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Introduction: Monitoring Ulva prolifera blooms over the long term is crucial for
maintaining marine ecological balance. MODIS images, with their wide spatial
coverage, high temporal resolution, and rich historical data, are commonly used
for this purpose. However, their relatively low spatial resolution may lead to
inaccuracies in precisely defining the bloom extents, thereby impeding the
formulation of effective management strategies.

Methods: To address this issue, our study developed the WaveNet model. This
model integrates VGG16 with the Bidirectional Feature Pyramid Network (BiFPN)
and is further enhanced with a Convolutional Block Attention Module (CBAM). We
applied this framework to MODIS imagery for the detection and monitoring of
U. prolifera.

Results: WaveNet demonstrated superior performance in long-term sea surface
U. prolifera monitoring compared to traditional methods, achieving an accuracy
of 97.14% and an F1 score of 93.26%. This represents a significant improvement
over existing techniques.

Discussion: These results highlight WaveNet's improved capacity for accurate
spatial recognition and classification, overcoming the limitations of previous
methods. Applying this approach, we analyzed the spatiotemporal distribution
of U. prolifera blooms in the Yellow Sea of China from 2018 to 2024. Our
framework offers valuable insights for early prevention and targeted
management of green tides, contributing to the development of more
effective mitigation strategies.

KEYWORDS
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1 Introduction

Green tide blooms, particularly those caused by U. prolifera (Ulva prolifera) in the
Yellow Sea, have become a major environmental issue, causing significant ecological and
socio-economic impacts (Ye et al., 2011; Liu et al., 2013). These blooms are fueled by U.
prolifera’s remarkable tolerance to high temperatures and intense light (Cui et al., 2015),
which enables rapid and persistent growth. The decomposition of these algae releases
harmful gases like hydrogen sulfide and ammonia, threatening marine ecosystems, human
health, and coastal economies (Ye et al., 2011; Smetacek and Zingone, 2013). This study
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aims to address this gap by developing a dynamic monitoring
framework, which can serve as a foundation for constructing
real-time monitoring systems for green tide blooms. Remote
sensing, particularly satellite image analysis, offers a promising
solution, but challenges remain in achieving a balance between
spatial resolution, temporal coverage, and processing efficiency.
This study aims to address this gap by developing a dynamic
monitoring framework for real-time detection of green tide
blooms. By leveraging advanced image-processing techniques, the
study seeks to improve the accuracy, scalability, and efficiency of U.
prolifera monitoring, providing valuable insights for timely
intervention and sustainable management of green tides. This
approach not only enhances monitoring but also contributes to
the development of effective strategies for mitigating the
environmental and socio-economic consequences of green
tide blooms.

Satellite remote sensing, in contrast to field surveys, provides
several advantages including wide coverage, rapid data acquisition,
short update cycles, strong timeliness, and cost-effectiveness,
rendering it an effective tool for monitoring and management of
U. prolifera events (Hu et al., 2010; Hu et al., 2017). 10 m resolution
Sentinel-2 imagery is suitable for monitoring smaller features like U.
prolifera (Brisset et al., 2021), but its narrow swath width and coarse
temporal resolution make it unsuitable for large areas like the Yellow
Sea. Imagery from the Moderate Resolution Imaging
(MODIS) has significantly advanced the
assessment and prediction of algal bloom mechanisms (Lee et al.,
2011; Cao et al,, 2019; Hu et al., 2019; Xing et al., 2019). From May to
June each year, U. prolifera blooms rapidly spread across the Yellow
Sea. MODIS imagery, with its near-daily updates and
2,330 km?2 coverage, effectively monitors the entire lifecycle of

Spectroradiometer

these blooms. However, the coarse resolution of MODIS images,
with a maximum spatial resolution of only 250 m, introduces a
degree of error in the extracted estimates of algal biomass (Hu et al.,
2010; Hu et al., 2015). Minimizing this extraction error has emerged
as a bottleneck in optical remote sensing for algae detection.

Various remote sensing threshold methods are used to extract U.
prolifera information, utilizing the unique spectral characteristics of
green algae in visible and infrared bands. Common approaches
include the Normalized Difference Vegetation Index (NDVI) and
the Normalized Difference Algae Index (NDAI) (Shi and Wang,
2009), applicable across multiple satellite sensors. Other methods,
such as the Floating Algae Index (FAI) (Hu, 2009), Virtual-baseline
Floating Macro Algae Height index (VB-FAH) (Xing and Hu, 2016),
and RGB Floating Algae Index (Jiang et al., 2020), are robust to
environmental variations, including thin cloud cover (Xu et al,
2016). However, these optical-based methods are hindered by
challenges such as cloud interference, variable backgrounds, and
the need for meticulous threshold selection, which often requires
expert knowledge (Shi and Wang, 2009; Hu et al., 2010).

While deep learning methods show promise in overcoming
these limitations (Schmidhuber, 2015; Li et al, 2020), existing
studies, such as those utilizing ERISNet for Sargassum algae
extraction in the coastal waters of Mexico and approaches
employing AlexNet for large algae extraction from UAV images,
have made progress in specific environments but still face challenges
in achieving large-scale and accurate monitoring of green tides
(Arellano-Verdejo et al, 2019; Wang et al, 2019). Recent
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advancements, like models designed to detect green tide
information from both SAR and optical images, highlight the
potential of deep learning in this domain, paving the way for
more accurate, scalable, and efficient monitoring (Gao et al,
2022). This study aims to advance the application of deep
learning for dynamic monitoring of U. prolifera, addressing the
gap in real-time, large-scale, and precise green tide detection. It also
focuses on improving the accuracy of U. prolifera extraction from
low-resolution satellite imagery and enabling dynamic daily
monitoring of green tides on a large scale.

The objectives of this paper includ 1) developing of a deep
learning network to more effectively extract information about

green tide from coarse-resolution optical imagery; 2)
implementing of large-scale dynamic monitoring of green tide;
and 3) extracting and analysing of the spatiotemporal

distribution changes of green tide outbreaks in the Yellow Sea
region from 2018 to 2024 on both interannual and intermonthly
scales. The organization of the paper is as follows. Section 2 presents
the study area and related datasets, including optical MODIS data,
Sentinel-2 data, and the training dataset for the deep learning model.
Section 3 introduces the proposed deep learning network model,
encompassing physical model optimization and model performance
verification methods. Section IV details the training of the model
and the research findings. Discussions and conclusions are
presented in Sections 4 and 5.

2 Study area and datasets
2.1 Study area

The study area, situated within the Yellow Sea between 32°N and
37°N and 119°E-124E, is shown in Figure 1. Influenced by the East
Asian monsoon, the climatic regime of the region under study is
characterized by cold, arid winters and warm, humid summers
(Xing and Hu, 2016; Qi et al, 2017; Zhang et al., 2019). The
confluence of these climatic conditions with substantial terrestrial
influences results in the Yellow Sea exhibiting moderate to high
levels of turbidity, which are characteristic of the region (Shi and
Wang, 2009; Zhang et al., 2010; Xing et al, 2019). These
environmental parameters significantly influence the proliferation
of U. prolifera, as its growth dynamics are intricately tied to water
temperature and nutrient availability. Since the onset of the 21st
century, U. prolifera has exhibited periodic summer blooms in the
region, with each event demonstrating extensive areal coverage,
substantial biomass accumulation, and significant long-distance
transportation (Wang et al., 2015). These phenomena have had
profound negative repercussions on the coastal tourism industry,
aquaculture activities, and the integrity of the ecological
environment, underscoring the urgency and relevance of our
research in real-time, large-scale, and precise green tide detection.

Given the influence of the East Asian monsoon, the climate in
this region is marked by cold, dry winters and hot, humid summers
(Xing and Hu, 2016; Qi et al, 2017; Zhang et al., 2019). These
climatic conditions, coupled with the significant terrestrial impact,
contribute to the Yellow Sea’s moderate to high turbidity levels,
which are typical of the area (Shi and Wang, 2009; Zhang et al., 2010;
Xing et al., 2019). Due to these geographical and climatic reasons,
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FIGURE 1
Location of the study area.

the proliferation of U. prolifera, a green tide-forming macroalga, is
influenced, as its growth is closely linked to water temperature and
nutrient availability. Understanding these environmental factors is
crucial for this study, as they provide insights into the conditions
that may favor or inhibit the development of U. prolifera blooms,
which are the focus of our research. Since 2007, U. prolifera has
periodically erupted in this region every summer. Its characteristics,
such as broad coverage, large biomass, and extensive distance
transport (Wang et al, 2015), have severely impacted coastal
tourism, aquaculture, and the ecological environment.

2.2 Datasets

The MODIS satellite, initiated by NASA in 1999, is a prominent
space remote sensing instrument, providing surface spectral
reflectance estimates for 36 bands every 1-2 days. Research
indicates that the peak U. prolifera period in the South Yellow
Sea spans from May to August annually (Zhou et al, 2021). To
extend monitoring to March, EOS MODIS 1B (Terra/Aqua) remote
sensing dataset from March to August 2018-2024 were chosen from
NASA’s data repository (https://ladsweb.modaps.eosdis.nasa.gov/
search). This selection included MOD02QKM and MODO02HKM
products with resolutions of 250 m and 500 m, respectively.
Amongl26 images, those with minimal cloud cover during U.
prolifera blooms from 2018 to 2024 were selected. Data were
processed using SNAP software for reprojection, calibration, and
band synthesis, with MODO02HKM resampled to 250 m.
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Subsequently, sea-land separation was conducted to extract
relevant sea areas.

Sentinel-2, part of the European “Copernicus” program, consists
of two satellites, Sentinel-2A (launched 23 June 2015) and Sentinel-
2B (launched 27 March 2017). These satellites operate on a sun-
synchronous orbit with individual revisit periods of 10 days and a
collective revisit period of 5 days. Sentinel-2 Level-2A (L2A) dataset,
comprising atmospherically corrected bottom-of-atmosphere
reflectance dataset, were acquired from the European Space
Agency’s Copernicus Open Access Hub  (https://scihub.
copernicus.eu/dhus/#/home). Cloud-free images with 10-m
resolution overlapping with the MODIS data dates in the study
area were selected. Red (R), Green (G), and Blue (B) bands were
utilized to generate true-color composite images for subsequent U.
prolifera extraction validation.

In this research, MODIS images were selected to create a
dataset. Initially, bands 1 (red), 2 (near-infrared), and 4 (green)
were chosen, corresponding to R, G, and B channels, respectively,
to generate false-color composite images. Subsequently, these
images were segmented into 512*512-pixel tiles using a sliding
window approach. Within the MODIS images, U. prolifera
exhibits more prominent green patches compared to seawater.
Therefore, Lableme software was employed to label the
segmented images with U. prolifera samples. Out of 608 sets
of MODIS images and corresponding labels, 425 sets were
allocated for training, and 183 sets were reserved for testing.
During training, the dataset was divided into 70% for training
and 30% for validation.
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FIGURE 2

The structure of the WaveNet.

3 Methods
3.1 The structure of the WaveNet model

Figure 2 illustrates the architecture of the proposed model, which
integrates VGG16, BiFPN, and CBAM in a collaborative hierarchy.

Firstly, the Visual Geometry Group 16-layer model (VGG16) is
adopted as the backbone feature extraction network. It transforms the
input MODIS image into multi-level feature maps through four
convolutional and downsampling stages, effectively capturing both
low-level textures and mid-level semantic patterns. Secondly, three
layers of Bidirectional Feature Pyramid Network (BiFPN) are
incorporated to enhance multi-scale feature fusion. BiFPN enables
bidirectional
information from deep layers to guide low-level spatial details, and

information flow, allowing high-level semantic
vice versa. This preserves fine-grained localization critical for identifying
U. prolifera boundaries. Thirdly, four upsampling stages are applied to
restore the spatial resolution of feature maps to match the original
image dimensions. At each stage, a Convolutional Block Attention
Module (CBAM) is introduced to emphasize the most relevant spatial
regions and spectral channels. CBAM refines features by applying
sequential channel and spatial attention, thereby improving feature
saliency and reducing background noise.

This hierarchical design enables VGG16 to focus on core visual
patterns, BiFPN to integrate information across scales, and CBAM
to selectively enhance discriminative features. Together, they
collaboratively improve the model’s accuracy in detecting green
tide areas under complex oceanographic conditions.

Frontiers in Remote Sensing

3.2 Visual Geometry Group 16-layer
model, VGG16

In our study, VGG16 was chosen as the backbone network due
to its proven effectiveness in image feature extraction, particularly
in tasks requiring high accuracy and localization precision, such as
the ILSVRC-2014 ImageNet challenge. Its architectural design,
which includes five sets of convolutional layers followed by max-
pooling layers and three fully connected layers, allows for efficient
feature representation and nonlinearity enhancement while
preserving the perceptual field. The use of 3 x 3 convolutional
kernels and 2 x 2 max-pooling layers increases the network depth,
enabling the detection of intricate patterns critical for identifying
U. prolifera in complex marine environments. VGG16 offers a
deeper structure with more precise feature extraction, which is
crucial for achieving the high accuracy (97.14%) and F1 score
(93.26%) demonstrated in our green tide monitoring framework.
This integration provides a robust foundation for the dynamic
monitoring of U. prolifera, outperforming previous methods in
large-scale green tide detection and classification.

3.3 Bidirectional feature pyramid
network, BiFPN

The traditional VGG16 architecture fails to effectively utilize
multiscale information from the backbone network, as it directly
connects to fully connected layers after the fifth convolutional layer.
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Structure of CBAM: (a) Channel attention module; (b) Spatial attention module; (c) CBAM.

To remedy this, we incorporate the BiIFPN module, which processes
shallow features and integrates multiscale information. BiFPN,
introduced by Google in 2020 within the EfficientDet model
(Tan et al, 2020), employs a weighted bidirectional feature
pyramid network. This network consists of top-down and
bottom-up pathways, enabling the propagation of both semantic
and positional information, as shown in Figure 3.

To address the challenge of accurately classifying U. prolifera at
the pixel level, we introduced a novel modification to the
VGG16 architecture. Specifically, instead of relying on the
traditional fully connected and softmax output layers, we
replaced them with the fusion results generated by the BiFPN
structure. This approach utilizes attribute maps extracted from
multiple stages of the backbone network, capturing spatial and
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contextual information at different resolutions. By adaptively
integrating these multi-scale features, the BiFPN structure
enhances the model’s ability to preserve fine-grained details and
resolve ambiguities in areas with similar spectral characteristics.
This modification significantly improves the network’s feature
representation  capabilities, ensuring  better in
distinguishing U. prolifera from surrounding elements.

Mathematically, the fusion process in BiFPN can be expressed

accuracy

through Equations 1 and 2 as follows:
Fout = Z:’leiFi (1)

exp (a;)
Z;lzl exp(‘xi)

)

i
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where F; is the feature map at the i-th scale from VGG16; w; is the
learned attention weight for scale i; ; is a trainable scalar associated
with each input scale. This formulation ensures that features
contributing most to discrimination are emphasized in the final output.

3.4 Convolutional Block Attention
Module, CBAM

Attention mechanisms allow the network to focus on the most
relevant features of the target and have been extensively capabilities of
convolutional neural networks (Lian et al., 2018), and improve feature
extraction efficiency and accuracy (Ma et al, 2023). In our work,
attention mechanisms are central to enhancing feature deployed in
deep learning applications, like natural language processing and visual
recognition, to enhance the learning extraction and representation,
addressing the challenge of accurately identifying U. prolifera in
MODIS imagery. We employ the Convolutional Block Attention
Module (CBAM), which integrates both channel and spatial attention
mechanisms to refine feature representations dynamically, and its
structure is illustrated in Figure 4. The channel attention component
aggregates information across feature map channels, highlighting the
most relevant spectral features for distinguishing U. prolifera.
Simultaneously, the spatial attention mechanism focuses on critical
spatial regions within each channel, enabling the model to capture
localized patterns associated with green tides.

To further enrich the model’s feature extraction capacity, we
integrate CBAM within the last four upsampling layers of the
network. By processing input feature maps and applying
attention mechanisms, CBAM outputs weighted feature maps,
emphasizing both channel and spatial information. This dual-
focus strategy ensures the preservation of spectral and spatial
nuances, significantly improving classification precision. Such an
approach is particularly effective given the moderate spatial
resolution and complex spectral characteristics of MODIS
imagery, providing a robust framework for green tide detection.

3.5 Accuracy assessment

The U. prolifera extraction method underwent evaluation using
standard metrics: accuracy, precision, recall, F1 score, mIoU, and mPA,
with their calculation formulas detailed in Equation 3. Results were
classified into four groups: True Positive (TP) for accurately identified U.
prolifera pixels, True Negative (TN) for accurately classified background
pixels, False Positive (FP) for background pixels erroneously identified as
U. prolifera, and False Negative (FN) for U. prolifera pixels mistakenly
classified as background. Manual determination of the true value was
based on MODIS false-color images.

[ Accuracy = (TP+TN)/(TP+TN + FP + FN)
Precision = (TP + FP)
Recall = TP/ (TP + FN)
F1 =2 (Precision * Recall) [ (Precision + Recall)

k 3)
mloU = 1/ (k+1)* Z[pii/(ziopij + Z:(:opji - pii)]
i=0

K
mPA = 1/ (k+1)* Z(Pii/g(:opij)
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where denotes predicting i as j, which is a false negative (FN);
denotes predicting j as i, which is a false positive (FP); denotes
predicting i as i, which is a true positive (TP).

3.6 Estimation of Ulva prolifera area

Area of U. prolifera depicts the ground area size, which can be
computed by the product resolution and the

corresponding number of pixels (Cui et al., 2018), as outlined in

of spatial

Formula 4.

Area _GT = PS~+ N,GT (4)

where, Area gy represents the area of U. prolifera in km? PS
represents the ground area size corresponding to one pixel of
satellite imagery in km* N _gr represents the number of detected
U. prolifera pixels.

4 Experiments and results
4.1 Training and experimental settings

The deep learning tasks were performed on a Windows
10 system equipped with an NVIDIA GeForce RTX 3060Ti GPU
boasting 8 GB of storage. CUDA version 11.6 was utilized, alongside
the PyTorch 11.0 deep learning platform for model construction.
The software environment was Anaconda (Python 3.8). Throughout
the training phase, the Adam optimization algorithm (Ronneberger
et al., 2015) dynamically adjusted the network weights and biases.
The parameters are set as follows: f;, = 0, #, = 0.99. The learning rate
(o) of the network is initialized to 0.001, and after every 40 epochs
(with a total training epoch limit set to 250), o is multiplied by a
decay factor of 0.1 to reduce the parameter search space.

4.2 Evaluation of model performance

This paper evaluates the detection performance of U. prolifera
using the WaveNet deep learning model in comparison with the
Normalized Difference Vegetation Index (NDVI) and the Adjusted
Floating Algae Index (AFAI) methods, both widely applied in algae
detection tasks.

The NDVI method, proposed by Rouse et al., leverages the
characteristic spectral reflectance of vegetation in the near-infrared
and red bands. Its adaptability to large floating algae, due to their
spectral similarities with vegetation, makes it a commonly used
approach for algae extraction. The calculation formula for NDVT is
given in Equation 5.

NDVI = (ch,NIR - ch,RED)/ (ch,NIR + ch,RED) (5)

where, and represent the reflectance of the near-infrared band
(860 nm) and the red band (660 nm), respectively.

The AFAI method is designed to reduce the impact of
atmospheric effects, thin clouds, and moderate solar glint. It
employs a linear baseline between adjacent bands to compute
near-infrared reflectance (Fang et al, 2018). It employs a linear
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baseline between adjacent bands to compute near-infrared
reflectance. The formulas are given in Equations 6, 7:

’

AFAI = ch,NIR - ch,NIRl (6)
R’rc,NIRl = Rycrep + (ch,NIRZ - ch,RED) * (ANir1 — )\RED)/ (Anirz — Arep) (7)

where, Ry nir1> Ric RED> RicNir2 represent the reflectance in the near-
infrared band (748 nm), the red band (667 nm), and the long-wave
near-infrared band (869 nm), respectively.

Both NDVI and AFAI have demonstrated effectiveness in
detecting floating algae using satellite imagery, such as MODIS
and Landsat. However, their accuracy is limited by manual threshold
selection. In this study, the WaveNet model, trained on MODIS
imagery, demonstrated superior performance in U. prolifera
detection. Unlike NDVI and AFAI the fixed threshold in
WaveNet (0.5) the model’s optimized weights,
eliminating manual adjustments (Liu et al., 2009; Qi et al., 2016a;
Hu et al., 2019; Zheng et al., 2022). Results show that WaveNet not
only reduces threshold dependency but also achieves significantly

relies on

higher precision and coverage accuracy, highlighting its potential for
dynamic green tide monitoring.

Figure 5a shows the MODIS true color image of the Yellow Sea
from 5 July 2023, where U. prolifera appears in light green. Our
method, alongside the two index methods (NDVI and AFAI),
confirmed that these colored patches are floating U. prolifera
Figures 5b-f. Through our deep learning model, 1,319,611 algal
pixels  were  identified. = When  using  thresholds
of >0 and >0.00000433, the NDVI index method identified
8,445,635 and 921,741 algal pixels, respectively. With
thresholds of (0, 0.02) and (0.0025, 0.0176), the AFAI index
method identified 1,892,314 and 339,040
respectively. Due to differences in threshold selection, both
NDVI and AFAI methods exhibit considerable uncertainty; in

algal pixels,

Frontiers in Remote Sensing

TABLE 1 Accuracy evaluation of the extraction effect.

m Precision  Recall Fl-score Accuracy

WaveNet 92.83 93.69 93.26 97.14
NDVI (Th,) 82.37 88.48 85.32 90.55
AFAI (Th,) 87.92 90.02 88.96 92.76

fact, the algal identification results could vary by orders of
magnitude (Hu, 2009; Liu et al., 2009; Xu et al., 2014; Qi
et al.,, 2016b; Hu et al,, 2019). In contrast, the deep learning-
based model mitigates the potential bias introduced by selecting
different extraction thresholds for NDVI or AFAL

The WaveNet model achieved precision and recall metrics, as
well as a comprehensive F1 score for U. prolifera extraction, all
exceeding 90.0%. The accuracy reached 97.14%, which is 7.6%
higher on average compared to the NDVI method and 4.3%
higher on average compared to the AFAI method. In summary,
our method excels at extracting U. prolifera from MODIS images,
achieving the highest recognition accuracy. The outcomes are
provided in Table 1.

Four areas were randomly selected to compare the segmentation
results of the WaveNet, NDVI, and AFAI methods (Figure 6). In
addition to MODIS false-color images, Sentinel-2 true-color images
with a resolution of 10 m were added as references. Since MODIS
images have a resolution of 250 m, the U. prolifera patches derived
using these methods will appear larger than those in the Sentinel-2
images. Although the selected reference images were taken on the
same day, slight differences in U. prolifera patches may occur due to
different transit times.

In Region 1 (R1), the aim was to compare the extraction
performance of U. prolifera over a large area, while Regions 2
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(R2), 3 (R3), and 4 (R4) focused on smaller areas. In the upper
and lower parts of R1, both the NDVI and AFAI methods
exhibited instances of under-segmentation, while the WaveNet
method provided the most complete extraction of U. prolifera.
However, in R2, both the NDVI and AFAI methods had instances
of under-segmentation in the nearshore area on the upper left,
and the WaveNet method showed misclassification in the
central part.

In R3, both the NDVI and AFAI methods exhibited a
In R4, the
extraction performance of all three methods was relatively

significant amount of under-segmentation.
poor, with instances of under-segmentation in the NDVI and
AFAI methods, and misclassification in the WaveNet model. As
shown in Table 2, the pixel count and area of extracted U.
prolifera using different methods were also compared, with the

same conclusions as depicted in Figure 6.

Frontiers in Remote Sensing

5 Discussion

5.1 Performance evaluation of different
composite models

Group 1: VGG16+(BiFPN + SA). This group integrates the
Spatial Attention (SA) mechanism into the BiFPN
module within the VGG16 framework. The design
focuses on enhancing spatial perception, improving
feature  fusion

efficiency, and minimizing

information loss. However, as shown in the
heatmap comparison (Figure 7), the performance
of this configuration remains limited. The mean
Intersection over Union (mlIoU) reaches only
86.15%, and the F1 score achieves 92.36%, both of

which are lower than those of attention-enhanced
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TABLE 2 The comparison of pixel count and area of extract.

10.3389/frsen.2025.1578841

Pixel number of floating U. prolifera blooms

R1 R2 R3 R4
WaveNet 533448 34977 56010 123146 333.44 21.86 35.01 76.97
NDVI (Th,) 268537 ‘ 10665 ‘ 4233 0 167.84 ‘ 6.67 2.66 0
AFAI (Th,) 315447 ‘ 11159 ‘ 4,233 8,283 197.16 ‘ 6.97 2.66 518

Note: Ay, represents distribution area of floating Ulva prolifera blooms.

dual-dimensional models. This indicates that spatial-
only attention mechanisms may be insufficient for
robust green tide discrimination and comprehensive
feature preservation.

VGGI16+(BiFPN + CBAM). This model group
substitutes the SA mechanism with CBAM while
maintaining other aspects unchanged to compare the
two attention mechanisms. SA emphasizes spatial

Group 2:

information, while CBAM integrates channel and
spatial attention, enhancing the model’s perception of
both types of information. This adjustment aims to
enhance overall model performance. As depicted in
7, the replacement leads to slight
improvements in mloU, Precision, F1 score, and

Figure

Accuracy, ranging from 0.5% to 1%.

VGGlé+skip (BiFPN + CBAM). This group
introduces skip connections to directly transfer
low-level features into upper layers, theoretically

Group 3:

improving  representation  comprehensiveness.
Nevertheless, the model shows decreased accuracy
compared to Group 2. Specifically, the mIoU drops to
83.69%, and the F1 score declines to 90.75%. These
results may stem from redundant or noisy features
introduced via the skip paths, which interfere with
semantic abstraction and  reduce  final
prediction quality.

VGG16+[BiFPN + dual (CBAM + SA)]. This model
incorporates both CBAM and SA as a dual-attention
mechanism. Although it expands the model’s attention
diversity, the complexity
performance degradation. As shown in Figure 7, the
mloU is only 83.50%, and the F1 score is 90.61%. This
suggests that overly complex attention fusion may

introduce conflicts or overfitting, limiting the

Group 4:

additional leads to

effectiveness of feature integration.
VGG16 + 3*BiFPN + CBAM. As the proposed
WaveNet configuration, this group employs a triple

Group 5:

BiFPN structure for deep multi-scale fusion and
integrates CBAM during the upsampling stages.
According to the comparative heatmap (Figure 7),
this model achieves the highest overall performance:
the mIoU reaches 87.79%, and the F1 score improves
to 93.26%, with an accuracy of 97.14%. These results
confirm that deeper fusion layers and attention
refinement significantly enhance both feature
preservation and perceptual discriminability

Frontiers in Remote Sensing

5.2 Monthly spatial-temporal distribution
characteristics of Ulva prolifera

Based on MODIS remote sensing satellite imagery, the spatial
coverage area and impact scope of U. prolifera were extracted for
different years from 2018 to 2024 (Figure 8).

In late May and early June 2018, U. prolifera was first detected in
the shallow waters of northern Jiangsu Province, China. It then
drifted northeastward, affecting the coastal waters of the northern
Yellow Sea. Initially, its coverage area was only 80 km?, but within
11 days, it sharply increased to 164 km?®. Subsequently, U. prolifera
drifted northward, accumulating extensively in the coastal areas of
the northern Yellow Sea by the end of June, reaching its maximum
coverage area and impact range. On July 14, U. prolifera extensively
landed in coastal cities in the northern Yellow Sea. Gradually, its
coverage area decreased and disappeared, with only sporadic patches
remaining in the region by July 18.

In 2019, U. prolifera was first spotted in the southeastern Yellow Sea
on May 9, covering an area of 14 km> Towards the end of May, it
appeared in the shallow waters off the coast of northern Jiangsu
Province, China, before drifting eastward and merging with the
existing U. prolifera in the southeastern Yellow Sea, then moving
northward. By June 23, it reached its peak coverage area of
2,127 km’. In early July, U. prolifera landed in the northern Yellow
Sea, with coverage shrinking to 703 km® before gradually fading away.

In 2020, the observation of U. prolifera was about 2 weeks later
than the previous year. Initially appearing in the southeastern
Yellow Sea on April 29, it covered an area of 18 km” From late
April to late May, it drifted northwestward, steadily expanding its
coverage. By May 27, it reached 219 km?, growing to 302 km* the
next day. Peaking at 950 km” on June 4, it then moved northward,
landing in the northern Yellow Sea by the end of June and
dissipating approximately 2 weeks earlier than in 2019. Overall,
the U. prolifera bloom in 2020 was less severe than in 2019.

In 2021, U. prolifera was first spotted on April 8, initially
appearing in scattered amounts in the southeastern Yellow Sea.
By May 21, it had drifted northward, covering 55 km? in the shallow
waters off northern Jiangsu. Throughout June, U. prolifera
proliferated extensively in the central Yellow Sea. From June
19 to July 10, a severe U. prolifera bloom affected coastal cities in
the northern Yellow Sea, peaking at an extent of 3,534 km”. By mid-
July, the bloom gradually dissipated, with coverage shrinking to
31 km? by July 19. Compared to previous years, 2021 experienced
the largest coverage area, longest duration, and most severe U.
prolifera disaster, with the widest coverage area four times that of the
previous year.
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Heatmap of accuracy metrics for different model combinations.

In 2022, U. prolifera was first spotted on May 27 in the
southeastern Yellow Sea, a month and a half later than the
previous year. By June 25, it had reached coastal cities along the
northern Yellow Sea, peaking at a coverage area of 548 km” before
gradually dissipating over the following month. Compared to 2021,
the U. prolifera coverage area significantly decreased in 2022,
suggesting a relatively mild U. prolifera bloom overall.

On 16 May 2023, scattered U. prolifera patches were spotted in
the shallow waters of northern Jiangsu, covering just 4 km®. Within
2 weeks, the area surged to 276 km” by June 3, drifting northward
thereafter. By the end of June, U. prolifera had proliferated massively
in the central Yellow Sea, peaking at 2,170 km? on June 22, four
times larger than in 2021. By July 24, it had dissipated significantly,
leaving only 8 km? scattered off Qingdao and Yantai. Overall, the U.
prolifera bloom in 2023 ranked second only to 2021 in severity.

On 18 May 2024, sparse patches of U. prolifera were initially
detected in the shallow waters off northern Jiangsu and in the
southeastern Yellow Sea, spanning an area of merely 17 km’.
Within just 10 days, however, U. prolifera proliferated rapidly
from the northern Jiangsu shallows to the northern Yellow Sea,
with its coverage expanding by a factor of 13. By mid-June, the U.
prolifera extent had decreased to approximately 128 km*. On June
26, it experienced a notable resurgence, reaching a peak area of
454 km?, before gradually dissipating by mid-July. In summary, the
U. prolifera bloom in 2024 demonstrated significant improvement,
with a shorter duration and the smallest maximum coverage
observed in the past 7 years.

5.3 Yearly spatial-temporal distribution
characteristics of Ulva prolifera

Figure 9 illustrates the temporal and spatial dynamics of green
tide (U. prolifera) coverage area in the Yellow Sea from 2018 to 2024.
The trends indicate that peak green tide coverage varies significantly
each year. For instance, 2021 shows the highest recorded green tide
coverage, with a peak area exceeding 3,500 km?, observed between
June and July. In contrast, 2024 reflects a noticeable improvement,
with substantially reduced peak coverage. The annual progression
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generally follows a similar pattern: a gradual increase in early year,
peaking around late June, and decreasing in July.

This temporal pattern, along with area fluctuations, aligns with
existing research suggesting that annual environmental conditions,
such as temperature, nutrient availability, and ocean currents,
significantly influence the extent and duration of green tides (Qi
et al, 2016a; Zhang et al, 2019). Our identification results
corroborate these findings, demonstrating that years with higher
peak coverage often correspond to elevated sea surface temperatures
and increased nutrient inputs, potentially driven by anthropogenic
activities and seasonal upwelling. Furthermore, the spatial
distribution of U. prolifera mirrors the prevailing ocean currents,
which likely facilitate its dispersal across the Yellow Sea. These
insights underscore the interplay between biological processes and
physical drivers in shaping green tide dynamics, highlighting the
importance of integrating environmental monitoring with algae
detection systems.

The comprehensive analysis of U. prolifera’s yearly distribution
patterns from 2018 to 2024 (Figure 10) reveals significant fluctuations in
the intensity and extent of U. prolifera blooms over the past 7 years.
Notably, 2021 experienced the most severe bloom within the study
period, with the coverage area peaking of approximately 3,534 km’on
June 23. In contrast, 2022 marked a milder bloom and the lowest peak
area of roughly 548 km”. However, in 2023, the bloom coverage area
surged to the second-highest value in nearly 7 years, underscoring the
ongoing need for robust and consistent management strategies to
mitigate green tide impacts.

This consistency, along with the observed peak times, typically
around late June, aligns with previous findings on U. prolifera bloom
cycles and suggests that these blooms may be influenced by
recurring environmental conditions, such as temperature and
nutrient this period. Notably, the
unprecedented bloom in 2021, with its record-high coverage, was

availability,  during
strongly linked to the impact of typhoons. Typhoons enhance
nutrient enrichment in coastal waters by stirring sediments and
promoting upwelling, creating ideal conditions for U. prolifera
growth. This exceptional event underscores the significance of
incorporating extreme weather events into bloom analyses. The
temporal alignment of peak coverage across years, including the
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Figures (a—g) present the spatiotemporal distribution patterns of U. prolifera in the Yellow Sea during the period from 2018 to 2024.

typhoon-induced surge in 2021, highlights the importance of  events, more effective prediction and management strategies can be
targeted monitoring in late June to better anticipate and manage  developed to mitigate the impact of green tides (Liu et al., 2009; Cui
bloom intensity. By integrating factors such as extreme weather et al,, 2018; Fang et al., 2018).
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Duration and maximum coverage area of U. prolifera in the Yellow Sea from 2018 to 2024.

6 Conclusion

U. prolifera, known for forming green tides, poses significant
ecological threats in coastal regions. We propose a tailored WaveNet
deep learning model for U. prolifera detection using MODIS images,
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taking advantage of their extensive coverage and high data collection
frequency. WaveNet employs VGG16 as its backbone feature extraction
network and integrates BiFPN feature pyramid network, replacing fully
connected layers and softmax outputs, to enhance feature extraction
across various resolutions. We also introduce a lightweight CBAM
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attention mechanism to filter background noise, ensuring more
accurate and efficient feature extraction. With 608 annotated sample
pairs, WaveNet achieved a detection accuracy of 97.14%, precision of
92.83%, recall of 93.69%, and an F1 score of 93.26%, significantly
outperforming the NDVI and AFAI methods by mitigating
uncertainties arising from threshold selection discrepancies. Through
analyzing U. prolifera bloom dynamics in the Yellow Sea from 2018 to
2024, we confirmed a significant increase in U. prolifera area every June.
Through our analysis, we observed that the maximum coverage area of
U. prolifera exhibited an oscillating trend, initially increasing and then
decreasing on an interannual basis. Furthermore, our research identified
the southeastern Yellow Sea as the source of U. prolifera blooms in 2019,
2020, 2021, 2022, and 2024. These findings provide valuable insights
into the early detection, prevention, and control of green tide formation,
especially in identifying key geographical sources and underlying factors
contributing to U. prolifera.
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