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Anthropogenic land conversion profoundly impacts the Earth’s surface, with
varying effects across regions. In the tropics, industrial plantations particularly
affect natural forests. Monitoring land use and land cover change (LULCC) due to
agricultural expansion is crucial for achieving sustainable imports into the
European Union under the Regulation on Deforestation-free Products (EUDR).
Earth observation satellitemissions, providing free global imagery with high revisit
frequency, are instrumental in monitoring tropical ecosystems and their
transformation. However, accurately mapping the correct dates of tree cutting
or planting on a global scale remains a challenge. This study addresses this gap by
developing a near real-time sensor-agnostic method for monitoring
deforestation and plantation rotation. It is developed using 100 m PROBA-V
full Collection 2 archive with a 5-day revisit, spanning 2014 to 2020. A novel index
enabled distinguishing vegetation from land cleared for plantations. The
variability of atmospheric perturbations and both intra- and inter-annual
variability of the vegetation spectral signatures were mitigated using spatial
standardization. Statistical thresholds identified pixels that deviated from the
normal distribution of forest spectral values, capturing LULCC. It results in
pan-tropical annual maps series 2015–2020 illustrating the typical dynamics
of perennial plantations, from land preparation to mature plantations, including
the dates of cutting and planting. Validation using 899 randomly selected samples
through confidence-based stratified sampling yielded a global accuracy of 82% ±
2% for new plantation detection. 62% of the detections 1 Bos et al. were accurate
to the exact year, which represents a significant 19% improvement over previous
studies. Our initial estimates of industrial plantation dynamics suggest that new oil
palm plantations cover approximately 3,064 km2 annually, of which 79% is
rotation within existing plantations and 21% expansion into new areas. Annual
plantations of other perennial plantations cover about 13,875 km2, of which 81% is
from rotation and 19% from expansion. This work demonstrates the effectiveness
of optical 100 m spatial resolution for near real-time pan-tropical mapping of
perennial industrial plantations in cloudy regions.
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1 Introduction

The rapid expansion of tropical plantations, particularly for
commodities such as oil palm, soy, and rubber, is a leading cause of
deforestation in the tropics, contributing significantly to greenhouse
gas emissions and biodiversity loss (Curtis et al., 2018; Lewis et al.,
2019; Pendrill et al., 2022). These land use changes have become
central to international climate and biodiversity agendas, as land
conversion for export-oriented agriculture continues to threaten
carbon-rich and species-diverse ecosystems.

While commodity-driven deforestation is widespread, its
dynamics vary across regions. In Southeast Asia, large-scale forest
loss has been primarily driven by the expansion of industrial oil
palm plantations over recent decades (Austin et al., 2019; Gaveau
et al., 2016; 2014; Gibbs et al., 2010). In contrast, expansion in West
and Central Africa tends to occur in more fragmented and localized
agroforestry systems (Li et al., 2015; Ordway et al., 2017). Both large-
scale farming systems and smallholders contribute to this expansion,
targeting degraded lands but also encroaching on primary forests
(Glinskis and Gutiérrez-Vélez, 2019). Plantation sizes largely vary,
from small family plots under 25 ha to industrial estates exceeding
100,000 ha (Meijaard et al., 2018). Efforts to mitigate these impacts
include sustainability certifications with mixed success in reducing
forest loss (Carlson et al., 2018), and regulatory frameworks such as
the Regulation on Deforestation-free Products (EUDR), which seek
to restrict deforestation-linked imports into European markets
(IPCC, 2019; European Parliament and Council of the European
Union, 2023).

High-resolution satellite missions have led to the widespread
deployment of advanced annual monitoring and deforestation
detection systems. These systems continue to improve in
operability, spatio-temporal resolution and accuracy, enabling
regular assessments of forest cover change (Vancutsem et al.,
2021; Hansen et al., 2013). In parallel, near real-time alert
systems enable rapid ground interventions in response to
deforestation events (Hansen et al., 2016; Reiche et al., 2021).
However, current systems are primarily designed to map annual
change in tree cover and often fail to characterize land cover
following deforestation, limiting their usefulness for tracking
plantation establishment and other land use land cover (LULC)
transitions.

Detecting land use and land cover change (LULCC) in near real-
time and consistently over successive years, with the goal of regularly
updating LULC maps, remains a global challenge. Several LULCC
algorithms have been developed to address this issue, including
pixel-based continuous change analysis (Zhu et al., 2020; Zhu and
Woodcock, 2014), the Breaks for Additive Season and Trend
(BFAST) algorithm (Verbesselt et al., 2010), LandTrendr
(Kennedy et al., 2010) and the Vegetation Change Tracker
(VCT) (Huang et al., 2010). For example, LandTrendr was used
in Global Planting Years (GPY) (Du et al., 2022) to assign planting
year using the closed-canopy Global Oil Palm (GOP) plantations
(Descals et al., 2020) and the Spatial Database of Planted Trees
Version 1.0 (SDPT) from Harris et al. (2019) as masks. When using
the Normalized Burn Ratio (NBR), LandTrendr achieved a F1 score
(harmonic mean of precision and recall) of approximately 80% in
identifying planting year, accepting a 3-year deviation from the
reference (true) dates. In their study, Danylo et al. (2021) used the

Bare Soil Index (BSI) thresholding to estimate the year of oil palm
plantations in Southeast Asia, but this method has not been
validated yet. Despite these advances, most algorithms operate
retrospectively rather than in near real-time, assessing changes
after they occur, which limits their ability to support immediate
communication and law enforcement.

Plantation masks have limitations. The SDPT is based on vector
and raster data aggregation that records the extent of perennial
plantations in 2015. Updating this database is time consuming and
does not allow for the detection of new plantations. A new release
(SDPT version 2.0), extending coverage to 2020, is now available
(Richter et al., 2024). However, this update was published after the
completion of this study. Descals et al. (2020) provides an accurate
map of closed-canopy oil palm plantations, reaching an overall
accuracy (OA) of 97%, but their method shows limitations in
detecting young plantations (i.e., under 3 years old). With an
average rotation cycle of 25 years, young plantations account for
12% of the total oil palm plantation area. By exploiting the
complementarity between static masks and near real-time
detection to dynamically identify newly established plantations,
we aim to fill the gap and move towards an exhaustive
cartography of perennial plantations.

To detect plantation establishment with high temporal
precision, this study leverages Project for On-Board Autonomy -
Vegetation (PROBA-V), a Belgian satellite mission of the European
Space Agency (ESA) designed to bridge the gap between the Satellite
Pour l’Observation de la Terre - Vegetation (SPOT-VGT) and
Sentinel-3 missions, which operated from 2013 to 2020. PROBA-
V was equipped with a wide-swath instrument featuring four
spectral bands specifically designed for vegetation monitoring:
blue, red, near-infrared (NIR), and short-wave infrared (SWIR).
Its central camera provides a spatial resolution of 100 mwith a 5-day
revisit time, essential for tracking dynamic LULCC. Although the
side cameras achieve a 1–2 days revisit time with a coarser resolution
of 300 m, they are affected by significant bidirectional reflectance
effects, making them less suitable for field-scale vegetation
monitoring (Wolters et al., 2023). Focusing on the central camera
100 m resolution ensures high quality input data while maintaining
a temporal resolution similar to Sentinel-2, making PROBA-V well-
suited for the development of global LULCC detection algorithms.

Although PROBA-V is no longer operational, the approach
developed here is designed to be transferable to other satellite
missions, such as Sentinel-2 (Drusch et al., 2012), Landsat-8 (Roy
et al., 2014), or PlanetScope (Marta, 2018), thanks to comparable
spatial, spectral, and temporal characteristics. A comparative
summary of these sensors is provided in Table 1, highlighting the
complementarity between missions. This reinforces the broader
applicability of our method beyond PROBA-V, particularly for
operational and real-time plantation monitoring systems.

The high temporal frequency of PROBA-V observations allows
for more precise and timely detection of plantations as they are
established, overcoming the limitations of retrospective systems.
The methodology presented here is thus designed to be easily
adaptable to other active missions, supporting international
efforts to monitor land use change and reduce deforestation-
related emissions.

The objective of this study is to develop, implement at scale and
validate a transferable method for detecting the establishment of

Frontiers in Remote Sensing frontiersin.org02

Bos et al. 10.3389/frsen.2025.1575100

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1575100


new perennial plantations across the pan-tropical region, using
100 m PROBA-V surface reflectance imagery. With its
combination of global coverage, 5-day revisit and multi-year
archive, PROBA-V provides a suitable proxy for testing methods
designed to work with currently active sensors. Specifically, we aim
to (1) track plantation expansion at a biweekly temporal resolution
from 2015 to 2020, (2) characterize the dynamics and temporal
patterns of plantation-driven land use change, and (3) evaluate the
feasibility of a near-real-time detection framework that can be
operationalized using current satellite missions such as Sentinel-2
and Landsat.

2 Methods

2.1 Study area

The study area covers the pan-tropical zone, well known for its
extensive perennial plantations, including oil palm, rubber,
pulpwood, coffee, and cocoa. These plantations are
predominantly located between 23°S and 23°N, where growth
conditions are optimal. In Asia, the main areas are Indonesia and
Malaysia, where oil palm and rubber plantations are of primary
importance. In Africa, the study encompasses countries such as
Nigeria, Ghana, Cameroon, Ivory Coast, and the Democratic
Republic of the Congo which are notable for both cocoa and oil
palm production. In Central and South America, the focus is on
Brazil, Colombia, and Ecuador, where these plantations are also
significant (Meijaard et al., 2018).

2.2 EO data preprocessing

The input data is the full archive of Collection 2 (C2) PROBA-V
1-day Synthesis (S1) Top Of Canopy (TOC) surface reflectance at
100 m, acquired from 12 March 2014, to 30 June 2020 (Figure 1).
The data processing methodology uses red (0.614 μm – 0.696 μm),
NIR (0.772 μm – 0.902 μm), and SWIR (1.570 μm – 1.635 μm)
wavelengths and the Status Map (SM) to select the valid and cloud-
free pixels (Wolters et al., 2023).

The 6-year PROBA-V time series was composited as 15-day
mean synthesis using mean compositing, enhancing spatial
consistency (Vancutsem et al., 2007) while recording the number
of valid observations per pixel. To increase the consistency of
reflectance profiles and remove outlier values, we applied a
Whittaker gap-filling and smoothing algorithm (Whittaker,
1927). Each 15-day mean composite (MC15) is smoothed
according to the number of valid observations, with a lambda
factor (λ) controlling smoothing strength. Through multiple
iterations, λ � 100 was identified as optimal for reducing outliers
while preserving band information during cutting or
planting events.

The interpolation method has limited accuracy for extrapolating
values at the edges of the time series, resulting in lower data quality
for the first and last 6 weeks. Therefore, three MC15s were removed
from each end, resulting in 6 full years of PROBA-V MC15 from
1 May 2014, to 30 April 2020. A composite index (Normalized
Difference Water & Vegetation Index (NDWVI)) was then
introduced as a pragmatic solution, calculated as the difference
between the NIR band and the red and SWIR bands and divided by
their sum to capture the spectral signature of vegetation clearing
(Equation 1). The NIR, sensitive to the leaf biomass, decreases after
tree removal. In contrast, red reflectance increases after cutting, as it
is reflected by the bare soil. Likewise, the SWIR, sensitive to
vegetation moisture content, increases after vegetation removal.
This index combines the vegetation sensitivity of Normalized
Difference Vegetation Index (NDVI) with the moisture sensitivity
of Normalized Difference Moisture Index (NDMI). It is proposed
here strictly as an operational tool, tailored to this application, with
no intention of introducing a new biophysical metric.

NDWVI � ρNIR − ρRED − ρSWIR

ρNIR + ρRED + ρSWIR

(1)

where ρNIR is the reflectance in the NIR band, ρRED is the reflectance
in the red band, and ρSWIR is the reflectance in the SWIR band.

The mean NDWVI (μNDWVI) and standard deviation (σNDWVI)
of each pixel labeled as intact tropical forest in the Tropical Moist
Forest (TMF) 2014 dataset (Vancutsem et al., 2021) are computed
on a 3° × 3° window (approximately 110,000 km2; near the Equator).
This large-area window is used to calculate the statistical values

TABLE 1 Comparison of spectral, spatial, and temporal resolutions across satellites relevant for vegetation monitoring. Spectral bands are listed with their
spectral ranges (nm).

Band/Resolution PROBA-V Sentinel-2 Landsat 8 PlanetScope

Spatial resolution 100 m 10–20 m 30 m 3.0–4.1 m

Revisit time 5 days 5 days 16 days 1–2 days

Blue 440–487 458–522 452–512 465–515

Green – 533–590 533–590 547–583

Red 614–696 640–680 636–673 650–680

Red Edge – 705–783 – 697–713

NIR 772–902 779–899 851–879 845–885

SWIR-1 1,570–1,635 1,565–1,655 1,566–1,651 –

SWIR-2 – 2,100–2,280 2,107–2,294 –
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FIGURE 1
Processing chain for the detection of new plantations at a biweekly time step on a pan-tropical scale. Processing chain is divided into 4 key steps: 1.
EO data preprocessing, 2. Baseline, 3. Change algorithm, 4.2020 update and post-classification. Moving 3° × 3° windows allow context to be taken into
account for the first 2 steps, and spatially consistent results to be obtained with 1° × 1° windows for steps 3 and 4. TMF: Tropical Moist Forest, GPY: Global
Planting Years, SDPT: Spatial Database of Planted Trees Version 1.0. The architecture of the code used to implement this processing chain is
developed in Python.
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(mean and standard deviation) over a wider geographical area,
allowing regional variations to be captured. Each MC15 pixel
value of the time series of the central 1° × 1° window is then
spatially standardized using Equation 2, reducing residual
atmospheric and seasonal variability effects, in order to define
locally-based threshold for change detection.

NDWVIz � NDWVI − μNDWVI

σNDWVI
(2)

where NDWVIz represents the standardized NDWVI, μNDWVI is the
mean NDWVI value, and σNDWVI is the standard deviation
of NDWVI.

Figure 2 illustrates multi-temporal NDWVIz dynamics for
different land cover types. Figure 2A shows three oil palm
plantations at different stages of disturbance (cutting and
replanting) around 2019/08/16. Figure 2B shows an agricultural
mosaic consisting of an agricultural complex, a perennial plantation
and a forest patch, captured on 2015/08/16. Figure 2C shows a mix
of oil palm and other perennial plantations with adjacent forest,
observed on 2016/06/16.

2.3 2014 land use baseline map

The series of annual land use maps begins with the generation of
a baseline land use map for 2014. Land usemaps include four classes:
“Oil Palm Plantations”, defined as large-scale farming systems in
pan-tropical regions dedicated to the cultivation of oil palm (Elaeis

guineensis) for palm oil production; “Other Perennial Plantations”,
defined as large-scale plantations of other perennial crops, including
tree crops (e.g., coffee (Coffea arabica), coconuts (Cocos nucifera),
cocoa (Theobroma cacao), bananas (Musa spp.)) and planted forests
for timber, paper or rubber (Hevea brasiliensis); “Tropical Forest”,
which refers to natural, undisturbed or degraded forest ecosystems
in tropical areas; and “Other Land Use”, which includes all
remaining land categories such as annual cropland, urban areas
and non-forest land. This 2014 map combines classification output
of oil palm plantations and two ready-to-use datasets: TMF and
SDPT. The undisturbed tropical moist forest and degraded tropical
moist forest from TMF 2014 were combined to obtain the “Tropical
Forest” class. All the SDPT classes, with the exception of the oil palm
classes, have been merged into a common ‘Other perennial
plantations’ class.

For systematic analysis, the pan-tropical zone is divided into 3° ×
3° moving window, each window overlapping neighboring windows
by 2° to reduce edge effects and take advantage of the diversity of
contexts and training samples. This overlap leads to nine
classifications per pixel, with the final class label determined by
the mode of these classifications. This window-based approach
enables localized training while maintaining consistency
between regions.

Oil palm plantations are mapped using the Random Forest (RF)
algorithm on the 2014 PROBA-V MC15 time series (Breiman,
2001). Five products allow to select training samples in
proportion to the class area. TMF (Vancutsem et al., 2021)
provides the tropical forest spectrotemporal signature. SDPT

FIGURE 2
Spatial and temporal vegetation dynamics across three contrasting landscapes. (A) Three oil palm plantations monitored around 2019/08/16,
showing different stages of planting and cutting. (B) A landscape including an agricultural complex, a perennial plantation, and a forest patch observed on
2015/08/16. (C) A mix of oil palm and other perennial plantations with adjacent forest, analyzed on 2016/06/16. Each row shows: (1) high-resolution
basemap with parcel outlines; (2) PROBA-V composite (NIR-RED-SWIR) at the indicated date; (3) standardized NDWVI (NDWVIz)map for the same
date; (4) NDWVIz time series (mean ± std) per parcel. Vertical dashed lines in the time series indicate the image acquisition date.
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(Harris et al., 2019) and Coconut mask (Descals et al., 2023) are used
to extract the signature of perennial plantations, aiding in the
identification of non-oil palm plantation areas. The signatures of
mature oil palm plantations, young oil palm plantations, and soils
ready for planting are computed fromGOP (Descals et al., 2020) and
GPY dataset (Du et al., 2022). These three intermediate subclasses
belong to the land use category “Oil Palm Plantations” but are used
separately in the machine learning algorithm. Areas ready for
planting are kept in the processing chain. In this way, a new
plantation can be detected on these areas. Before sampling the
training points, a 2-pixel erosion is performed to limit the non-
pure spectrotemporal signature due to the point spread function
(Radoux et al., 2016; Duveiller and Defourny, 2010). The features
used to train the RF algorithm, include PROBA-V reflectance, but
also a terrain elevation model (ESA, 2020), the Tree Height (Potapov
et al., 2021) and the TMF Transition Map (Vancutsem et al., 2021).
Amajority filter on a 3 × 3 pixel window (corresponding to 0.09 km2;
at 100 m resolution) is applied on the resulting oil palm plantation
class to reduce the salt and pepper effect. Pixels that do not belong to
the classes “Oil Palm Plantations”, “Other Perennial Plantations” or
“Tropical Forest” are classified as “Other Land Use”.

2.4 Change detection

Detecting changes in NDWVIz over the period from 1 May
2014, to 30 April 2020, at a 15-day intervals involves two steps:
detecting tree cutting events and identifying subsequent replanting.
The change detection algorithm requires 1 year of data for
initialization, so the baseline is updated each year until 2020. The
series begins in 2015. Tree cutting is detected by differences in
NDWVIz values using moving windows of 6 months and 1 year. A
tree cutting event is confirmed when the NDWVIz value falls

significantly below the range observed in the previous stable
forest period, specifically between −3σ and +3σ for both the 6-
month and 1-year windows. Since approximately 99.7% of data in a
normal distribution fall within this range, values outside of this
range indicate a rare event, likely confirming tree cutting. This
method assumes a normal distribution of NDWVIz for tropical
forest areas. Following a confirmed tree cutting event, the detection
of new plantations requires a subsequent increase in NDWVIz of at
least +3σ within a 6-month window (Figure 3). In contrast to
methods like LandTrendr and VCT, which detect changes at an
annual scale, this approach operates at a biweekly frequency,
offering more detailed monitoring of land cover dynamics.

2.5 Land use map update and post-
classification

The detected change time series allows retrospective dating of
transitions between land use categories. It is used to update the
2014 land use map by reclassifying pixels with changes from 2015 to
2020. The resulting PROBA-V Land Use @100 m time series covers
the years 2015–2020 and illustrates the land use at the beginning and
end of the years. With 24 biweekly change dates per year and the
assumption that there is only one cutting or one planting event per
year (although both can occur within the same year for perennial
crops), a total of 120 maps are produced for the period.

A RF algorithm is performed in 1° × 1° window to reclassify
changed pixels into “Oil Palm Plantations”, “Other Perennial
Plantations”, or as “Tropical Forest” or “Other Land Use” to
reduce false detection. Training samples are randomly selected in
proportion to the four land use classes and change areas. To generate
training samples for potential new plantations that may be novel in
the sampling area, the algorithm applies k-means clustering to all

FIGURE 3
Detected changes using NDWVIz temporal variation for a clear-cut in Borneo, expressed as Z-score over time. The sequence “No Change” shows a
period of stable forest at t time. Both t−1y (1 year before t) and t−6m (6months before t) fall between −3σ and +3σ, and at t, the value neither drops below −3σ
nor decreases by 3σ compared to t−1y and t−6m. The sequence “Cutting” shows a cutting event at t time. Both t−1y and t−6m are between −3σ and +3σ, but at
t, the value falls below −3σ and drops by 3σ relative to t−1y and t−6m. The sequence “Planting” shows a planting event at t time, where the value
increases by 3σ compared to t−6m.
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available samples, grouping pixels with similar NDWVI values.
Clusters with more than 50% of area identified as having
undergone recent changes (e.g., tree cutting followed by potential
reforestation or new plantation) are labeled as “Other Perennial
Plantation”. A 3 × 3 pixel majority filter is then applied to reduce the
salt and pepper effect, and surface water product (Pekel et al., 2016)
is used to mask changes occurring within water areas.

2.6 Quantitative validation

The validation database is designed to validate the detection of
new plantations, as points are sampled in strata where the
probability of encountering a new plantation is increased by
cross-checking with GPY (Du et al., 2022). Biweekly validation is
not possible due to the lack of high-resolution, cloud-free imagery,
and is therefore performed annually. The validation process includes
a binary validation of the “Oil Palm Plantations” classification of the
2014 baseline and the 2020 updated map, and a validation of newly
detected plantations, i.e., a planting event reclassified as “Oil Palm
Plantations” or “Other Perennial Plantations” between 2014 and
2020. Both assessments therefore use the same stratified validation
database built from mapped change zones.

Following the Committee on Earth Observation Satellites Land
Product Validation (CEOS-LPV) guidelines for global land cover
validation (Strahler et al., 2006) and the good practices for assessing
land change (Olofsson et al., 2014), we relied on a confidence-based
stratified random sampling to maximize the probability of sampling
commission and omission errors. Confidence-based stratification
involves layering multiple products for comparison. Unlike simple
and map class-stratified random sampling, confidence-based
stratification allows us to target areas where products disagree,

allowing us to sample and directly compare points with
classification discrepancies (Lamarche et al., 2017).

The stratification relies on four layers where overlaps determine
six mutually exclusive strata (Figure 4). Stratum 1 includes
validation points in inland areas where no perennial plantations
or oil palms are detected, marking regions where the probability of
change is minimal. Stratum 2 includes SDPT areas and GOP with no
new plantation detected by GPY 2011–2019 and no new plantations
detected by PROBA-V 2015–2020, indicating potentially stable land
use. Stratum 3 consists of locations where SDPT and GOP overlap
with 2011–2019 GPY new plantations, indicating potential recent
land use change. PROBA-V 2015–2020 plantation detections cut
across these three strata to form six. Stratum 4 corresponds to
locations identified solely by PROBA-V detections, reflecting
potential new plantations that would not have been captured by
previous datasets. Stratum 5 covers areas where SDPT and GOP
overlap with PROBA-V detections, highlighting locations where
recent rotations of perennial plantations are likely. Stratum 6 covers
areas where layers overlap (SDPT and GOP, 2011–2019 GPY
detections and 2015–2020 PROBA-V detections), indicating a
high likelihood of recent change.

The validation dataset consists of 1,029 samples equally
distributed across strata. Each sample is a 300 m × 300 m
footprint composed of 9 100 m PROBA-V pixels. The central
pixel (100 m × 100 m) is the unit of classification and validation.
Samples were photo-interpreted using Very High Resolution (VHR)
basemaps and multi-date Landsat imagery displayed as near-
infrared false-color composites. Interpreters recorded the
presence or absence of oil palm in 2014 and 2020, the
occurrence of planting between those dates, and estimated
cutting and planting years when possible. The homogeneity
(from 1 to 9) of each footprint (i.e., the number of pixels similar

FIGURE 4
Spatial stratification based on the intersection of four layers: inland areas, SDPT (Harris et al., 2019) and GOP (Descals et al., 2020), GPY (Du et al.,
2022) from 2011 to 2019, and PROBA-V Land Use @100m detections from 2015 to 2020. The stratification results in six strata: 1 -minimum probability of
change in inland areas; 2 - stable SDPT and oil palm regions; 3 - locations of recent plantings detected by GPY; 4 - potential plantings detected only by
PROBA-V; 5 - potential plantings detected only by PROBA-V in the SDPT and GOP; and 6 - areas with high probability of planting detected by both
GPY and PROBA-V.
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to the central pixel) and the certainty level of interpretation,
categorized as “doubtful”, “reasonable”, or “certain” are also
recorded. Doubtful and heterogeneous samples (homogeneity less
than 5) are excluded, leaving 899 validation samples. Figure 5
illustrates representative examples of this photo-
interpretation process.

We assessed the presence of oil palm plantations using the
F1 score and OA, calculated both per sample and area-weighted for
the 2014 baseline map, the 2020 updated map, and the Descals et al.
(2020) dataset, resampled to 100 m. Comparisons were made across
the major pan-tropical regions: Central America & Amazon, West
Africa & Central Africa, and Southeast Asia. To assess the detection
of planting events, whether for oil palm or other perennial
plantations, we used the F1 score, OA, and planting year

accuracy (i.e., the number of accurate date detections out of the
total number of correct detections) within the same regions to
compare PROBA-V results with those of GPY (Du et al., 2022),
resampled to 100 m. We also performed annual comparisons of
F1 scores between GPY dataset and PROBA-V, using different
tolerances for the exact year of detection.

To evaluate the temporal accuracy of PROBA-V biweekly
detection, we performed a targeted validation on a subset of
147 samples drawn from our initial annual reference set. We
randomly selected pixels where both a cutting and a planting
event were detected by PROBA-V and documented in the
reference, ensuring a focused assessment on bi-temporal
transitions. This subset spans the study area both spatially and
temporally. Reference dates were assigned via manual photo-

FIGURE 5
Examples of validation samples used for photo-interpretation. Each row corresponds to a 300 m × 300 m area composed of 9 PROBA-V pixels,
delineated by the yellow square. The central red square represents a single 100 m × 100 m PROBA-V pixel, which is the unit used for classification and
validation. From left to right: very high resolution (VHR) basemap and three Landsat false-color near-infrared composites illustrating vegetation dynamics.
These Landsat images are used to confirm the presence of stable vegetation (first image), to detect a clearing event (second image), and to identify
potential replanting (third image). On the right, database attributes detail the oil palm status in 2014 and 2020, the presence of a new plantation, estimated
cutting and planting dates, a homogeneity score (1–9), and a confidence level (certain, reasonable, doubtful).
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interpretation of Landsat time series, using the first cloud-free
observation showing either a sharp NDVI drop (cutting) or a
sustained NDVI increase (planting). Due to the 16-day interval
of Landsat and cloud cover, reference dates may lag behind actual
cutting. In contrast, planting signatures often emerge gradually,
intrinsically introducing temporal uncertainty. These limitations
define the expected error margin in comparisons with biweekly
detection dates.

3 Results

3.1 The PROBA-V land use @100 m map

The PROBA-V Land Use @100 mmap for the pan-tropical zone
(from 23°S to 23°N) provides an annual record of land use from
2015 to 2020, capturing LULCC in the region. Each annual map
contains four layers: the first two layers show land use types at the
beginning and end of the period, covering the categories “Oil Palm
Plantations”, “Other Perennial Plantations”, “Tropical Forest”, and
“Other Land Use”. Biweekly updates show cutting and planting
dates. These maps are available for download at 10.5281/
zenodo.14217166.

Figure 6 shows the land use map and the planting year on
30 April 2020, for the three pan-tropical zones. The PROBA-V Land
Use @100 m map series is highly consistent in both space and time,
with a 15-day detection interval that effectively captures LULCC.
This near real-time monitoring of land use change allows detailed

analysis of tree cutting and planting dynamics. The 100 m spatial
resolution allows for a reliable mapping of land use patterns that
reflects changes in different land use types.

3.2 Land use assessment

The 2014 PROBA-V Land Use @100 m map is shown in
Figure 7A. The patterns rely heavily on the training data
collected from closed-canopy oil palm plantations (Descals et al.,
2020), as shown in Figure 7C. The situation in December 2020,
shown in Figure 7D, is derived from the change detection map
shown in Figure 7B. This shows an ability to identify new plantations
and accurately reclassify them as oil palm plantations. Figure 7E
provides insight into the rotation dynamics within oil palm
plantations on Landsat 8 false-color imagery. Bare ground is
shown in blue and newly established plantations are shown in
pink due to their increasing leaf biomass. In addition, Figure 7C
highlights that the 10 m resolution mapping of GOP (Descals et al.,
2020) excels at delineating mature plantations with closed canopies,
but is unable to identify bare soils ready for planting and young
plantations.

Table 2 shows the performance metrics for the “Oil Palm
Plantations” land use class in 2014 and 2020, broken down by
tropical region (Central America & Amazon, West & Central Africa,
and Southeast Asia) and at the pan-tropical scale. Results are shown
for both pixel count and area-weighted metrics, with comparisons to
the GOP (Descals et al., 2020), which targets closed-canopy oil palm

FIGURE 6
PROBA-V Land Use @100 m and planting years in 30 April 2020. (A) Land use in Central and South America. (B) Land use in West and Central Africa.
(C) Land use in South-East Asia. (D) Planting year in Central and South America. (E) Planting year in West and Central Africa. (F) Planting year in South-East
Asia. The dimensions of frames (A–C) are approximately 11.1° × 8.8° (longitude × latitude), corresponding to an average size of 1,229 km × 974 km in
tropical regions. The dimensions of frames (D–F) are approximately 0.82° × 0.65° (longitude × latitude), corresponding to 90.9 km × 71.9 km in
tropical regions.
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plantations. At the pan-tropical scale, our pixel count F1 scores are
68% (2014) and 72% (2020), which is slightly lower than the GOP at
78%. OA matches, with 90% (2014) and 87% (2020) for our maps

compared to 90% for the GOP. However, regional performance
varies. The GOP achieves higher OA and F1 scores in both Central
America & Amazon and West & Central Africa, while our method

FIGURE 7
Classification of oil palm plantation area in Borneo, Malaysia. (A) Land use map for the end of the year 2014. (B) Planting year of new perennial
plantations from 2015 to 2020. (C) Detection of GOP for the end of 2019 (Descals et al., 2020). (D) Land use map in December, 2019 using change
detection derived from the PROBA-V planting year. (E) Landsat 8 false-color infrared mosaic (RGB: B5-B4-B3) from 1 June 2019 to 1 June 2020.

TABLE 2 F1 score and OA performance metrics for the 2014 PROBA-V Land Use @100 m, 2020 PROBA-V Land Use @100 m, and GOP (Descals et al., 2020),
based on per-pixel and area-weighted matrices.

Pixel count

Region F1 score (%) Overall Accuracy (%)

2014 2020 GOP 2014 2020 GOP

Central America & Amazon 67 73 93 91 ± 3 89 ± 4 97 ± 2

West Africa & Central Africa 70 72 81 91 ± 4 89 ± 4 93 ± 3

Southeast Asia 67 71 66 88 ± 3 83 ± 4 83 ± 4

Pan-tropical 68 72 78 90 ± 2 87 ± 2 90 ± 2

Area-weighted

Central America & Amazon 88 95 98 > 99 > 99 > 99

West Africa & Central Africa 87 89 94 > 99 > 99 > 99

Southeast Asia 81 78 70 98 98 98

Pan-tropical 82 79 72 > 99 > 99 > 99
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FIGURE 8
Overview of correct detection of perennial plantation dynamics. (A) Dynamics in perennial pineapple plantations in the region of Puntarenas, Costa
Rica. All detection dates of tree cutting and planting at 15 days with PROBA-V for 2017. (B) Landsat 8 false-color infrared image (RGB: B5-B4-B3) on 21/12/
2017, Puntarenas region, Costa Rica. (C)Dynamics in a rubber plantation, Liberia. All tree cutting and planting detection dates at 15 days with PROBA-V for
2016. (D) Landsat 8 false-color infrared image (RGB: B5-B4-B3) on 25/12/2016, Liberia. (E) Plantation dynamics, Borneo, Indonesia. All tree cutting
and planting detection dates at 15 days with PROBA-V for 2019. (F) Landsat 8 false-color infrared image (RGB: B5-B4-B3) on 21/08/2019,
Borneo, Indonesia.
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FIGURE 9
Overview of land use change commission errors. (A) Impact of water table fluctuation on commission errors, Tonlé Sap, Cambodia. (B) Landsat
8 false-color infrared image (RGB: B5-B4-B3) on 06/12/2017. (C) Impact ofmisclassified post-change class in the southern Amazon rain forest. Thewhite
circle indicates area where a perennial plantation was detected, while the following year the ground is bare. All tree cutting and planting dates are 15 days
using PROBA-V for 2018. (D) Landsat 8 false-color infrared image (RGB: B5-B4-B3) on 15/06/2019. (E) Impact of an undetected cloud, Kié-Ntem,
Equatorial Guinea. All tree cutting and planting dates are 15 days with PROBA-V for 2015. (F) Landsat 7 false-color infrared image (RGB: B5-B4-B3) on
23/01/2016.
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underperforms in these regions with more open plantations. This
could be attributed to the lower resolution of PROBA-V, which may
not effectively capture the finer details of sparser and smaller
plantations. In Southeast Asia, where most oil palm plantations
are concentrated, our F1 score outperforms the GOP. OA is slightly
lower than other regions but matches the GOP.

The area-weighted results, which provide a more precise
indication of map performance by considering the area-weighted
sampling probability, further underscore the complementarity
between the two approaches. At the pan-tropical scale, our area-
weighted F1 scores of 82% (2014) and 79% (2020) exceed the GOP’s
72%. Area-weighted OA is high across all methodologies, exceeding
99%, reflecting the relatively small extent of oil palm plantations
compared to forests. Regionally, our area-weighted F1 scores are 88%
(2014) and 95% (2020) in Central America & Amazon, compared to
the GOP’s 98%. InWest & Central Africa, we achieve 87% (2014) and
89% (2020), compared to 94% for the GOP. In Southeast Asia, our
area-weighted F1 scores of 81% (2014) and 78% (2020) outperform
the GOP’s 70%, highlighting the strength of our method in capturing
both established and new plantations in this region.

3.3 Planting detection assessment

The planting detection algorithm operates on a biweekly basis,
allowing precise monitoring of LULCC by assigning exact dates to
planting and cutting events. This temporal resolution, combined with
high spatial coherence, allows precise visualization of newly planted
areas each year and the gradual expansion of plantations over time.

Figure 8 shows the dynamics of different plantations that were
detected by the algorithm, both for tree cutting and for planting.
Figures 8A,B illustrate the land use change for pineapple (Ananas
comosus) plantations in 2017, a perennial crop with 2- to 3-year
rotation cycles in the Puntarenas region of Costa Rica. The spatial
consistency observed highlights the continuous nature of pineapple
planting practices. For West Africa, Figures 8C,D show the
dynamics of rubber plantations in Liberia in 2016, capturing
successive tree cutting and replanting with 15-day precision.
However, some patterns of new plantations are missing, likely
due to cutting activities that occurred just prior to the detection
period. In contrast, Figures 8E,F show the strong spatial and
temporal consistency in Borneo, Indonesia, where both tree
cutting and replanting are clearly delineated as plantations
expand at the expense of tropical forest.

The algorithm also leads to classification errors, with some
LULCC being incorrectly reclassified as perennial plantations
(Figure 9). Despite the use of a surface water mask (Pekel et al.,
2016), some false detections remain at the boundaries of the water
zones (Figures 9A,B). In Brazil, the initial detection of deforestation
is effective, but leads to false detections of new plantations, since
these are actually annual crops that are planted immediately after
deforestation. This is illustrated for the year 2018, whose detections
are shown in Figures 9C,D, so these are not perennial plantations.
Due to persistent cloud cover in Central Africa, the number of
cloud-free images is severely limited. The few available images may
contain residual clouds, unmasked edges, or cloud shadows that
affect the quality of the time series by introducing noise into the
reflectance data. In areas with persistent cloud cover, some artifacts

may occur, as shown in Figures 9E,F, where cutting and planting
patterns appear while the Landsat 7 image shows no change. While
the cloud artifacts in question remain marginal, the most significant
patterns are of a high quality.

A visual qualitative assessment was also performed against GPY
(Du et al., 2022). Figure 10 shows very well defined patterns
compared to the dataset. The plots of perennial plantations on
the island of Sumatra are very well delineated and the annual
dynamics are clearly visible.

Given the minority class represented by changes over a single year,
only the pixel count matrix is presented (Table 3), as we have seen that
the area-weighted figures are meaningless. Overall, we obtained good
results for pan-tropical detection of new plantations, with an F1 score of
68%, showing a good balance between errors of commission and errors
of omission. The OA improves to 82% when considering all validation
samples between 2014 and 2020. In addition, the planting year accuracy
(i.e., the number of accurate date detections out of the total number of
correct detections) is 62%. In Central America & Amazon, our F1 score
is 59%, while GPY achieves its best F1 score of 56% and outperforms us
with anOAof 79% compared to our 76%.Our planting year accuracy in
this region is 60% compared to 45% for GPY. InWest & Central Africa,
our F1 scores show strong performance at 75%, with an OA of 90% and
a planting year accuracy of 55%. GPY planting year accuracy drops to
26% in this region, highlighting the robustness and usefulness of the
PROBA-Vbiweekly time step. In Southeast Asia, we achieve an F1 score
of 71% and an OA of 82%, both higher than GPY, which only reaches a
48% F1 score and OA of 71% in this region. Our planting year accuracy
in Southeast Asia is 67% compared to 44% for GPY.

Figure 11 shows the annual F1 score for the years covered in
common with GPY, with a variable tolerance over the year. The
tolerance over the year is expressed here as the number of years of
accepted difference between the exact date of the change and the
detected date. Regardless of the year or tolerance accepted for
detection, accuracy performance of the PROBA-V Land Use
@100 m change detection algorithm is consistently high, reaching
69% for all years combined. The F1 score for detections at the exact
year for all years together is 48%, which is a relatively low value. This
exceeds the F1 score of 45% achieved by GPY with all tolerances
considered for all years together. Furthermore, the algorithm
demonstrates remarkable stability over time, with increasing
performance in 2019. While the decreasing accuracy of GPY over
time in 2019 can be explained by the plantation mask. Because Du
et al. (2022) restrict their detections to a plantation mask by going
back in time, they are unable to detect recent planting events that are
not in the mask. This illustrates the importance of near real-time
detection for plantations, and the need to keep products updated.

Figure 12 compares PROBA-V biweekly detection dates with
reference dates for both cutting (Figures 12A–C) and planting events
(Figures 12B–D). In scatterplots A and B, most observations align
closely with the 1:1 line, indicating good agreement. For cutting
(Figure 12A), the Mean Absolute Error (MAE) is 74 days and the
Root Mean Squared Error (RMSE) is 184 days, with outliers
primarily corresponding to double-event cases—where PROBA-V
detects a valid early event, but the reference only registers a later
valid event. When excluding these cases (Figure 12C), the error
distribution narrows, and metrics improve markedly (MAE =
56 days, RMSE = 90 days), with a median error of −23 days. This
reflects a tendency for PROBA-V to detect cutting slightly earlier than
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reference dates, as expected given Landsat’s revisit and cloud
constraints, which can delay the photo-interpretation of cuttings
from Landsat images. The algorithm’s data smoothing process can
also result in early detections. For planting (Figure 12B), the temporal
accuracy is lower: MAE reaches 141 days and RMSE 273 days. After
excluding outliers (Figure 12D), metrics improve to MAE = 112 days
and RMSE = 164 days, with a median error of 46 days. This systematic
delay is consistent with the gradual increase in the time-series signal
associated with vegetation regrowth after planting. In both cases,
PROBA-V demonstrates a consistent ability to detect events at
biweekly resolution, within the acceptable time limits imposed by
reference dating based on Landsat optical time series.

3.4 Plantation expansion versus
rotation dynamics

Plantation expansion from forest to plantation and intra-plantation
rotation are analyzed by counting the proportion and location of new
plantations detected each year. The dynamics are examined for
conversion from “Oil Palm Plantations”, “Other Perennial
Plantations”, “Tropical Forest” and “Other Land Use” to “Oil Palm
Plantations” and “Other Perennial Plantations” (Figure 13). The first

block represents the land use areas at the beginning of the year that was
converted to perennial plantations during the year, in the second block.
The flows between each block represent the converted land use area.
Results for the years 2015 (May 1 to December) and 2020 (January to
April 30) are incomplete, but when expressed in terms of relative surface
areas, they allow conclusions to be drawn. Plantations to alternative
land uses are not analyzed.

Perennial plantations experienced a significant expansion in the
“Tropical Forest” class in 2015, of the order of 15%. A similar trend can
be observed for “Other Land Use” in 2015, with up to 42% of new
plantations being established in this class. According to this study, this
unexpected result can be explained by an update of the 2014map, which
includes the omission of plantations. The year 2020, with only 4 months
of observation, has only 1% of expansion, which can be explained by
post-classification errors in very young plantations. Years 2016–2019 are
more stable in terms of the conversion of the “Tropical Forest” and
“Other Land Use” classes. These classes represent approximately 17%–
23% of the source of new plantations each year. Transfers from “Other
Perennial Plantations” to “Oil Palm Plantations”, and vice versa, are low.

Initial estimates of industrial plantation dynamics, averaged
over the years 2016–2019, indicate that new oil palm plantations
cover approximately 3,064 km2; annually. Of this, 79% is due to
rotations within existing plantations, while 21% represents

FIGURE 10
Planting year of industrial plantations in the Riau region, Sumatra, Indonesia. (A) GPY from 2014 to 2020 (Du et al., 2022). (B) 2015–2020 PROBA-V
Annual Land Use @100 m planting years.

TABLE 3 Number of samples, F1 score performance metrics, OA and planting year accuracy using PROBA-V and GPY (Du et al., 2022), based on pixel count.
All years detections between 2014 and 2020 are counted, regardless of tolerance.

Region Samples F1 score (%) Overall accuracy (%) Planting year
accuracy (%)

PROBA-V GPY PROBA-V GPY PROBA-V GPY

Central America & Amazon 280 59 56 76 ± 5 79 ± 5 60 45

West Africa & Central Africa 251 75 46 90 ± 4 78 ± 5 55 26

Southeast Asia 368 71 48 82 ± 4 71 ± 5 67 44

Pan-tropical 899 68 50 82 ± 2 76 ± 3 62 41
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expansion into new areas. Specifically, 11% of this expansion comes
from tropical forests, 7% from other land uses, and 4% from other
perennial plantations. Meanwhile, other perennial plantations are
planted at a rate of about 13,875 km2; per year, with 81% coming
from rotation within existing plantations and 19% from expansion
into new areas. The expansion of these plantations includes 15%
from other land uses and 4% from tropical forests.

4 Discussion

The PROBA-V surface reflectance preprocessing ensures
temporal consistency even in the cloudiest regions and is suitable
for monitoring industrial plantations. Cutting and planting patterns
are well delineated, with deforestation and planting fronts visible at
15-day intervals. This study demonstrates the importance of near
real-time detection, as the algorithm presented here can detect new
plantations and subsequently characterize their type. This contrasts
with the GPY dataset, which requires a mask of plantations and then
applies an annual back-in-time change algorithm. This high
temporal resolution enables precise detections of change events
near the start or end of the calendar year. In traditional year-
based algorithms, land clearing in November followed by
replanting in February are often mixed into a single year signal,
leading to an underestimation of disturbances or a time lag with
actual events. In contrast, biweekly detections retain the temporal
granularity needed to distinguish these sequential events.

The first limitation of the product is the 2014 map. These detections
are based on training samples drawn from GOP detections (Descals et al.,
2020), whichmiss youngplantations, andGPYdetections (Du et al., 2022),
whose planting year accuracy is low. This means that the product is

partially dependent on the quality of these inputs. The 2014 map is also
composed of TMF (Vancutsemet al., 2021) andSDPT (Harris et al., 2019),
which may have omission or commission errors. After these classification
problems in 2014, the intention to classify bare soils ready for planting,
which are kept in the processing chain, does not show good results. Too
few pixels are classified as bare soil ready for planting and therefore any
new plantation is not recorded if it does not follow a correctly identified
bare soil. This processing problem explains the absence of detections in
2014 and the low number of detections in 2015. The series of annual land
use maps therefore starts in 2015, and the year 2015 should be used with
caution as it is incomplete. Similarly, the PROBA-V archive does not cover
the full year 2020 (only until 30 April 2020).

Secondly, new plantations are detected using NDWVI, which
captures the pattern of a sharp loss of vegetation followed by regrowth
associated with deforestation and subsequent replanting. However,
similar temporal dynamics can occur in other contexts, such as post-
fire recovery or seasonal wetland drying. Despite differences in
spectral signatures, these processes may produce comparable
temporal profiles at a biweekly resolution. The algorithm may
erroneously flag such events as new plantations, leading to
commission errors. Additional spectral or contextual constraints
would improve the specificity of change detection.

Thirdly, the algorithm can detect changes based on local statistical
thresholds in 3° × 3° windows. It is therefore clear that rotations with less
intense dynamics and less contrasting NDWVI distributions reduce the
performance of the algorithm. Differences in deforestation dynamics
and rotation practices, which may be more gradual than clear-cutting,
explain most of the omission and commission errors.

Finally, the classes “Tropical Forest” and “Other Perennial
Plantations”, although provided with the land use product, have
not been rigorously validated and should be used with caution.

FIGURE 11
Annual comparison of F1 score for different tolerance on the year of detection between 2015 and 2019 by PROBA-V and GPY Du et al. (2022), to
assess the accuracy of the detection year. The box on the right shows the F1 score calculated over all years between 2015 and 2019.
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5 Conclusion and perspectives

The PROBA-V Land Use @100 m product includes annual
land use maps from 2015 to 2020, and cutting and planting dates
with a 15-day time step throughout the 6 years, allowing static
and dynamic analysis of the LULCC with high temporal and
spatial consistency. This study highlights the relevance of the
PROBA-V satellite for global mapping. Its 100 m spatial
resolution is suitable for monitoring industrial perennial
plantations, and its temporal resolution supports biweekly
monitoring between 2015 and 2020.

NDWVI distinguishes tropical forest and bare soil allowing to
achieve high accuracy metrics using two different successive
detections, i.e., a tree cutting and a planting event or a planting
on bare soil detected in the baseline, to demonstrate the presence of a
new perennial plantation. A local standardization approach
proposed on μ and σ of the NDWVI of the tropical forest, makes
it possible to use the σ as a threshold for change detection. Spatial
standardization allows to reduce the local impact of atmospheric and

seasonal variability on the tropical forest spectral signature. The
LULCC algorithm is combined with a reclassification of changed
pixels to generate a new land use map every 15 days until 2020.

This sensor-agnostic approach relies on spectral bands common
to most land imaging sensors, including MODIS, Landsat, Sentinel-
2, and PlanetScope. By focusing on shared spectral features, it
enables consistent land cover change detection across platforms
with differing spatial, spectral, and temporal resolutions. This allows
for its use in both global-scale monitoring and detailed local
analyses. The method is also designed for long-term applicability.
Its compatibility with a wide range of past, current, and future
sensors ensures continued relevance as satellite missions evolve. The
proposed algorithm is a scalable and resilient solution for large-scale
environmental change monitoring.

The accuracy in detecting pan-tropical industrial plantations
demonstrates that near real-time maps based on change detection
can effectively compete with annual classifications at a global scale.
This suggests a strong complementarity between static maps and
dynamic updates. Static maps provide a basis for detecting well-

FIGURE 12
Temporal accuracy of biweekly detection of (A–C) cutting and (B–D) planting events by PROBA-V. (A–B) Scatterplots comparing the reference dates
(x-axis) to the detected dates (y-axis) for all validation samples. Blue points represent the main sample set (N = 147), while pink points indicate locations with
double events occurring in close temporal succession, such as repeated cutting or planting. The 1:1 dashed black line represents perfect agreement. MAE and
RMSE are reported across all samples. (C–D)Histograms of temporal error (in days, PROBA-V dateminus reference date) for the same events, limited to
samples without double events. The vertical dashed red line marks zero error, and the dashed black line shows the sample median. Reported metrics
correspond to the filtered subset of single-event cases. Reference dates were manually assigned by visual interpretation of Landsat time series.
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established plantations, especially those with mature, closed canopies.
However, they often miss young or newly planted areas. Our update
method fills this gap by detecting not only new plantations, but also
deforestation events and intra-plantation rotations. In practice, the static
map provides a solid baseline, while the change detection system allows
for continuous updates and improvements. Together, these approaches
create a more robust and adaptable solution for monitoring the
expansion and rotation of pan-tropical industrial plantations.

Finally, the planting detection figures show that LULCC assessment
on a global scale remains a critical area of development. The classes
identified here - tropical forests, bare soils and industrial perennial
plantations - are LULC classes that remain fairly distinct. LULC
transitions may occur in more specific environments, such as
gradual natural regrowth of perennial plantations, plantation
abandonment, agroforestry plantation rotations, which could not be
detected. The method exploits the intrinsic behavior of expansion or
rotation of industrial plantations in pan-tropical regions. It opens up the
prospect of testing it in other forest environments.

The PROBA-V C2 archive is a powerful resource for developing
sensor-agnostic algorithms, providing high-quality data that is
perfect for testing and fine-tuning methods. Its excellent
temporal coverage and consistency make it an ideal tool for real-
time detection and updating static maps while ensuring spatial and
temporal consistency. By complementing existing static plantation
maps with dynamic updates, our method is designed to support
deforestation monitoring frameworks and inform emerging
regulatory initiatives, including the EUDR. PROBA-V not only

lays the groundwork for scaling methods to higher-resolution
datasets but also opens the door to advanced global monitoring
of environmental dynamics with high precision.
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FIGURE 13
Sources of area allocated to new plantations, in 2015 (May 1 to December), 2016, 2017, 2018, 2019 and 2020 (January to May 1), in %. For each time
step, the bar on the left represents land use at the beginning of the period, and the bar on the right, land use at the end of the period. Only conversions to
“Oil Palm Plantations” and “Other Perennial Plantations” are counted.
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