before averaging the pixels’ values for each date. For
GEDI data, the filters explained in Section 3.2.2 are applied before
averaging. In terms of RMSE, SWOT and S3A appear to have
comparable accuracies with an RMSE, reaching 11 and 13 cm,
respectively. A slightly lower bias is achieved by SWOT (−0.09 m)
than S3A. S3B had slightly lower accuracy than S3A and SWOT. The
ubRMSE for S3A, S3B, and SWOT tend to have very low values not

exceeding 4 cm, where both RMSE and bias showed nearly similar
magnitudes. This indicates that the remaining error for the three
missions could principally be a systematic error with relatively constant
bias, probably related to either the geoid transformation of altitudes or
a systematic error in the elevation estimation method used for each
mission. S6 had the lowest accuracy compared to S3 and SWOT, with
an RMSE reaching 20 cm. A positive bias was observed for S6, reaching
21 cm, whereas the ubRMSE still attained low values, probably
showing the same systematic error as observed in S3 and SWOT.
On the other hand, GEDI (LiDAR) data had the worst estimation
compared to SAR missions. Using the GEDI acquisitions, the RMSE
for the lake levels reached 49 cm (the highest obtained RMSE), with an

FIGURE 9
Boxplots of the difference (in m) between SWOT WSE and in situ water levels for ranges of cross-tracks in km for (A) SWOT data with good (0) and
suspect (1) qualities without outlier filter, (B) all SWOT data with an outlier filter, and (C) SWOT data with good (0) WSE quality and no outlier filter.

FIGURE 10
Mean absolute difference (in m) between SWOT and in situ water levels for ranges of cross-tracks in km for (A) data with good (0) and suspect (1)
qualities, (B) all data qualities with an outlier filter, and (C) data with good (0) WSE quality.
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overestimation of the lake’s elevations having a positive bias reaching
27 cm and an ubRMSE of 41 cm. The correlation coefficient for GEDI
reached only 0.45 compared to 0.95 for S6, 0.98 for S3B and SWOT,
and 0.99 for S3A.

Figure 13 shows the time-series data of water surface elevations
for all altimetric missions. Sentinel-3A and 3B were merged into a
single time-series due to their similar accuracy metrics (Table 4). In
Figure 13, both Sentinel-3 and SWOT better follow the trends and

FIGURE 11
Example of high cross-track effect on SWOTWSE for 23 December 2023 showing (A) the cross-track map and (B) the absolute difference between
SWOT WSE and in situ water levels considering WSE qualities 0, 1, and 2 with an outlier filter applied.

FIGURE 12
Example of the nadir effect on SWOTWSE on 13 March 2023 showing (A) the cross-track map and (B) the absolute difference between SWOTWSE
and in situ water levels considering WSE qualities 0 and 1 without an outlier filter. The gray areas represent grid points where the SWOTWSE was filtered
out due to quality filter.

TABLE 5 Accuracy metrics in m for S3A, S3B, S6, GEDI, and SWOT on daily scale.

Mission Bias (m) RMSE (m) ubRMSE (m) R N (days) Covering period

SWOT −0.09 0.11 0.04 0.98 132 2023–2024

S3A −0.14 0.13 0.04 0.99 111 2016–2024

S3B −0.17 0.18 0.04 0.98 74 2019–2024

S3A and B −0.15 0.16 0.04 0.98 185 2016–2024

S6 0.21 0.20 0.06 0.95 94 2021–2024

GEDI 0.27 0.49 0.41 0.45 72 2019–2021
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fluctuations of in situ water level variations compared to other
missions. SWOT and Sentinel-3 provide closely matching, both
exhibiting a slight underestimation throughout the whole period.
The time-series of Sentinel-6 also follows the trends and fluctuations
of the WSE well but exhibits a higher positive overestimation. On
contrary, GEDI data showed the highest overestimation throughout
the whole period of GEDI acquisitions, with noisier fluctuations
compared to other missions; these fluctuations included negative
and positive peaks that did not correspond to real in situ variations
in the water level.

6 Conclusion

This study evaluates the new SWOT mission for estimating WSEs
over Lake Léman, Switzerland, using the level 2 (L2-HR-Raster)
product. SWOT WSE data from the calibration and nominal phases
were compared with in situ gauge stations and data from other similar
altimetry missions, including S3A, S3B, S6, and GEDI LiDAR data. The
main findings show that the RMSE between SWOTWSE and the in situ
water levels ranged from 13 cm to 21 cm, depending on the
measurement quality indicated by the L2-HR-Raster product’s WSE
quality flag. A consistent bias of approximately −10 cm was observed
across the WSE time-series, which could be attributed to geoidal
transformation errors or systematic issues in the elevation extraction
methods used by SWOT. The analysis also revealed that the nadir and
near-nadir SWOT measurements were unreliable, with mean absolute
differences from in situ water levels potentially exceeding 5 m. As a
result, the study recommends that end-users apply a complementary
outlier filter to eliminate unreliable WSE estimates rather than relying
solely on the WSE quality flag. A random forest analysis of potential
error sources in SWOT WSE revealed that atmospheric perturbation,
particularly tropospheric delay, was the most significant factor affecting
the accuracy of themeasurements. Compared to other satellite altimetry
missions, SWOT demonstrated the highest accuracy, achieving the
lowest RMSE of 11 cm on a daily scale, compared to 13 cm for S3A,
18 cm for S3B, and 20 cm for S6. In contrast, GEDI LiDAR data had the
least accuracy, with an RMSE of 46 cm and a bias of 27 cm.

Future research directions might include the analysis of the
information contained in the SWOT Level 2 Water Mask Pixel
Cloud Data Product (SWOT_L2_HR_PIXC) to improve the
identification of valid water level estimates. Complementary
information on the interferogram (e.g., coherent power and
phase ambiguity), sensor baseline, layover, and spacecraft pith
and roll could provide valuable insights for detecting outliers. In
addition, the use of a higher spatial resolution product, with pixel
sizes ranging from 10 to 60 m, would be of interest to better observe
the areas close to the lake shores. Data merging with high-resolution
satellite images (e.g., Sentinel-1 and 2 and NISAR in the near future)
might also help in more accurately delineating lake shores and their
temporal evolution to better quantify lake water storage.
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