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The alpine wetlands on the eastern Qinghai-Tibet Plateau (EQTP) serve as a
critical global ecological barrier. Under the dual pressures of climate change and
human activities, these wetland systems face environmental challenges such as
retrogressive succession, aridification, and desertification. Based on the Google
Earth Engine (GEE) cloud computing platform, this study integrates high-
resolution imagery, multi-source geoscience datasets, and field survey
samples. Object-based image analysis (OBIA), logistic regression, and species
distribution models (SDMs) were employed to systematically assess the
spatiotemporal differentiation characteristics and key driving factors of alpine
wetlands in EQTP. The results indicate that: (1) When applying OBIA classification
to alpine wetlands, as image resolution increased from 30m to 5m, classification
accuracy exhibited an improvement–saturation–fragmentation pattern. At a
resolution of 10 m (Scale = 26), marsh wetland structures and spatial
distribution characteristics were accurately identified, with a total wetland
resource area of 17,454.56 km2. (2) Wetland distribution is driven by multiple
factors, including climate (temperature, precipitation), topography (elevation,
slope), and human activities (road density, settlement distribution). The best
explanatory performance for driving forces was observed at a 500 m spatial
scale (AUC = 0.81), confirming that climate factors predominantly govern long-
term changes, while human activities significantly influence ecological patterns.
(3) During 2021–2040, under a low-emission scenario, the area of highly suitable
wetland zones was larger than under a high-emission scenario, with warming
causing very high suitability zones to shift toward higher elevations. From 2041 to
2060, as regional warming intensified, the area of excellent suitability wetlands
decreased. Between 2081 and 2100, the high-carbon emission scenario
increased temperature in the high-altitude central study area, improving
wetland suitability. This study proposes a GEE-based OBIA method for
estimating alpine wetland resources, integrating logistic regression and SDMs
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to reveal the spatiotemporal differentiation mechanisms of alpine wetlands. The
findings provide an effective technical framework for wetland research on the
Qinghai-Tibet Plateau.

KEYWORDS

Qinghai-Tibet Plateau, alpine wetlands, change mechanisms, remote sensing cloud
computing, Earth science dataset

1 Introduction

Alpine wetlands on the Qinghai-Tibet Plateau (QTP) are a
critical component of global wetland ecosystems, providing
essential ecological functions such as water conservation, carbon
storage, and biodiversity protection (Zhang et al., 2023; Liu and
Zhao, 2024;Wen et al., 2023). According to reports from the Ramsar
Convention, global wetland areas have been continuously declining
over the past decades (Hardouin et al., 2024; Huang et al., 2024), a
trend that is particularly evident in the QTP region (Chen et al.,
2023). As a wetland system of significant ecological value, QTP
wetlands play an irreplaceable role in regional ecological regulation
(Cheng et al., 2024) and have substantial implications for global
climate change (Zeng et al., 2023). However, the combined effects of
climate change and human activities pose severe threats to these
wetlands, leading to shrinking wetland areas and the degradation of
ecological functions, which have become key issues in global alpine
wetland research (Maurischat et al., 2023; Vento et al., 2024). The
eastern Qinghai-Tibet Plateau (EQTP), as a transition zone between
the plateau and the basin, constitutes a vital part of the QTP. It is
influenced by both continental climate and the southeastern
monsoon, coupled with high-intensity human activities, placing
significant pressure on its ecological environment. As a result,
wetland systems in this region are experiencing retrogressive
succession, aridification, and desertification (Wang et al., 2024),
exacerbating ecological degradation risks and further threatening
the stability of regional ecosystems (Zhang et al., 2023).

Wetlands on the eastern margin of the EQTP are subject to
the dual impacts of climate change and human activities, yet the
mechanisms underlying their spatiotemporal differentiation
remain unclear. Existing studies have primarily focused on
wetland temporal changes (Xu et al., 2023; Wang et al., 2024),
ecological monitoring (Zhao et al., 2024), wetland function
assessment (Chen et al., 2024), and carbon sink research
(Song et al., 2024). However, while these studies have
contributed to understanding individual factors influencing
wetland changes, they often lack a comprehensive analysis of
the complex, interactive mechanisms that govern the spatial
differentiation of wetlands across scales. Most of the research
either focuses on isolated environmental variables or specific
regions, without fully addressing how multiple factors interact to
influence the overall spatiotemporal patterns of wetland
ecosystems in the EQTP. Therefore, there is a critical gap in
the current literature regarding a systematic, multi-factorial
analysis of the spatiotemporal differentiation of wetlands in
this region.

This study aims to elucidate the spatiotemporal differentiation
patterns of alpine wetlands on the EQTP and identify their
dominant driving factors. By leveraging a remote sensing cloud

computing platform (Goyal et al., 2023; Wang et al., 2022), high-
resolution remote sensing imagery, large-scale geoscience datasets,
and ground observation samples are integrated to systematically
analyze wetland spatial differentiation and its influencing factors.
The research focuses on exploring how climate change, human
activities, and geographical characteristics affect wetland spatial
suitability and its spatiotemporal dynamics. This approach
addresses the research gap by providing a comprehensive analysis
of the interaction betweenmultiple drivers of wetland differentiation
and their cumulative impact on wetland distribution patterns. The
findings will also offer practical approaches for policy formulation in
response to climate change.

2 Materials and methods

2.1 Study area

EQTP (Figure 1) primarily consists of the Ganzi-Aba Plateau
and the western mountainous regions of Sichuan, with an average
elevation of approximately 4,000–4,500 m. The region’s climate is
influenced by both continental and monsoonal systems, with annual
precipitation ranging from 600 to 1,000 mm. The area is densely
covered by rivers, including major water systems such as the Yellow
River, Jinsha River, Yalong River, Dadu River, and Min River. The
EQTP hosts the largest alpine wetland zone in southern China,
represented by the Zoige-Hongyuan-Aba wetland system, as well as
numerous alpine lakes such as Xiaohai, forming an extensive alpine
lake-wetland ecosystem. The study area encompasses 11 wetland
ecological reserves, including three national-level and four
provincial-level reserves. Wetlands are primarily distributed
around alpine meadows and lakes, providing crucial habitats for
rare and endangered species and serving as a core component of
China’s key ecological function zones. The region’s vegetation is
predominantly alpine meadow, which holds significant ecological
and environmental value.

2.2 Data processing

2.2.1 Image preprocessing
Remote sensing images of the EQTP from 2022 to 2024 were

selected from the Google Earth Engine (GEE) database, focusing on
the optimal periods for vegetation coverage and surface water
detection (Figure 2). A total of 21 scenes of Landsat 8 surface
reflectance data and 46 scenes of Sentinel-2 MSI surface reflectance
data with cloud cover less than 5% were acquired. Additionally,
18 scenes of CBERS-04 P5 and P10 data were downloaded from
external databases and uploaded to GEE. The original images from
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the three datasets were processed using GEE’s computing platform,
including radiometric correction, geometric correction, and study
area clipping. Furthermore, Landsat 8 multispectral and
panchromatic bands were fused to generate data with a 15 m
spatial resolution. As a result, three types of multispectral
images—Landsat 8 (15 m), Sentinel-2 (10 m), and CBERS-04

(5 m)—were prepared for alpine wetland classification and
accuracy validation.

2.2.2 Wetland sample collection
A multi-temporal wetland field survey dataset was used to

establish a sample library for remote sensing classification and

FIGURE 1
Geospatial feature in EQTP. (A) Location, (B) Terrain, (C) Land use and land cover.

FIGURE 2
Intra-annual variations of NDVI and NDWI in the wetland plot of the EQTP (20-year average). (A) shows the intra-annual variation of NDVI for the five
plots, and (B) shows the intra-annual variation of NDWI for the five plots. Plot1-Plot5 represent five alpinewetland transects, respectively. The gray shaded
areas in the figure indicate the optimal periods for NDVI and NDWI.
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FIGURE 3
Field survey photographs of the study area (2022–2024). (a–c): Plot 1, (d–f): Plot 2, (g–i): Plot 4, (j–l): Plot 3.

TABLE 1 Factors influencing the spatial differentiation of alpine wetlands in the EQTP.

Factor type Factor name ID Code Data source and processing method

Climate Factors Air Temperature 1 AT Spatial interpolation using national meteorological station data

Precipitation 2 P

Vapor Pressure 3 VAP

Average Humidity 4 AH

Evaporation 5 ET MODIS 1 kmET data, reanalyzed via GEE

Wind Speed 6 WIN IDAHO_EPSCOR 1 km wind speed data, reanalyzed using GEE

Land Surface Temperature 7 LST MODIS 1 km LST data, reanalyzed using GEE

Geographical Landscape Elevation 8 DEM ASTER 30 m DEM

Slope 9 SLO Slope analysis based on ASTER 30 m DEM

Vegetation 10 NDVI MODIS 250 m NDVI data, reanalyzed using GEE

Water Supply River Density 11 RIV Classified and analyzed based on the national five-level river network

Runoff 12 RO IDAHO_EPSCOR 1 km runoff data, reanalyzed using GEE

Snow and Ice Cover 13 NDSI MCD43A4 500 m NDSI data, reanalyzed using GEE

Ecological Function Nature Reserve 14 Dis-NR Gridded based on the national level-4 nature reserve boundaries

Socioeconomic Factors Road Density 15 ROA Classified and analyzed based on the national five-level road network

Residential Density 16 SET Classified and analyzed based on the national level-4 residential distribution

Cultivated Land 17 Dis-CL Euclidean distance analysis using farmland distribution in western Sichuan

Population Density 18 POP Grid analysis based on the Sichuan Township population yearbook
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validation. Data sources included historical survey records from
2015 to 2016 (photographs and GPS points) and wetland patch data
from the Second Sichuan Wetland Resources Survey (published in
China Wetland Resources, Sichuan Volume, 2015 edition). To
enhance data timeliness and accuracy, an updated field survey
was conducted in selected wetland areas from 2022 to 2024,
collecting in situ wetland data from the test region (Figure 3).
Integrating remote sensing images, land use data, basic
geographic information, and field survey materials, a total of
5,500–6,000 swamp wetland sample points were collected, with
70% used for algorithm training and image classification and
30% for classification accuracy validation.

2.2.3 Big data processing
The factors influencing wetland spatial differentiation are diverse

and complex. Based on the study objectives, these factors are categorized
into natural environment and human activities (Table 1). The EQTP is
influenced by both continental and monsoon climates. As the plateau’s
climate shifts from warm-dry to warm-wet, regional climate change
inevitably affects surface vegetation and hydrological dynamics. The
study area consists of the Ganzi-Aba Plateau and western Sichuan
Mountains, characterized by extensive plateaus and alpine valleys,
forming unique topographical and geomorphological features. These
geographical landscapes, along with hydrological distribution,
significantly impact wetland changes and are therefore selected as
key influencing factors. Additionally, the study area contains over
60 nature reserves at various levels and is a key ecological functional
zone in China’s national land-use planning. The construction of these
ecological functional areas also influences wetland spatial differentiation.
To analyze these impacts, data from five categories and 18 factors
(Table 1) were processed through interpolation, reanalysis, resampling,
and boundary clipping, generating raster datasets at 100 m, 250 m,
500 m, and 1,000 m resolutions.

2.3 Research methodology

2.3.1 Image OBIA classification
The objective of multi-scale segmentation is to partition remote

sensing images at different scales to obtain image regions that better

correspond to actual land cover characteristics. This process
involves the iterative adjustment of segmentation parameters,
such as smoothness (CL) and regional heterogeneity (-φl), to
identify objects at various scales, thereby generating hierarchical
regions (or objects). These regions, referred to as “objects,” offer a
more accurate representation of wetland features compared to
traditional pixel-based classification methods. Classification is
performed based on these segmented objects by utilizing their
spectral, shape, and textural attributes, and applying decision
functions (Table 2) to enhance the accuracy of wetland classification.

2.3.2 Collinearity diagnosis
The issue of multicollinearity among influencing factors

essentially pertains to the correlation among independent
variables in regression analysis. While the likelihood of perfect
correlation between independent variables is low, excessive
correlation can reduce the accuracy of regression results and
even lead to sign reversals of regression coefficients, rendering
the analysis uninterpretable. The correlation coefficient R is used
to assess the relationships among independent variables (Equation
1), while the variance inflation factor (VIF, Equation 2) further
quantifies the degree of multicollinearity. Tolerance, which is closely
related to VIF, is employed to further explain (Equation 3) the
independence of variables.

Rij �
Cov Xi, Xj( )����������������

Var Xi( ) · Var Xj( )√ (1)

VIFi � 1
1 − R2

i

(2)

Toli � 1 − R2
i (3)

R represents the correlation coefficient matrix of the observed
independent variables, where Rij denotes the correlation coefficient
between each pair of independent variables. VIF indicates the degree
of multicollinearity, with VIFi <10 <10 suggesting low collinearity
and values above 10 indicating high collinearity. Tol represents the
independence of explanatory variables; when Tol is less than 0.1, it
suggests poor independence of the independent variables and a
severe multicollinearity problem.

TABLE 2 Fundamental principles of OBIA classification.

Feature selection Definition & expression Symbol meaning

Smoothness
CL � 1

n∑n
i�1
CLi

N represents the number of pixels

Heterogeneity φl �
��������������
1

n-1∑n
i�1(CLi-Cl)2

√
CLi represents the mean value of the ith band

Shape Index s � e
4
�
A

√ e represents the perimeter of the object, A represents the area of the object

Aspect Ratio r � l
w

w represents the maximum width of the object

Index Model NDVI � ρNIR-ρRed
ρNIR-ρRed

NDWI � ρBlue-(ρNIR+ρSWIR1+ρSWIR2)
ρBlue+(ρNIR+ρSWIR1+ρSWIR2)

NDVI represents the Normalized Difference Vegetation Index, NDWI represents the Normalized
Difference Water Index
ρNIR is near-infrared band, ρRed is red band、 ρBlue is blue band, ρSWIR is shortwave infrared band

Classification Decision
Function

f(x) � a1 × CL + a2 × φl + a3 × s + a4 × r
+a5 × NDVI + a6 × NDWI

a represents the weight coefficients of classification features
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2.3.3 Spatial logical relationship
Traditional linear regression characterizes the continuous

variation of a dependent variable in response to changes in
independent variables. However, wetland spatial distribution
exhibits a binary classification property, i.e., the presence or
absence of wetlands in a given area (where the independent
variable takes values of 1 or 0). Therefore, a binary logistic
regression model is introduced to establish the relationship
between wetland changes and influencing factors. The logistic
regression model constructs a regression relationship between a
dependent variable and multiple independent variables to predict
the probability of an event occurring (Wang et al., 2019). The binary
logistic function is employed to establish the correlation between
wetland spatial differentiation and driving factors, enabling the
analysis of key factors influencing wetland spatial distribution.
Additionally, it quantifies the contribution of each influencing
factor. The mathematical expression of the logistic regression
function is given as follows:

pi � exp β0 + β1x1 + β2x2 + ... + βmxm( )
1 + exp β0 + β1x1 + β2x2 + ... + βmxm( ) (4)

logit pi( ) � ln
pi

1 − pi
[ ] � β0 + β1x1 + β2x2 + ... + βmxm (5)

pi represents the probability of a certain wetland type occurring
within a region. β0 is the constant term in the regression model,
β1-βm represents the partial regression coefficient, and x1-xm

denotes the influencing factors. Equation 5 is the linear
expression of Equation 4. As log it(pi) varies within the range
(-∞,+∞), pi takes values within (0,1). By transforming pi into
log it(pi), it becomes a linear expression, demonstrating that the
essence of the Logistic regression function is also a form of linear
regression.

2.3.4 Suitability assessment of distribution
By integrating driving factors and WorldClim climate model

data, theMaximum Entropy (MaxEnt) model is utilized to assess the
suitability of alpine wetland distribution under Shared
Socioeconomic Pathway (SSP) scenarios. MaxEnt is a predictive
model based on the principle of maximum entropy, which aims to
construct the most balanced probability distribution while satisfying
known constraints. The probability distribution of MaxEnt is
formulated as follows (Equation 6):

p̂ x( ) � 1
z
exp ∑m

j�1
λjfj x( )⎛⎝ ⎞⎠ (6)

p̂(x) represents the probability of species distribution under
environmental variables x, z is the normalization constant, λj
denotes the model parameters, fj(x) is the feature function of
the environmental variables x, and m is the number of
feature functions.

The predictive performance of MaxEnt was evaluated using the
area under the receiver operating characteristic curve (AUC). Under
different emission scenarios, the AUC values were all above 0.80,
indicating good model performance and reliable prediction results.
In addition to MaxEnt, three classical Species Distribution Models
were also applied: GARP, BIOCLIM, and DOMAIN. These models
used the same environmental variables and species occurrence data

to simulate the potential distribution of alpine wetlands. Their
outputs were used to cross-validate the prediction results of
MaxEnt, enhancing the robustness and credibility of the
suitability assessment.

3 Results and analysis

3.1 Spatial distribution characteristics
of wetlands

3.1.1 Image segmentation and classification
Multi-scale segmentation training was conducted on L8-30m,

L8-15m, S2, and C04 images for representative plots to analyze and
determine the optimal segmentation scale for different images
(Figure 4). As shown in the figure, the Rate of Change (RC)
curve exhibits multiple peaks corresponding to variations in
Local Variance (LV). The segmentation scales associated with the
RC peaks are likely the optimal scales for marsh wetland
segmentation. Therefore, these RC peak values can be used as
training thresholds for segmentation experiments to obtain the
best segmentation results for alpine marsh wetlands. In terms of
segmentation performance, higher spatial resolution leads to
improved segmentation accuracy. Among the four image types,
the C04 dataset yielded the most optimal segmentation results,
followed by S2, then L8-15m. In contrast, L8-30m images failed
to effectively distinguish between wet meadows and grasslands. The
segmentation process and results indicate that spatial resolution
plays a crucial role in image segmentation accuracy, while spectral
information has a relatively weaker influence.

As the spatial resolution of the image increases, segmentation
accuracy also gradually improves. When the resolution increases
from 30 m to 15 m (Figures 4A,B), the segmentation results show
significant enhancement. A further improvement is observed when
the resolution increases from 15m to 10 m (Figures 4B,C). However,
when the resolution increases from 10 m to 5 m (Figures 4C,D), the
improvement in segmentation accuracy becomes marginal. This
phenomenon is attributed to the structural characteristics and object
sizes of marsh wetlands. For marsh wetlands, an image resolution of
10 m with a segmentation scale of 26 (Figure 4C) yields an optimal
wetland structure segmentation. Further increases in spatial
resolution do not significantly enhance segmentation accuracy;
instead, they reduce segmentation efficiency and lead to excessive
fragmentation of land cover types. This finding provides valuable
insights for selecting data sources and determining optimal
segmentation scales for marsh wetland classification across
the study area.

Based on the segmentation of the four experimental image
datasets, the pre-established sample data were used to classify the
segmented results, producing the OBIA-based marsh wetland
classification results (Figure 5). The OBIA method effectively
classified wetland structures into five categories: water bodies,
peatlands, wet meadows, meadows, and grasslands. Referring to
field survey data on wetland types within the study area, the OBIA
algorithm demonstrated optimal performance in identifying
wetland structures when applied to datasets with a spatial
resolution of 5–10 m. To validate classification accuracy, a
random subset of sample points (30% of the total samples) was
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extracted for accuracy assessment. The Kappa coefficients for the
classification results of the C04, S2, L8-15m, and L8-30m datasets
were 0.910, 0.939, 0.912, and 0.832, respectively. These results
indicate a direct relationship between OBIA classification
accuracy and the spatial resolution of the data source. Notably,
the classification accuracies of S2 and C04 were highly similar, which
aligns with their comparable segmentation performance.

3.1.2 Spatial distribution of alpine wetlands
A statistical analysis was conducted onmarsh wetlands extracted

from Landsat-8 and Sentinel-2 datasets, with the results presented in
Figure 6. The total area of alpine marsh wetlands in western Sichuan
was estimated at 17,438.96 km2 and 17,454.56 km2, respectively, for
the two datasets, showing a minor difference of 15.59 km2. The
wetlands were primarily concentrated in Xinlong, Shiqu, Ruoergai,
Hongyuan, and Ganzi, with respective wetland areas of
4,703.08 km2, 2,757.97 km2, 2,755.50 km2, 2,066.52 km2, and
1,614.14 km2. Conversely, minimal wetland resources were found
in Muli, Danba, Heishui, Lixian, Maerkang, and Maoxian. Using the
remote sensing classification approach presented in this study, the
total marsh wetland area extracted from Sentinel-2 data was
37.42 km2 larger than that reported in the Second Sichuan
Wetland Resources Survey. The newly identified wetland areas
were mainly located in Ganzi, Xinlong, Aba, Rangtang, and
Maerkang. Specifically, Maerkang saw an increase of 0.81 km2,
primarily along its border with Aba. These wetlands were not
accounted for in the Second Sichuan Wetland Resources Survey.

The improvement in wetland identification and extraction in this
study can be attributed to the higher resolution of the data sources
and the optimization of classification methods, which enabled more
precise recognition of smaller wetland patches.

3.2 Spatial characteristics and diagnosis of
influencing factors

3.2.1 Spatial characteristics of influencing factors
Some influencing factors are discrete variables, necessitating

processing to convert them into spatially continuous data. During
the rasterization of discrete data, classification is required for
variables such as road networks and river networks. The
classified river and road networks were transformed into spatially
continuous raster using spatial interpolation and density analysis
(Figure 7). The climatic characteristics of the eastern margin of the
Tibetan Plateau exhibit a southeast-wet to northwest-dry gradient
(Figure 7A). The central-northern region has lower temperatures,
while the southeastern part is warmer (Figure 7B). Evaporation rates
are high in the eastern and southwestern regions (Figure 7D), and
wind speeds are greater in high-altitude areas (Figure 7E). Surface
temperatures are relatively high in the northern and southern valley
areas (Figure 7F). The terrain is relatively flat in the northern and
midwestern regions (Figure 7H), whereas the northeastern and
southern of Zoige have high vegetation coverage (Figure 7I).
Figure 7J illustrates that after classification and density analysis

FIGURE 4
Optimal scale segmentation results of OBIA for typical alpine wetland plots. ((A–D) represents L8-30m, L8-15m, S2-10m, and C04-5m,
respectively).
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of the river network, the major rivers—Jinsha, Yalong, Dadu, and
Min—significantly influence water resource distribution, aligning
with the actual water resource patterns in the region. After
classification of the road network (Figure 7N), it is evident that
national and provincial roads exert a significantly greater radiation
effect on the surrounding areas compared to county and township
roads. The road network also exhibits differential impacts on
wetland ecosystems. Furthermore, the spatial distribution of
residential areas in Ganzi and Aba prefectures (Figure 7O) shows
that prefecture-level cities and county seats have a more pronounced
ecological impact than village-level settlements. The spatial
distribution and radiation range of settlements further illustrate
this characteristic. For meteorological and some socio-economic
data, spatialization does not require classification (Figures 7A–C).
Additionally, factors inherently in raster format, such as DEM and
MODIS products, do not require further spatialization. Instead,
these datasets undergo specific processing, including slope
extraction, vegetation coverage calculation, and reclassification, to
derive relevant influencing factor variables as needed for the study.

3.2.2 Multicollinearity diagnosis
Multicollinearity among influencing factors refers to the

correlation between independent variables in regression analysis.
While perfect collinearity is rare, excessive correlation can reduce
the accuracy of regression results and even lead to sign reversal in
regression coefficients, making the analysis uninterpretable. This

contradicts the fundamental purpose of regression analysis, which is
to provide explanatory insights. To analyze the impact of influencing
factors on wetland changes, we constructed six categories
comprising 18 factor sets. To ensure objective results, we
conducted a multicollinearity diagnosis on these 18 factors
(Figure 8) to eliminate those exhibiting collinearity. Large
samples tend to mitigate collinearity, whereas specific small
samples can introduce statistical correlations among variables.
Therefore, we randomly sampled 50% of the total dataset
(approximately 400,000 samples) for the diagnosis. The results of
the full-factor collinearity diagnosis (Figure 8) indicate a
multicollinearity issue between P (precipitation) and VAP (vapor
pressure), as reflected by a variance inflation factor (VIF) >10 and a
tolerance (VOL) < 0.1. Additionally, AT (air temperature) and VAP
also exhibit collinearity. This suggests that vapor pressure (VAP) is
highly correlated with temperature and precipitation, necessitating
its removal. Consequently, VAP is excluded from the analysis of
wetland change drivers.

3.3 Mechanism of wetland spatial
differentiation

3.3.1 Optimal analysis scale
Based on the spatial extent of the study area and referring to the

National Geographic Grid Standards (Liu et al., 2022), we

FIGURE 5
OBIA classification results for typical alpine wetland plots. ((A–D) represents L8-30m, L8-15m, S2-10m, and C04-5m, respectively).
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established four geographic grid scales: 100 m × 100 m, 250 m ×
250 m, 500 m × 500 m, and 1000 m × 1000 m. Wetland distribution
raster data and 16 driving factor values were extracted at these scales.
We applied ROC curve analysis to assess the effectiveness of
different scales (Dani and Ginting, 2023), treating wetland spatial
distribution rasters as the state variable (binary values with wetlands
assigned as 1) and the driving factors as test variables. Each scale
generated 18 ROC curves, and the area under the curve (AUC) was
used to evaluate the performance of different scales (Figure 9). The
results show that, except for LST (Land Surface Temperature) and
NDVI (Normalized Difference Vegetation Index), all 16 factors
achieved an AUC greater than 0.75 across the four scales. The
500 m scale yielded the highest average AUC of 0.81, indicating that
it is the optimal scale for subsequent logistic regression analysis.

3.3.2 Logistic regression analysis
The ROC analysis results indicate that the 500 m × 500 m grid is

the most suitable analysis scale. Therefore, we used data at this scale
for logistic regression analysis. To better assess the effect of logistic
regression across different scales, we conducted regression analysis
on all four scales. The sample sizes for the four scales were
24.8 million (100 m), 3.968 million (250 m), 992,000 (500 m),
and 248,000 (1000 m). Due to computational limitations, we
performed random sampling (20% for 100 m and 50% for
250 m) before regression analysis, while all data for the 500 m
and 1,000 m scales were fully included. The regression analysis
results are shown in Figure 10. We evaluated the statistical
significance of the driving factors based on p-values from the

regression results. Factors LST (Land Surface Temperature),
NDVI (Normalized Difference Vegetation Index), and POP
(Population Density) had p-values greater than 0.05, indicating
no significant impact on wetland distribution. To further validate
the influence of each factor, we performed ROC analysis for all four
scales and computed the area under the curve (AUC) for each
driving factor. When AUC <0.5, the factor lacks explanatory power
for wetland distribution, meaning wetlands are not sensitive to
changes in that factor. When AUC >0.75, the factor is
considered a key driver of wetland spatial variation (Wang et al.,
2019), indicating that the predicted wetland probability aligns well
with actual wetland distribution. For the optimal 500 m scale, ROC
analysis showed that LST and NDVI had AUC values of 0.69 and
0.63, respectively, consistent with the non-significance results from
logistic regression.

3.3.3 Contribution of driving factors
Through multi-scale logistic regression analysis, we assessed the

main factors influencing wetland spatial distribution and the
contribution of each factor. After removing insignificant factors
from the regression analysis, a total of 16 factors were found to affect
wetland space (Table 3). The regression analysis results across the
four scales show a consistent overall trend. At the optimal regression
scale, logistic regression coefficients (B) and odds ratios (OR)
indicate that atmospheric humidity and precipitation contribute
positively to the development of alpine wetlands. In addition, areas
with dense river networks and those far from farmland are favorable
for the spatial expansion of alpine wetlands. Climate factors that

FIGURE 6
Alpine wetland resources and their spatial distribution characteristics.
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negatively affect wetland development include temperature and
evaporation. Specifically, the temperature factor has a B value
of −0.354 and an OR of 0.701, indicating that with each unit
increase in temperature, wetlands will decrease by 0.298 units.
Among the socio-economic factors, population density

significantly influences wetlands across all analysis scales, with
population density being significant only at the 500 m × 500 m
scale, where its B value and OR are high. Moreover, the
establishment of nature reserves strongly promotes the potential
development of wetlands, as indicated by its high regression

FIGURE 7
Spatial distribution of wetland influencing factors. (A–P) represent the spatial distribution of AT (air temperature), P (precipitation), VAP (vapor
pressure), AH (humidity), ET (evaporation), WIN (wind speed), LST (land surface temperature), DEM (elevation), SLO (slope), NDVI (vegetation index), RIV
(river density), RO (runoff), NDSI (snow/ice cover), Dis-NR (distance to nature reserves), ROA (road density), SET (settlement density), Dis-CL (distance to
croplands), and POP (population density) in the study area.
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coefficient and OR value in the regression equation. In terms of
geographical landscape factors, terrain slope has a significant effect on
wetland development (B = −0.062), with wetland development
probability decreasing as the slope increases. Therefore, the main
natural factors influencing wetland change in the EQTP region
include temperature, slope, atmospheric humidity, and
precipitation. The main socio-economic factors include nature
reserves, agricultural cultivation, population density, and the
distribution of settlements. It is also worth noting that due to the
sparse distribution of meteorological stations, the full impact of
climate factors on wetlands has not been fully reflected.
Additionally, glacier coverage is another factor influencing wetland
development, as shown by the regression coefficient and OR of the
NDSI. After eliminating the insignificant factors (P ≥ 0.05), regression

equations for the four scales were constructed (100 m, 250 m, 500 m,
and 1000 m), and the specific equations are as follows.

3.4 Wetland distribution suitability

By integrating data on nature reserves, agricultural cultivation,
population density, and settlements as socio-economic driving
factors and incorporating WorldClim climate model data, the
MAXENT model was used to evaluate the spatial distribution
suitability of alpine wetlands in western Sichuan from 2021 to
2,100 across four time periods. The results are shown in
Figure 11. Analysis indicates that during 2021–2040, under the
low-emission scenario (SSP2.6), the area of highly suitable wetland

FIGURE 8
Collinearity diagnostics for the set of influencing factors. TOL refers to the Tolerance Coefficient, while VIF denotes the Variance Inflation Factor.
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distribution is larger than that under the high-emission scenario
(SSP8.5), particularly in the low-altitude areas of the northern part
of the study region. As temperature increases from SSP2.6 to SSP8.5,
the evaluation results show a decrease in the “Very High” suitability
zone for alpine wetlands, while the “High” suitability area expands.
These results suggest that regions highly suitable for alpine wetland
distribution are shrinking. During 2041–2060, as regional
temperatures rise, areas classified as “Excellent” for wetland
distribution decrease, with a more pronounced reduction in
“Very High” suitability zones in the alpine wetlands of Xinlong
and Baiyu counties. The model results indicate that increased carbon
emissions led to warming, which enhances surface evaporation,
negatively impacting alpine wetland development. In the
2061–2080 period, the results show an expansion of the “High”
suitability zone in high-altitude areas of Xinlong County and Haizi
Mountain. This suggests that rising temperatures increase glacial
meltwater in high-altitude regions, improving water replenishment
for lakes and marsh wetlands, and leading to an expansion of
wetland areas. In the 2081–2100 period, the results indicate that
high-carbon emission scenarios cause warming in the central high-
altitude areas of the study region, thereby increasing wetland
distribution suitability.

4 Discussion

4.1 Wetland classification validation

To better verify the accuracy of OBIA-based alpine wetland
classification, we integrated field-surveyed GPS sample points with
1706 independently sampled points from GEE (including 186 field-

measured samples) to compute confusion matrices for the
classification results of four datasets, thereby assessing their
classification accuracy. As shown in Table 4, the overall
classification accuracy ranks from highest to lowest as follows: L8-
15m, S2, C04, and L8-30m. Although the C04 dataset has the highest
spatial resolution, its classification accuracy is not the highest,
primarily because it contains only three spectral bands (lacking the
blue band). Since the OBIA classification algorithm relies on spectral
and textural features, the absence of the blue band affects classification
results. As indicated in Table 4, the classification accuracy of wet
meadows and meadows is relatively low, mainly due to the spectral
similarity between wet meadows and forested areas, making them
difficult to distinguish. The L8-15m dataset provides the most
comprehensive spectral information with seven bands, while the
S2 dataset includes four bands (blue, green, red, and near-
infrared), and the C04 dataset has only three bands (red, green,
and near-infrared). This highlights the importance of spectral richness
in the OBIA classification algorithm. Therefore, when applying the
OBIA classification method to alpine marsh wetland classification
across the study area, the S2 and L8-15m datasets yield the best
classification results. Overall, validation of the wetland classification
results using field-measured samples shows that the Kappa coefficient
is consistent with that of the OBIA classification, further confirming
the high reliability of OBIA-based alpine wetland resource estimation.

4.2 Drivers and suitability of wetland
distribution

The results of the multi-scale logistic regression analysis indicate
that several socio-economic factors have a significant impact on

FIGURE 9
Multi-scale ROC analysis of the spatial relationship between influencing factors and wetland distribution. S1 = 100 m × 100m, S2 = 250 m × 250 m,
S3 = 500 m × 500 m, S4 = 1000 m × 1000 m.
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FIGURE 10
Parameters of logistic regression results at four scales. (A–D) correspond to the four analysis scales S1-S4 (S1 = 100m× 100m, S2 = 250m× 250m,
S3 = 500 m × 500 m, S4 = 1000 m × 1000 m). B, S.E., Wald, and P represent the parameters of the logistic regression analysis, respectively.

TABLE 3 Contribution of influencing factors to the spatial differentiation of alpine wetlands.

Scale Contribution of influencing factors

Logit (p100) −7.66658 + 0.29700 DIS_CL + 0.17639 EQD +0.12594 EDG +0.05050 AH + 0.00506 WIN +0.00232P + 0.00069 RO + 0.00064 DEM -
0.00005 NDVI - 0.00125 ROA - 0.00312ET - 0.01572 SET - 0.01766 RIV - 0.00656 SLO - 0.035204 AT - 0.39353 NDSI - 0.91357 DIS_NR

Logit (p250) −7.71850 + 0.33817 DIS_CL + 0.17894 EQD +0.13486 EDG +0.04913 AH + 0.00497 WIN +0.00240P + 0.00068 RO + 0.00062 DEM
+0.00004 NDVI - 0.00116 ROA - 0.00323ET - 0.01569 SET - 0.01781 RIV - 0.00652 SLO - 0.035799 AT - 0.38115 NDSI - 0.96301 DIS_NR

Logit (p500) −8.24042 + 0.34600 DIS_CL + 0.17328 EQD +0.15146 EDG +0.05243 AH + 0.00499 WIN +0.00227P + 0.00083 RO + 0.00064 DEM
+0.00005 NDVI - 0.00149 ROA - 0.08439 POP - 0.00345ET - 0.01500 SET - 0.01725 RIV - 0.06216 SLO - 0.035465 AT - 0.37660 NDSI -
1.07815 DIS_NR

Logit (p1000) -9.00150 + 0.30762 DIS_CL + 0.17813 EQD +0.15846 EDG +0.05333 AH + 0.00493 WIN +0.00239P + 0.00125 RO + 0.00069 DEM
+0.00004 NDVI - 0.00180 ROA - 0.00319ET - 0.01590 SET - 0.01754 RIV - 0.05822 SLO - 0.035959 AT - 0.37607 NDSI - 1.13586 DIS_NR
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wetland distribution. Among them, population density is a key factor,
showing strong significance particularly at the 500 m × 500 m scale,
with a high regression coefficient. This suggests that wetlands are more
likely to degrade in densely populated areas. At the same time,
agricultural activities, represented by the distance from farmland,
exert a suppressive effect on wetland expansion. Areas farther from
farmland are more likely to support wetland expansion, indicating that
agricultural expansion is a major driving force behind wetland
degradation. In addition, the distribution of settlements is also
identified as an important variable affecting the spatial pattern of
wetlands. In contrast, the establishment of nature reserves
significantly promotes wetland development, suggesting that
conservation policies play a positive role in mitigating the pressures
of human activities. In summary, this study reveals that specific human
activities such as population concentration, farmland expansion, and
settlement development are important factors shaping the spatial
dynamics of alpine wetlands in the eastern Qinghai–Tibet Plateau.

The future spatial distribution of wetlands is influenced by multiple
factors, leading to considerable uncertainty in the spatial distribution
patterns. To address this, we discuss the prediction accuracy by
combining ROC analysis of the prediction process with findings
from previous related studies. Following the methods of Jane et al.

(2010); Merow et al. (2013); Wang et al. (2024), we evaluated the
MAXENT prediction results. During the period 2021–2040, under
three emission scenarios, the area highly suitable for alpine wetland
spatial distribution decreased as emission concentrations increased.
ROC analysis of the prediction results revealed AUC values (Figures
12A–C) of 0.816, 0.823, and 0.821, respectively, all exceeding 0.80
(Muschelli, 2020; Huang and Ling, 2005), indicating robust prediction
performance. The wetland prediction results for the period
2041–2061 were similar to those for 2021–2040, with a noticeable
reduction in highly suitable areas for alpine wetlands in Xinlong and
Baiyu counties. During the periods 2061–2081 and 2081–2,100,
warming in the high-altitude regions of central western Sichuan
enhanced the suitability of wetland distribution. The AUC values for
the wetland spatial distribution predictions during 2081–2100 (Figures
12D–F) were 0.825, 0.815, and 0.831, respectively, all above 0.80,
demonstrating reliable prediction outcomes.

Although this study employed multiple SSP-based climate
projections derived from CMIP6 to model the future distribution
of alpine wetlands, it is important to recognize the inherent
uncertainties associated with climate models (GCMs). Different
GCMs vary in their projections of temperature and precipitation,
especially in complex mountainous terrains where topography-

FIGURE 11
Evaluation results of the suitability of alpine wetland spatial distribution.
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induced microclimates are prevalent. These variations can influence
suitability outputs generated by models such as mXENT when
simulating alpine wetland distribution. Previous studies have
shown that the choice of GCMs significantly affects spatial
predictions of climate-sensitive ecosystems in mountainous
regions (Wang et al., 2020; Eyring et al., 2024), highlighting the
need to interpret model outputs with caution and, where possible, to
adopt ensemble approaches to improve robustness.

Furthermore, while SSP narratives provide a globally
harmonized framework for socio-economic pathways, their direct
applicability to alpine environments is limited. SSPs assume
generalized trajectories of population growth, land-use change,
and economic development that may not reflect the socio-
political and ecological realities of high-altitude regions. For
instance, alpine areas in western Sichuan are characterized by
sparse human populations, limited infrastructure development,
and strong conservation policies that restrict intensive land use.
These factors suggest that SSPs may overestimate anthropogenic
pressures or underrepresent region-specific resilience in such
contexts. Future research should consider downscaling SSPs or
integrating locally informed socio-environmental scenarios to
capture better the complexity of alpine wetland dynamics under
climate change.

To further substantiate these patterns, the findings of this study
are supported by similar research in other mountainous regions,

such as the Andes and Himalayas, where climate warming, glacier
retreat, and changes in hydrological regimes have been shown to
drive significant shifts in alpine wetlands (Eyring et al., 2024; Bello
et al., 2025; Quintana et al., 2025; Domic et al., 2025; Zimmer et al.,
2024; Manzoor et al., 2024; Alam et al., 2024). These studies confirm
that temperature rise is a dominant driver of wetland dynamics,
reinforcing our conclusion that the spatial differentiation of alpine
wetlands in western Sichuan is closely linked to warming trends.
Notably, the observed patterns of post-glacial wetland expansion
and increasing ecological vulnerability in these regions align
with the spatiotemporal changes we identified under different
emission scenarios.

4.3 Multi-model cross-validation

Using historical climate data combined with topographic data,
we simulated the current distribution of wetlands in the eastern
margin of the Tibetan Plateau and validated the results using
wetland thematic data to evaluate the performance of Species
Distribution Models (SDMs) in assessing wetland spatial
distribution suitability. The results of the four SDMs simulating
the current distribution of alpine wetlands in the eastern margin of
the Tibetan Plateau are shown in Figure 13. The four models
classified the spatial distribution of wetlands within the study

TABLE 4 Accuracy validation of OBIA classification results for images from different sensors.

Image Overall
accuracy

Wetland
structure

User
accuracy

Producer
accuracy

Kappa
coefficient

Kappa coefficient
(Independent samples)

C04-5m 0.881 Wet Meadow 0.762 0.726 0.895 0.910

Peatland 0.969 0.989

Meadow 0.638 0.775

Forest Land 0.936 0.932

Grassland 0.886 0.905

S2-10m 0.922 Wet Meadow 0.778 0.874 0.903 0.939

Meadow 0.933 0.946

Grassland 0.958 0.978

Forest Land 0.887 0.750

Peatland 0.997 0.996

L8-15m 0.935 Wet Meadow 0.894 0.933 0.910 0.912

Meadow 0.904 0.876

Grassland 0.932 0.950

Forest Land 0.924 0.813

Peatland 0.983 0.991

L8-30m 0.846 Wet Meadow 0.806 0.835 0.827 0.832

Meadow 0.822 0.896

Grassland 0.837 0.847

Peatland 0.928 0.858

Forest Land 0.991 0.996
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area into non-suitable (No suitable), low suitability (Low), medium
suitability (Medium), high suitability (High), very high suitability
(Very High), and excellent suitability (Excellent) regions. Among
them, the predictions of MAXENT (Figure 13B) and GARP

(Figure 12C) were relatively similar, with comparable areas of
non-suitable and low suitability regions. Overlay analysis of the
excellent suitability regions predicted by MAXENT with actual
wetland distribution yielded an α value of 91.6%, while GARP’s

FIGURE 12
ROC analysis of wetland distribution suitability evaluation. (A–C) present the AUC values from the MaxEnt simulations under SSP2.6, SSP4.5, and
SSP8.5 scenarios for the period 2021–2040, while (D–F) correspond to the period 2081–2100. AUC represents the area under the curve.

FIGURE 13
Cross-validation overlay maps of alpine wetland distribution suitability evaluation. ((A): Wetland samples, (B) MaxEnt, (C) BioClim, (D) GARP,
(E) Domain).
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excellent suitability regions slightly exceeded the actual wetland
distribution (α = 88.5%). In the BIOCLIM prediction results
(Figure 13D), the area of excellent suitability regions was smaller
than the actual wetland distribution (α = 79.5%), and the model
performed poorly in predicting high-altitude regions. In contrast,
the DOMAIN prediction results (Figure 13E) showed a more
reasonable distribution of excellent suitability regions, but the
area was larger than the actual wetland distribution (α = 76.3%).
By comparing the α values of the four models’ predictions with the
actual wetland distribution, it is evident that MAXENT performed
the best, followed by GARP, BIOCLIM, and DOMAIN. Therefore,
selecting MAXENT as the model for evaluating the suitability of
alpine wetland distribution is scientifically justified.

5 Conclusion

This study examines the spatiotemporal changes in alpine
wetlands based on multi-source remote sensing images and
modeling, leveraging data processing and analytical techniques
from the Google Earth Engine (GEE) platform. It systematically
explores the optimization of wetland structure identification and
classification methods, as well as the driving mechanisms of future
wetland changes under multiple scenarios.

The findings reveal that OBIA classification accuracy improves
significantly when the resolution increases from 30 m to 10 m, with the
Kappa coefficient rising from 0.79 to 0.94. However, further increasing
the resolution to 5m leads to classification saturation, reduced efficiency,
and fragmentation in wetland classification. This result provides
important insights into selecting classification data sources and
segmentation scale settings for marsh wetlands across the study area.

The spatial distribution of alpine wetlands is influenced by
multiple factors, including climate, topography, hydrology, and
human activities. At a 500 m scale, wetland-driving factor analysis
achieves the highest ROC curve mean (AUC = 0.81), demonstrating
the best explanatory power in spatial differentiation. Logistic
regression analysis further indicates that wetland distribution
strongly responds to key climatic variables such as local vapor
pressure, temperature, and precipitation, confirming climate as the
dominant driver of wetland change. Among socioeconomic factors,
road networks and settlement distributions significantly impact
wetland ecological structures and spatial patterns. These findings
provide new insights into spatial optimization strategies for alpine
wetland conservation and management.

Under future emission scenarios, wetland suitability varies across
different periods. During 2021–2040, the low-emission scenario
(SSP2.6) supports a larger area of highly suitable wetland
distribution compared to the high-emission scenario (SSP8.5),
especially in low-altitude regions in the northern study area. From
2041 to 2060, regional warming leads to a decline in “Excellent”
suitability zones, with a particularly notable reduction in “Very High”
suitability areas in Xinlong and Baiyu counties. Between 2061 and
2080, high-suitability zones expanded in high-altitude areas of
Xinlong County and Haizi Mountain due to increased glacial
meltwater supply, which enhances the extent of alpine lakes and
marsh wetlands. By 2081–2100, the high-carbon emission scenario
will cause further warming in the central high-altitude regions of the
study area, improving overall wetland suitability.
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