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Spatiotemporal patterns in soil moisture play a critical role in the near-surface
energy balance in permafrost regions, yet soil moisture detection in periglacial
environments is complicated by highly heterogeneous terrain conditions. We
integrate ground-based and spaceborne microwave methods to investigate
patterns and controls on surface soil moisture (SSM) in boreal and arctic
permafrost environments of Alaska. Soil sampling, geophysics, and probing
revealed heterogeneous SSM with significant fine-scale (1 m) variability by
topographic setting (p < 0.001) and pedological characteristics (p = 0.01) in
arctic tundra, and by land cover type (p < 0.001) in low-relief boreal forest. SSM
spatial autocorrelation was greatest below 20 m thresholds demonstrating the
adequate spatial resolution for capturing natural SSM heterogeneity at these sites.
SMAP L-band was tested for coarse (9 km) soil moisture detection in boreal forest
but demonstrated low representativeness from limited ground-based
measurements. Finer resolution (~20 m) relative SSM derived from Sentinel-1
C-band time series in arctic tundra more closely represents the noted SSM
autocorrelation length and is explored for visualizing SSM landscape variability.
Satellite detection biases created by high-profile tussocks and thick organic soil
horizons identified with probe-SSM reveal the need for site-specific soil
information in satellite-SSM interpretations. Lastly, time-series of C-band
backscatter distributions in boreal forest demonstrated potential for tracking
soil thaw onset beneath residual spring snowpack. These results illustrate the
complexity of SSM monitoring in periglacial environments and the potential for
C-band backscatter and L-band SMAP for large-scale tracking of SSM in these
environments.
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1 Introduction

In permafrost-affected regions the spatiotemporal variability in
soil freeze-thaw and moisture content are important influences on
the surface energy balance and thermal conductivity of seasonally
thawed “active layer” soils (Jorgenson et al., 2010; Liljedahl et al.,
2011; Zwieback et al., 2019) and mosses (Yoshikawa et al., 2004).
The extent of downward thaw propagation is mediated each year by
thaw season duration (Jorgenson et al., 2010), surface water content
(Shiklomanov et al., 2010), and soil moisture content (Bonan, 1989),
together impacting active layer thickness (Hinkel and Nelson, 2003;
Jorgenson et al., 2010; Shiklomanov et al., 2010) and permafrost
degradation (Jorgenson et al., 2020). In addition to thermal
conditions, soil moisture content can critically impact
biogeochemical cycling by influencing microbial activity (Barros
et al., 1995; Holden et al., 2015; Borowik and Wyszkowska, 2016;
Bian et al., 2022) and soil redoximorphic conditions (Zhang and
Furman, 2021), with relevance for soil carbon respiration (Cook and
Orchard, 2008) and chemical weathering (Barker et al., 2014; Barker
et al., 2023) in permafrost environments.

Soil moisture distribution is a complex function of multiple
landscape and pedophysical properties, biological influences, and
weather conditions, that each vary in character by location (Moran
et al., 2004; Barrett and Petropoulos, 2013). Due to the
heterogeneous terrain conditions that abound in periglacial
environments (i.e., cryoturbation, tussocks, patterned ground,
catenary shifts; Siewert et al., 2021), soil moisture conditions can
vary considerably with scale (i.e., micro and macro-scale
heterogeneity) and timing (i.e., weather events; freeze-thaw stage)
(French, 2017; Siewert et al., 2021). Assessments of spatiotemporal
controls on soil moisture in these regions therefore require spatially
encompassing, and sometimes multi-scale, approaches for capturing
natural variability across terrain features and seasons. Remote
detection approaches for mapping surface soil moisture (SSM)
are regularly applied, deriving SSM from spaceborne microwave
C (~5.55 GHz) and L (~1.4 GHz) -band Synthetic Aperture Radar
(SAR) based on backscatter coefficients (e.g., Pulliainen et al., 2004;
Barrett et al., 2009), inversion techniques (e.g., Dubois et al., 1995),
interferometric approaches (e.g., De Zan et al., 2013), and fusion
with in situ data (Huang et al., 2020).

Multiple overlapping land surface factors influence radar
backscatter intensity including the ground surface roughness,
local incidence angle, and interactions with vegetation canopy.
However, backscatter changes related to volumetric soil moisture
can create a particularly strong signal discernible from other
scattering sources (Zakharov et al., 2020). Given the contrast in
dielectric properties of liquid water (ε ~ 80) and dry soil (ε ~ 6),
methods for estimating SSM from radar backscatter rely on the high
attenuation of microwaves by liquid water to retrieve volumetric soil
moisture (Barrett et al., 2009). Multiple retrieval algorithms for SAR-
soil moisture have been proposed and are commonly used for
moisture mapping in agricultural applications (e.g., Balenzano
et al., 2010; Vreugdenhil et al., 2022) and wildfire post-burn soils
(e.g., Bourgeau-Chavez et al., 2007). However, many of these
retrieval approaches assume relatively static contributions to
backscatter by plant volume scattering, making applications less
suited for the typical phenology of plant species that characterize
permafrost ecosystems. Short temporal change detection techniques

can filter noise from vegetation scattering and remove the effects of
surface roughness to optimize SSM retrievals (Punithraj et al., 2020;
Zakharov et al., 2020), offering particular advantages for
applications in densely vegetated permafrost environments. Other
microwave applications in permafrost regions involve
interferometric SAR (InSAR) interferogram differencing for
change detection applications (Kääb, 2008; Liu et al., 2012; 2014;
Schaefer et al., 2015; Parsekian et al., 2021) but these applications
must consider depth-distributed water content throughout the
active layer to optimize outputs. Multiple studies have addressed
methodologies for modeling or quantifying soil moisture
throughout the active layer, including integration of ground
penetrating radar (GPR, Parsekian et al., 2021), pedotransfer
functions (Bakian-Dogaheh et al., 2022), and soil physics models
(De Zan et al., 2013). However, complete description of soil moisture
characteristics throughout the active layer is outside of the scope of
the present study.

In order to identify the spatiotemporal controls on SSM in densely
vegetated permafrost regions, we combined field measurements with a
Sentinel-1 C-band time-series approach to isolate backscatter
distributions related to soil moisture in permafrost environments of
Alaska. These results were assessed alongside coarser-scale (9 km)
observations from the Soil Moisture Active Passive (SMAP) L-band
sensor to provide a multi-scale perspective on SSM characterization in
boreal forest and arctic tundra permafrost environments. The character
of SSM at the sub-pixel scale was first investigated using a suite of field-
based measurements integrating soil sampling, in situmeasurements of
surficial organic horizon (upper 6 cm) and composite organic-mineral
soil material (upper 20 cm) volumetric water content (VWC) with
handheld transmission line oscillation (TLO) probes, continual
measurements of permittivity with buried multi-frequency time-
domain reflectometry (TDR) sensors, and geophysical velocity
profiling with GPR. The composition of ground-based measurements
revealed crucial insights to SSM relationships with soil and substrate
heterogeneity. We synthesized the ground-based and spaceborne
detections to discuss controls on SSM at varying spatial scales in
study locations of the boreal forest and arctic tundra biomes and
used ground-based measurements to discuss potential SSM detection
biases related to soil heterogeneity and material-specific moisture
conditions. Ground-based results were used to inform Moran’s Index
(I) (Moran, 1950) in quantifiably assessing spatial autocorrelation of
SSMat each site to identify important scales that spatial controls operate.
In assessing spatial variability in SSM we specifically aimed to address:
(1) the importance of topography and biotic controls on SSM in boreal
forest and tundra permafrost environments; (2) spatial autocorrelation
in SSM and the optimal resolution for detecting natural SSM spatial
variability in the study environments; (3) the sensitivity of remote
sensing detections to different land features and soil stratigraphic
units; and (4) temporal controls on SSM specific to permafrost
affected soil profiles in the study areas.

2 Materials and methods

2.1 Study location and meteorological data

Ground validation sites were selected at Imnavait Creek in the
Arctic Foothills of the central Brooks Range in northern Alaska to

Frontiers in Remote Sensing frontiersin.org02

Baxter et al. 10.3389/frsen.2025.1579261

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1579261


represent arctic tundra of the continuous permafrost region
(Jorgenson et al., 2008), and above the U.S. Army Cold Regions
Research and Engineering Laboratory Permafrost Tunnel near Fox,
Alaska to represent boreal forest of the discontinuous permafrost
region (Jorgenson et al., 2008). Areas of interest (AOIs) are displayed
in Figure 1 and were designated at each site to focus ground-based
collection efforts on capturing anticipated soil moisture
heterogeneity related to differences in vegetation cover or
topographic setting. Each AOI was instrumented with a local
meteorological ClimaVUE monitoring station (Campbell
Scientific, Logan, Utah) and SoilVUE soil temperature and
permittivity logging station (Campbell Scientific).

Instrumentation at Imnavait Creek was positioned at a well-
drained location on the ridgeline of the moraine/drift material
embracing Imnavait Creek (A in Figure 1 at 149.3003514°W,
68.6169978°N), contrasting a second site situated in the poorly
drained soils of the mid-slope region of this feature (B in
Figure 1 at 149.3112691°W, 68.6118197°N). Although the valley
bottom may serve as the optimal endmember in contrast to the
ridgeline, the slope region was preferred to avoid inducing soil
degradation in the waterlogged lowland soils and prevent artefact
SSM. Local meteorological data for the 2024 thaw season was
collected at each of the Imnavait Creek AOIs with the
ClimaVUEs while longer term (9/2022 to 10/2023) precipitation
and air temperature data were accessed from the University of
Alaska Fairbanks Environmental Data Center (2024). The AOIs at
Imnavait produce soil profiles that resemble USDA classified soils
nearby: (i) the Arctic Foothills-Arctic Lowland Floodplains
producing ~20 cm of mucky peat above sandy loam in the
lowland positions; and (ii) -Arctic Upland Glaciated Hills and
Plains associated with ~20 cm of partially decayed organic

material overriding silt loam that grades to gravelly loam (Soil
Survey Staff, 2024) on the sloping moraine feature.

Instrumentation at the Permafrost Tunnel were located in closed
canopy black spruce forest (C in Figure 1 at 147.6196870°W,
64.9507707°N) and open canopy spruce woodland grading to
tussock clearing (D in Figure 1 at 147.6100398°W, 64.9500277°N)
to represent endmember soil moisture environments for low-relief
boreal forest. Soils in the Permafrost Tunnel AOIs are grouped into
the USDA classifications of Saulich Peat producing ~40–50 cm of
moss peat in contact with silt loam, and the Minto-Chatanika
Complex featuring ~40 cm of partially decayed organic material
(O horizon) atop silt loam.

2.2 Soil moisture probes

We applied numerous soil permittivity sensors including
handheld TLO HydroSense II (Campbell Scientific) and Stevens
HydraGO (Stevens Water, Portland, Oregon) probes, and buried
TDR SoilVUE and ECH2O (Decagon Devices, Inc.) probes to
determine soil VWC. Amidst the primary soil constituents of
organic material, inorganic material, air, and water, the liquid
water dominates short-term variance in the dielectric permittivity
of a soil. Therefore, time-domain electromagnetic measurements
allow for estimation of VWC based on the travel time of a
transmitted electrical signal over a known distance constrained
by waveguides. Travel time and distance are described in terms
of the wave period (τ) and wave guide length (L). These parameters
physically relate to relative dielectric permittivity (ε) of the probed
medium as a ratio of the speed of light (c) in Equation 1 (Overduin
et al., 2005).

FIGURE 1
Map of the study locations showing the AOls of lmnavait ridgeline (A) and slope (B) the Permafrost Tunnel black spruce forest (C) and tussock
flats (D).
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τ � L√ ε0 ke( )
c

(1)
Here, ε0 is defined as the permittivity of free space and ke as the

dielectric constant of the medium. For the TLO probes, an electrical
signal is transmitted along a transmission line and the wave
oscillation period is measured as a function of the dielectric
constant of the surrounding medium. For more detailed
information on TLO and TDR sensors, see Yoshikawa et al.
(2004) and Mane et al. (2024). A probe-specific permittivity
calibration was performed for the TLO probes to relate the
measured period with empirical permittivity values ranging from
ε = 1 in air to ε = 80 in water using an open-air reading, complete
water submersion reading, and multiple readings between. All
translation of permittivity to VWC (for both handheld probes
and GPR) were performed with the transformation polynomial
for organic-rich Alaskan soils developed by Engstrom et al.
(2005) to enable comparison of VWC across platforms.

TLO probes were used between 6 June and 18 July 2024, to
investigate sub- and intra-pixel spatial variability of SSM at ~ 1 m
collection intervals. Soil water content was measured for the upper
20 cm of soil at both the boreal forest and tundra sites with the
HydroSense II, and for the upper 6 cm of soil at the arctic tundra site
with the HydraGO. Probes were inserted vertically into the ground
surface to calculate bulk VWC for the respective sensitive volume of
each instrument, with special care taken to avoid compression of the
ground surface and distortion of the natural substrate volume. The
HydraGO VWC is derived from a bulk soil volume of 50–75 cm3

while the HydroSense II measures an approximately 180 cm3 zone.
Positioning information was obtained by built-in GPS for each
system, with accuracy of ± 1–5 m for the HydroSense II,
and ± 2 m for the HydraGO. Each probe measurement was
recorded alongside observations of the probed medium (e.g.,
tussock, moss, sedge-covered topsoil, etc.) and catchment
position including riparian, valley bottom, toe slope, slope, slope
shoulder, and ridgeline at Imnavait Creek. Collection points were
organized within 100 × 100 m grids, with measurements collected at
every meter along the grid boundaries and along three bisecting
lines: 2 at the quarter points and 1 at the midpoint of the grid
boundary lines (Supplemental Figure 1). Sampling locations were
marked in the field using GPS and ground measurements before
data collections were performed. Soil excavation revealed that in
most cases, the 6 cm probe (HydraGO) terminated in moss or
organic soil while the 20 cm probe (HydroSense II) incorporated
some range of mineral soil with the overlying organic horizon. The
most common exceptions were thin organic layers where the 6 cm
probe encountered mineral soil, such as along the ridgeline at
Imnavait Creek.

TDR-based measurements from the SoilVUE sensors were
coded to continuously measure soil VWC at defined depth
intervals extending throughout the active layer. For improved
probe-moss contact in the low-density feathermoss substrate
above the Permafrost Tunnel, ECH2O probes were installed, and
the output mV were calibrated with the function developed in
Overduin et al. (2005). Measurements in shallow soils were
corrected for temperature influence on permittivity which
showed negligible influence from temperature on the measured
VWC values. An analysis of variance (ANOVA) was performed
to evaluate the significance of variance in measured VWC between

different landscape settings (slope and catchment regions), land
cover types (i.e., spruce forest versus tussock clearing), and substrate
types (i.e., moss versus tussock).

2.3 Ground penetrating radar

Geophysical investigations of near-surface permittivity were
performed with GPR common midpoint (CMP) surveys at a
5–10 m spatial scale. GPR CMP surveys measure the travel times
of electromagnetic wave pulses as a function of raypath length to
estimate the wave propagation speed within a medium. This wave
velocity measured in the CMP survey geometry allows for evaluation
of bulk permittivity properties in the near surface. We performed
these surveys using two shielded, 900 MHz antennas with a
SIR4000 control unit (GSSI; Geophysical Survey Systems Inc.,
Nashua, NH). Instrument settings were tuned to 180 ns scan
length with 2048 samples per scan to optimize temporal
resolution of the radar traces. The incremental scan positions of
CMP gathers permit multiple pathways for a radar pulse to travel
between the antenna and a reflection point allowing for velocity
stacking that is observable as coherence in semblance diagrams
(Neal, 2004). Semblance diagrams were used to pick regions of high
coherence to generate a stacking velocity profile for the survey
locations. Stacking velocity profiles were then converted to
interval velocities using Dix (1955) inversion. Soil interval
velocities obtained from this method were checked against
tabulated velocities for the observed soil media in the scan points
to ensure accurate picking was performed. The soil material
velocities, as a function of dielectric permittivity, were used to
calculate soil VWC with the polynomial function of Engstrom
et al. (2005) to enable comparison with TLO probes.

2.4 Soil sampling and seasonal thaw depth

Soil samples were mainly exhumed to inform interpretations
of the geophysical data, while samples of various material types
were collected in known volumes and processed for VWC via
gravimetric methods. Samples were excavated with a shovel or
AMS corer (Art’s Manufacturing and Supply Inc., American Falls,
Idaho) and texture classes were determined on mineral samples by
hydrometer. Soils at each field site were classified into material
types including: (1) moss (both live and undecayed dead fascicles
and capitulum); organic soil consisting of (2) unsaturated,
undecayed organic material (fibric) including undecayed, non-
moss materials, or (3) unsaturated, partially decayed organic
material (including both hemic and sapric organic material)
containing identifiable plant materials in addition to
decomposed material of no longer identifiable source taxa, or
(4) peat, defined here as saturated, dead organic material ranging
from fibric to sapric; (5) mineral soils consisting of organic-rich
loam, loam, or gravelly loam at the tundra site (for soil material
definitions, see Soil Survey Staff, 2024). Organic soils were
typically in direct contact with underlying mineral soil at both
sites. In some instances, coarse surficial organic material graded to
mucky peat at the tundra site. Other substrate samples consisted of
fibric tussock peat or organic-rich mineral soil under deciduous
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land cover in the boreal forest site. Soil stratigraphy results
gathered from soil sampling are displayed in Supplemental
Tables 1, 2.

Seasonal thaw depth was monitored continually at each site with
SoilVUE temperature sensors at 10 cm vertical spacing (reported
instrument accuracy of ±0.15°C). Higher spatial density
measurements were collected manually with a steel thaw probe
marked with gradations at regular depth intervals. The thaw probe
was manually inserted through thawed material until hitting firm
refusal, then the corresponding depth from ground surface to refusal
was noted as the thaw depth for the time of survey. Special attention
to probe sound and resistance were used to determine whether
refusal was caused by frost, or by rigid features such as rock or gravel
above the frost table. Where possible, these interpretations were
optimized by soil stratigraphy information gathered with the AMS
soil corer.

2.5 Spatial autocorrelation analysis

Spatial autocorrelation of SSM was characterized with the global
Moran’s index (I) (Moran, 1950) at each site to illustrate the scales
that local controls on SSM operate in each location, and therefore
suggest important detection resolution for characterization of SSM
natural variability in the study environments. Global Moran’s I was
performed on the TLO probe results in ArcGIS software (Esri, 2024)
to evaluate spatial clustering or grouping of SSM versus random
variability in a multidirectional context. An automated weighting
matrix was applied to weigh the correlation of respective data points
based on a distance threshold ranging from 2.5 m to 75 m at
increments of 2.5 m to determine the importance of scale in spatial
clustering at each site. Results are normalized so that I > 0 represents
positive spatial autocorrelation or greater clustering of SSM while
values closer to 0 represent randomness or no spatial
autocorrelation. The Moran’s I coefficient at each distance
threshold is defined in Equation 2:

I � n

SO

∑n
i�1 ∑

n
j�1 wi,j zi zj

∑n
i�1zi2

(2)

where zi is deviation of an attribute for feature i from its mean
(xi − �X), wi,j is the spatial weight between features i and j, n is the
total number of features, and SO is the aggregate of all spatial weights
given in Equation 3:

SO � ∑
n

i�1
∑
n

j�1
wi,j (3)

In instances where immediately adjacent collection points
produced overlapping coordinates (within the inherent precision
range of the integrated GPS), averaging was performed to reduce
erroneous extreme outputs from the Moran’s analysis.

2.6 C-band SAR soil moisture estimation

To estimate SSM for the study locations, C-band SAR imagery
from Sentinel-1 (European Space Agency, 2024) was acquired for all
observation dates (12-day revisit interval) spanning January to

August 2024 for Imnavait Creek and the Permafrost Tunnel.
Radiometrically terrain corrected (RTC) 20-meter resolution
images were downloaded from the Alaska Satellite Facility’s
HyP3 pipeline (Hogenson et al., 2020). HyP3 preprocessing
included a sigma naught calibration, speckle filtering, and
orthorectification.

A relative SSM estimation was performed following Zakharov
et al. (2020) using Equation 4:

SSM � σ040° i, t( ) dB[ ] − σ0dry,40° i( ) dB[ ]{ }
S i( ) (4)

FIGURE 2
Sensitivity (S) of Sentinel-1 backscatter coefficient to soil
moisture spatial variations [dB] at the Imnavait Creek site. Locations of
SoilVUE and ClimaVUE stations for the ridge and slope sites are
marked by points A and B, respectively.
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where θ is the reference incidence angle (40°), t is time, σ0(θ,t) is the
backscatter coefficient at the angle θ and time t, σ0dry(θ) is the
backscatter coefficient of completely dry conditions, and S(θ) is the
sensitivity of the backscatter coefficient to soil moisture.

Since varying incidence angles affect the backscatter values of
SAR images all pixels were normalized to 40° incidence angle
backscatter values using Equation 5:

Br � a*S + b*σ
0
mean dB[ ] + c (5)

where the Br value represents the backscatter changes at a
specific location related to changes in incidence angle from 40°

using Equation 6.

σ040 dB[ ] � σ0θ dB[ ]–Br θ – 40( ) (6)

with a, b, c values taken from Zakharov et al. (2020) of -0.01541,
-0.00133, 0.03643.

The driest conditions were determined using the Sentinel-1
acquisition with the lowest backscattered values while the wettest
conditions were based on the scene with the highest backscatter
values on a pixel-basis throughout the AOI.

The sensitivity of backscatter to soil moisture (S(θ) in Equation
7) was determined by subtracting the backscatter values at the
wettest time (SSM = 1.0) from the driest time (SSM = 0.0)
period to determine the change in backscatter from completely
saturated to completely dry soil.

S i( ) � σ0wet,40° i, t( ) dB[ ] − σ0dry,40° i( ) dB[ ]{ } (7)

Sensitivity S spatial distribution at Imnavait Creek is provided in
Figure 2 and represents the local backscatter dynamic range of
3–20.5 decibels. S depends generally on surface roughness and
vegetation (Zakharov et al., 2020) and was lowest at our site
along roadbeds, densely vegetated riparian zones, and steep
slopes. The representative tundra soil surface, the topic of study
here, demonstrated relatively high S across the study site.

The relative SSM content ranges from digital numbers of 0 =
completely dry soil, to 1 = completely saturated soil. Zakharov et al.
(2020) noted that backscatter associated with water bodies
artificially expanded the index, however, large water bodies were
absent at our field sites and surface water features were below
detection resolution. Meteorological and TDR soil moisture data
were acquired from the Toolik Field Station and the ClimaVUE/
SoilVUE stations for comparison with satellite SSM estimations.
Landsat-derived NDVI images were used to indicate changes in
vegetation volume throughout the observation period.

2.7 L-band SAR soil moisture estimation

The Soil Moisture Active Passive (SMAP) instrument launched
in 2015 contains a passive radiometer for monitoring soil moisture
twice daily at 0600 and 1800 local solar time (reported as morning
and afternoon observations). The radiometer instrument has a
1.41 GHz frequency with HV polarization operating at 9 km
enhanced spatial resolution and a relative accuracy of 1.3 km.
SMAP’s measurements are typically sensitive to the upper ~5 cm
surface layer of soil, with measurements recorded for only thawed
and non-water covered pixels. Specifically, the SPL3SMP_E

collection 5 dataset was used for dates on or before October
2023, while the collection 6 dataset was used for proceeding
dates due to availability (O’Neill et al., 2018). The morning and
afternoon retrieved soil moisture estimates were separately collected
in volume fraction units. They are provided at 9 km resolution. The
retrieval quality flag indicated acceptable or unacceptable data
quality (i.e., frozen state). The data were acquired and processed
corresponding to our 2023 and 2024 volumetric soil moisture field
measurements for the aforementioned study sites. The SMAP data
were analyzed in Google Earth Engine.

3 Results and discussion

3.1 Sub-pixel controls on SSM from in situ
measurements

TLO data collected at approximately 1 m resolution revealed
variance of 6.8% VWC for the upper 20 cm of soil across land cover
types in the boreal forest site. Surface VWC were statistically
different under dense (p < 0.001) and sparse (p < 0.001) spruce
canopies relative to tussock clearings which likely reflects the
importance of canopy coverage for blocking solar irradiance or
may be a factor of species-specific evapotranspiration between the
vegetation types (Bonan, 1989). Although differences in mean VWC
were statistically different across all land cover types (p < 0.001,
Table 1), mean VWC varied modestly, from 9.4% (standard
deviation 0.8%) in the closed black spruce to 8.6% and 8.9%
under sparse or absent canopies of woodlands or tussock
meadows, respectively. The subtlety may stem from substrate
specific VWC and nearly continuous Sphagnum and feather moss
coverage across the vegetation types. Substrate comparisons
demonstrated a mean VWC of 9.6% ± 0.8% [± standard error
(StdE), n = 19] for the peat-composition of tussocks that deviated
insignificantly (p = 0.1) from that of moss substrate 10.61% ± 0.3%
(n = 380). However, moss VWC were associated with high standard
deviation (6.2%) relative to tussocks (3.5%). This surface
inhomogeneity of moss is likely compounded by the prominence
of Sphagnum in the study area, as its morphological and cellular
structure lead to greater water retention at the top of the plant,
creating anisotropy (Yoshikawa et al., 2004). Disturbance that
exposed mineral soil at the ground surface produced the highest
VWC of all substrate types, with mineral soil in disturbed meadows
and thermokarst features producing mean VWC of 30.7% ± 9.8%
(StdE) and 33.8% ± 12%, respectively.

At the arctic tundra site, surface VWC measured manually
throughout the catchment varied significantly by topographic
setting (p < 0.001), as mean VWC generally decreased with
increasing elevation and distance from Imnavait Creek. Both the
HydroSense and HydraGO probes reported the highest values for
the riparian soils, where the effects of soil waterlogging are
noticeable in a primary ground cover shift from Sphagnum to
Eriophorum. Variance in measured VWC of the upper 20 cm
was highest in this region of the valley bottom (standard
deviation 15.1%, n = 134), where micro-scale differences in
substrate covaried with water content. Topographically low-lying
polygonal ground associated with ice wedges exhibited the highest
mean VWC of 78.3% ± 2.6% (StdE) for the upper 6 cm and 65% ±
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2.2% for 20 cmwheremassive ground ice appeared to be degrading. A
gradient in VWC variance from toe slope (standard deviation 15.5%,
n = 88) to slope shoulder (standard deviation 9.8%, n = 437) of the east
catchment flank likely relates to topographical effects on soil drainage
such as the depth to coarse soils with increased hydraulic conductivity.
This is supported by an inverse relationship between the depth to
gravel-bearing soil units versus elevation in the catchment noted from
soil sampling and AMS coring, which likely promotes greater soil
drainage (Saxton et al., 1986) in the slope region. The importance of

topography on soil moisture in tundra environments has been noted
elsewhere (Aalto et al., 2013) but can be site-specific, as shown in
spatial comparisons across Northern Europe (Kemppinen et al.,
2023). Unlike the boreal forest site, VWC of moss substrate varied
significantly from that of tussocks at 2% significance in the tundra
study site, which creates microscale VWC heterogeneity
superimposed on topography-forced variability.

Soil velocities obtained from CMP surveys were translated to
VWC and are primarily addressed in relevance to surface soils here,

TABLE 1 Statistical results of VWCmeasured with handheld TLO probes including means and standard deviations listed according to landscape setting and
substrate type for Imnavait Creek (top) and land cover type and substrate type for the Permafrost Tunnel (middle). Selected ANOVA results are displayed for
each site (bottom).

Imnavait Creek

Landscape
Setting

Valley Bottom Toe Slope Slope Slope
Shoulder

Ridge Riparian

Mean St Dev
(standard
deviation)

Mean St
Dev

Mean St
Dev

Mean St
Dev

Mean St
Dev

Mean St
Dev

HydraGO 6 cm 31.57 14.72 28.9 15.46 21.33 11.98 18.17 9.81 24.3 12.06 45.74 18.33

HydroSense 20 cm 47.56 15.11 38.42 14.25 29.07 13.65 28.66 12.48 27.0 12.69 61.25 14.92

Substrate
Type

Tussock Polygonal Feature Moss Mineral Soil

Mean St Dev n Mean St
Dev

n Mean St
Dev

n Mean St
Dev

n

HydraGO 6 cm 28.6 10.67 115 78.3 9.71 14 22.77 13.32 1,197 55.15 12.95 31

HydroSense 20 cm 32.29 13.86 115 64.87 8.05 14 33.72 17.18 1,197 34.92 13.2 31

Permafrost Tunnel

Land Cover
Type

Dense Black Spruce Sparse Black
Spruce

Mixed
Decid/
Conifer

Tussock
Clearing

Ecotones Sedge
Meadow

Mean St Dev Mean St
Dev

Mean St
Dev

Mean St
Dev

Mean St
Dev

Mean St
Dev

HydroSense 20 cm 9.37 0.86 10.86 6.41 8.94 2.41 8.63 1.19 10.91 6.76 30.67 19.66

Substrate
Type

Tussock Moss Mineral Soil

Mean St Dev n Mean St
Dev

n Mean St
Dev

n

HydroSense 20 cm 9.6 3.53 19 10.61 6.22 380 32.23 18.99 8

ANOVA

Location Test F p
value

Imnavait Landscape Setting 74.6 **< 0.001

Imnavait Substrate Type 4.8 *0.01028

Permafrost Tunnel Land Cover 7.3 **< 0.001

Permafrost Tunnel Substrate Type 2.7 0.105

*indicates significance at a = 0.05

**indicates significance at a <0.01
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since the permittivity-VWC model transformation relies on a
calibration that encompasses organic horizons and underlying
mineral soil (Engstrom et al., 2005). The CMP-derived VWC
demonstrates considerable variability at the 5–10 m spatial
resolution across the Imnavait slope region in conjunction with a

highly heterogeneous soil profile (Figure 3 and Supplemental
Table 2). Surface VWC (upper 10 cm) at the 5–10 m scale
demonstrated a standard deviation of 6% from a calculated mean
of 17% ± 1.3% (StdE), with a standard deviation of 5.8% (mean =
16.1% ± 1.2%) in the upper 20 cm, contrasting the standard

FIGURE 3
CMP radargrams (a), semblance diagrams (b), velocity profiles (c), and % water content profiles (d) for select survey sites at lmnavait Creek. Soil
profiles (e) were determined by soil cores.
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deviation of 13.65% and 29.1% mean noted at the 1 m scale with the
HydroSense II. The higher VWC deviation detected with the finer
sampling resolution suggests characterization of surface VWC at

lower resolution captures less of the natural variability present in the
tundra and in this instance resulted in a potential under-realization
of SSM heterogeneity. Saturated conditions of the valley bottom led

FIGURE 4
lmnavait slope and ridge soil moisture profiles from the SoilVUE loggers (upper 5 panels) and local precipitation from the ClimaVUE stations (bottom
panel). Shading indicates the intervals of precipitation that are discussed in the text.
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to GPR signal attenuation and reduced confidence in picking
stratigraphic contacts for this region (CMP 51–53), however the
average ground velocity of ~0.08 m ns-1 is typical for waterlogged

peat conditions, or proved faster where silt inclusions were noted
(CMP 50). The relationships between SSM spatial variance and scale
are explored further with spatial autocorrelation analysis
in Section 3.3.

3.2 Temporal controls on SSM in permafrost
environments

The noted SSM spatial relationships are likely to change
throughout the thaw season in permafrost regions as seasonal
frost and permafrost act as aquicludes impeding downward soil
infiltration. The vertical extent of top-down thaw can therefore
impact SSM in shallower soil layers (Rieger, 1963), especially

FIGURE 5
Permafrost Tunnel soil moisture profiles from the SoilVUE logger
in the tussock clearing (upper 5 panels) and precipitation from the
Fairbanks airport (bottom panel).

FIGURE 6
Depth-distributed soil temperatures for lmnavait (red) slope (top)
and ridge (bottom), and Permafrost Tunnel (blue) tussock clearing
(top) and black spruce forest (bottom).
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following precipitation events, as revealed by buried TDR sensors at
Imnavait Creek (Figure 4) and the Permafrost Tunnel (Figure 5).
Additional influence from landscape setting at Imnavait Creek
introduces a spatial component to this temporal trend. In the
slope region at Imnavait Creek, shallow sensors within the top
30 cm demonstrated sensitivity to weather events, such as an
increase in VWC centered on June 20 (Figure 4) caused by a
period of rain and snow precipitation (Toolik Field Station;
Imnavait ClimaVUE; field observation). The downward
infiltration of moisture from this event is constrained within the
seasonal thaw layer with the frost table serving as an impermeable
confining layer, as evidenced by the frozen conditions at 40 cm and
deeper (Figure 6), where there is no sensitivity to the soil wetting
experienced above. Progression of top-down thaw to 40 cm depth by
the end of June permitted deeper soil infiltration as evidenced by a
coincident increase in VWC of the 40 cm depth. Deeper water
infiltration is reflected in rising VWC at the 50 cm depth with
downward thaw reaching these depths by July. This downward trend
in moisture infiltration is likely to continue until reaching the
maximum thaw depth and impedance to further infiltration at
the permafrost table.

The temporal variation in vertical VWC differed considerably at
the ridgeline site, where soil infiltration reached the 50 cm depth
(Figure 4) earlier in the thaw season (mid-June), enabled by a faster
rate of top-down thaw (Figure 6) in the coarser textured soils
(Bonan, 1989) of the ridgeline. The temporal pattern
demonstrates the interplay of vertical thaw and pedophysical
controls on temporal SSM variability, where the confinement of
downward soil infiltration by the seasonal frost table can limit
porewater access to deeper, more permeable soil layers.

Similar temporal patterns in VWC with thaw depth were
noticeable at the Permafrost Tunnel (Figure 5), although the
seasonal, top-down thaw rate was accelerated by its more
southerly latitude. Soil observations for the greater Fairbanks area
reveal the tendency for shallow permafrost to drive high water tables
and active layer saturation in the boreal forest (Rieger, 1963;
Bonan, 1989).

3.3 Spatial autocorrelation of SSM

The spatial autocorrelation structure of SSM data were assessed
with global Moran’s I and displayed a negative relationship with
distance weighting threshold (Figure 7), indicating that SSM
clustering was greater at smaller spatial scales in the study sites.
SSM values were spatially clustered at scales of 75 m or less (p <
0.05), with the highest positive spatial autocorrelation achieved at
distance thresholds under 20 m. This relationship reflects the scale
where the observed spatial controls on SSM, such as land cover and
topography, are most relevant in these environments (Western
et al., 2004).

Spatial clustering was generally highest in the tundra site over all
distance thresholds (mean I of 0.10–0.38) relative to more random
values in the boreal forest (mean I of 0.07). Some degree of
autocorrelation at the tundra site is likely related to precipitation
events on July 8, 14, and 17 affecting antecedent conditions at the
time of probe measurements on July 9, 15, 17, and 18. Spatial cluster
of VWC for the upper 20 cm was higher than the top 6 cm on the
same acquisition dates at the tundra site, likely due to deeper soil
horizons having less exposure to ambient weather conditions.
Additionally, probe contact with near saturated silts or peat
beneath a variable vegetation layer likely contributes to the lower
spatial variation observed in the 20 cm VWC, while the 6 cm
detections terminate in a rhizosphere alternating between
tussocks, other sedges, and mosses of varying wettability and
air exposure.

Spatial clustering at the boreal forest site was related to
vegetation type, with clustering at 12.5 m or less averaging at I =
0.22 under black spruce canopy coverage compared to I = 0.11 in the
tussock clearing. Due to heterogeneity in spruce coverage over small
spatial scales (~20 m) at the site, distance thresholds greater than
20 m incorporated SSM values of small clearings within the black
spruce AOI and wooded groves within the tussock AOI which
homogenized the I values at each site. A comparison of distance
threshold versus Z-scores (Supplemental Figure 2) represents
deviations from randomness and yielded notable peaks in either

FIGURE 7
Moran’s I as a function of lag distance for the boreal forest site (greens) and the arctic tundra site (blues), including multiple acquisition dates at the
tundra site.
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series at 10 m in the black spruce and 7.5 m in the tussock clearing,
demonstrating the scales at which the controls on spatial clustering
are most pronounced under each land cover type. An additional
peak in Z-score was noticeable at 67.5 m in the tussock site, perhaps
demonstrating a lack of randomness at this scale due to
greater averaging.

Increased spatial weighting distances (>20 m) resulted in
increasingly comparable I values across land cover types
(Permafrost Tunnel) and time (Imnavait) as such thresholds
result in homogenization of the SSM clusters. Plots of distance
threshold versus z-score did not produce notable peaks for the
tundra site, however the greatest disparity was captured in the 2.5 m
distance threshold for all sites, and Table 2 compares the differences
in clustering noted at 2.5 m and 20 m thresholds. Therefore, intra-
site variability in measured tundra SSM is significant within the
landscape controls noted in the previous section and likely relate to
micro-topographical controls and variations in ground cover.
Together, these results suggest a spatial resolution of 20 m or less
may prove ideal in capturing spatial heterogeneity in SSM of
Alaska’s boreal forest and arctic tundra biomes.

3.4 Soil material biases

Comparisons of TLO probe data that share the same
permittivity-VWC transformation revealed a weak linear
correlation (r2 = 0.13) between VWC of the upper 6 cm
(HydraGO) to that of the upper 20 cm (HydroSense II) on
17 July 2024 at Imnavait Creek. The latter yielded a higher
average VWC of 33.9% ± 0.5% (StE) for the top 20 cm (n =
1,373) than the mean of 24.6% ± 0.4% for the upper 6 cm. Some

level of this discrepancy may relate to inconsistencies in
measurement error between the respective instruments, but a
weak correlation might be expected regardless due to interactions
between the probed depth and the soil profile. The deeper probed
zone of the HydroSense II was confirmed by soil sampling to reach
wetter mineral loam or humic material while the 6 cm probe largely
terminated in the surface, live, moss layer. A lab test on
22 volumetric samples of moss (mean = 14.0%) and silt (mean =
51.6%) within the top 20 cm of the soil profiles at each site revealed
significant (p = 0.01) difference in VWC between these common
stratigraphic units. Additionally, surface VWC at 6 cm was notably
higher on average for tussocks (mean 28.6% ± 1.0%) than moss
(mean 22.8% ± 0.4%) regardless of catchment setting in the arctic
tundra, unlike the boreal forest site. The difference is likely related to
the sole use of the HydroSense II at the boreal forest site since the
longer waveguides pass through tussock peat to incorporate mineral
soil into its bulk VWC calculation.

These results suggest any surficial (<20 cm) penetration of the
radar signal expected from microwave frequencies (i.e., Srivastava
et al., 2006) will likely experience influence from tussock moisture
and can be less representative of soil VWC where tussock cover is
dense. Furthermore, shallow microwave penetration likely yields
SSM values that are most reflective of organic horizon VWC in
permafrost environments due to their characteristically thick
organic horizon development. This organic material layer
demonstrated potentially greater sensitivity to ambient weather in
the Moran’s analysis and weaker clustering relationships.
Additionally, the spatially inhomogeneous soil profile thicknesses
observed at each site (Supplemental Tables 1, 2) indicate that the
occurrence of different soil materials within the surface radar
penetration zone (ranging from centimeters to 1 m for C-band)

TABLE 2 Output Results for the Global Moran’s analysis of spatial autocorrelation in surface moisture values measured with calibrated TLO probes. Results
are shown for 2.5 m and 20 m distance thresholds.

Land cover Data source Distance threshold Date Moran’s I Variance z-score p-value

Arctic tundra HydraGO 6 cm 2.5 m 7.9.2024 0.1497 0.00044 7.1909 0.00000

Arctic tundra HydraGO 6 cm 2.5 m 7.15.2024 0.4169 0.00123 11.9262 0.00000

Arctic tundra HydraGO 6 cm 2.5 m 7.17.2024 0.5601 0.34837 1.2878 0.19780

Arctic tundra HydraGO 6 cm 2.5 m 7.18.2024 0.1795 0.00661 2.2586 0.02391

Arctic tundra Hydrosense II 20 cm 2.5 m 7.17.2024 0.4890 0.00209 10.7399 0.00000

Arctic tundra Hydrosense II 20 cm 2.5 m 7.18.24 0.3517 0.00829 3.91473 0.00009

Boreal forest tussock Hydrosense II 20 cm 2.5 m 6.10.2024 0.1430 0.01571 1.22867 0.2192

Boreal forest spruce Hydrosense II 20 cm 2.5 m 6.10.2024 0.1020 0.01561 0.91432 0.36055

Arctic tundra HydraGO 6 cm 20 m 7.9.2024 0.1125 0.00004 17.5234 0.00000

Arctic tundra HydraGO 6 cm 20 m 7.15.2024 0.3362 0.00010 33.6091 0.00000

Arctic tundra HydraGO 6 cm 20 m 7.17.2024 0.3445 0.06681 1.5086 0.13139

Arctic tundra HydraGO 6 cm 20 m 7.18.2024 0.1613 0.00028 9.7848 0.00000

Arctic tundra Hydrosense II 20 cm 20 m 7.17.2024 0.4041 0.00018 29.9231 0.00000

Arctic tundra Hydrosense II 20 cm 20 m 7.18.24 0.3218 0.00041 16.0133 0.00000

Boreal forest tussock Hydrosense II 20 cm 20 m 6.10.2024 0.0915 0.0007 3.6617 0.00025

Boreal forest spruce Hydrosense II 20 cm 20 m 6.10.2024 0.0876 0.00075 3.4012 0.00067
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is inconsistent across space. Consequently, microwave detected SSM
variation may be affected by varying soil material profiles
irrespective of landscape or vegetation controls. This illustrates
the importance of collecting local soil information to more
accurately inform interpretations of remotely sensed SSM in
these environments.

3.5 20 m relative SSM with C-band SAR

Relative SSM products were derived from C-band images
acquired throughout the frost-free season for the arctic tundra
site at Imnavait Creek (Supplemental Figure 3). The spatial
resolution of the relative SSM output can be controlled with the
averaging filter (Zakharov et al., 2020) and was optimized at ~20 m

resolution for the study site based on the spatial autocorrelation
results. The SSM products were compared to meteorological data
and in situ monitoring from TDR stations for validation (Figure 8).
Across acquisition dates, estimated SSM reveals generally high
values in topographic lows and along creek channels (likely due
to both waterlogged soils and greater vegetation density) with lower
values along ridgelines in agreement with handheld probe
measurements, together mirroring the importance of topography
as a spatial control on SSM at the site. SSM variability is noticeable
across the representative tundra ground surface and demonstrates
no clear pattern but may reflect spatially inconsistent detection
biases from inhomogeneous soil and substrate features noted in the
previous section. Bedrock outcrops produced low SSM estimates in
correspondence with low sensitivity S. Temporal controls on SSM
were superimposed on the noted spatial relationships whereas the

FIGURE 8
Selected SSM output scenes and lmnavait meteorological data from the ClimaVUE ridge (A) and slope (B) stations. Relative mean SSM color range
representing 1 indicate saturated conditions while color representing 0 indicate dry conditions.
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observed patterns between SSM and topography were subdued
following pronounced precipitation events, such as a 6-day period
of rain detected at the ClimaVUE station on July 3–8 (Figure 8) due to
indiscriminate surface wetting. The high sensitivity of SAR SSM to
discrete precipitation events and decrease in SSM variability with
increased wetness have been noted elsewhere (Charpentier and
Groffman, 1992; Zakharov et al., 2020).

Meteorological data from the Toolik Weather Station and the
local ClimaVUE were used to understand temporal changes in
relative SSM related to weather conditions. In the Arctic Foothills
summer, seasonal snowmelt, topography, and soil thermal status
proved to be major controls on temporal variability in SSM at the
study area. Low pixel values representing the virtual absence of
liquid SSM (or frozen soil conditions) persisted until a major
snowmelt event on May 14–17 correlating with above-freezing
soil temperatures (Supplemental Figure 4) created thawing
conditions and produced elevated SSM values across the scene by
May 28. Low relative SSM was concentrated in topographic highs
due to runoff. SSM continued to increase across the scene until June
2 as the snowpack diminished. However, SSM values remained
relatively high into mid-June, likely due to poor downward soil
infiltration, as observed in the TDR sensors, that was confined by the
minimal active layer thaw (Figures 4–6).

As discussed in the previous section, site-specific terrain features
such as tussocks and tundra foliage must be considered in SAR SSM
outputs. Near continuous tussock coverage at the tundra site likely
leads to the detection of high tussock VWC and the occlusion of the
ground surface between tussocks. Field observations confirmed that
soil between tussocks can be significantly wetter where frost boils
occur, or drier where moss occurs. Therefore, any signal tendency
towards tussock VWC may lead the SSM product to be over-
representing the spatial homogeneity of SSM. Additionally,
illustration of the spatial patterns in SSM are generally biased by
the product output resolution. Resampling in permafrost scenes
hypothetically averages micro-scale differences in SSM related to
small (meters-wide) thaw features, although these were mainly
constrained to riparian areas in the Imnavait AOIs. Avoidance of
surface roughness effects with the time-series approach may be
undermined by short term surface roughness change related to
active layer freeze and thaw, which has been noted in tundra
environments of Siberia (Högström et al., 2014). However, the
early thaw season timing of this investigation likely precludes any
significant roughness changes induced by thaw. Lastly, despite the
absence of shrubs, low tundra vegetation can impart highly random
polarimetric responses (Zwieback and Berg, 2019), although it is
difficult to assess the degree of vegetation influence on the relative
SSM products (Zakharov et al., 2020) for the tundra study location.

3.6 9 km soil moisture estimation with
L-band SAR

A time-series of SMAP data was used to derive coarse-scale SSM
at 9 km resolution for the Permafrost Tunnel site. SMAP was
selected for the boreal forest application as the L-band frequency
typically achieves greater canopy penetration than C-band (Konings
et al., 2017; El Hajj et al., 2018) and has proven advantageous over
other L-band products for a majority of global vegetated land surfaces

(Kim et al., 2021). Initial comparison of the SMAP-retrieved SSMwith
TDR-measured VWC averaged across 8 sensors dispersed in black
spruce forest (Supplemental Figure 5, TDR data from Vas et al., in
review) revealed low correlation for the acquisition dates spanning
October 2022 to November 2023 (r2 < 0.1). SMAP retrievals in boreal
forest of Saskatchewan, Canada showed increased correlation with
VWC of deeper mineral horizons (Ambadan et al., 2022), but at our
site SMAP showed the greatest linear correlation with sensors deployed
in mineral soil at 15 cm soil depth or shallower (r2 = 0.08), and
correlation decreased at greater stratigraphic depths (r2 < 0.01). The
general inconsistency between the SMAP-SSM and TDR-VWC likely
reflect bias related to inherent incongruities between the 9 km
resampling resolution and in situ data representativeness for intra-
pixel variability in land cover-specific SSM observed in Section 3.1.

The spatial averaging required to optimize coherence for the
SMAP product results in a composite SSM that encompasses
contrasting soil moisture environments of the boreal forest. The
limited coverage of 8 TDR sensors within the large 9 km scene best
represent the closed black spruce forest at the scale of natural SSM
heterogeneity (i.e., increased autocorrelation <20 m), while other
vegetation types encompassed in the SMAP scene such as spruce
woodland, tussock clearings, bogs, and disturbed or thermokarst
sites are not as well represented with TDR. Under-estimation of SSM
in the SMAP product is visualized in Figure 9 and quantified by a
RMSE of 0.158 and unbiased RMSE (uRMSE) of 0.092, which is
comparable to uRMSE of SMAP 9 km products in other boreal forest
sites in Alaska (Jääskeläinen et al., 2025) but is, however, in excess of
the standard deviation of 0.07 in our SMAP results. This bias likely
decreases the SMAP-TDR correlation and may result from the
increased SSM beneath the well-represented closed black spruce
canopies. Therefore, the performance of the SMAP product may be
better represented by greater diversity of in situ VWC coverage that
captures more of the vegetation heterogeneity occurring within the
9 km SMAP image. However, validation of the SMAP 9 km grid is
outside of the scope of this study, and this finding illustrates the
major challenge in applying coarse resolution imagery for analyzing
the natural scale of spatial SSM patterns in heterogeneous
environments with significant SSM spatial variation and an
autocorrelation distance of 20 m.

FIGURE 9
Time series of 9 km averaged SMAP and TDR measured
volumetric soil moisture for the upper 10 cm of soil. Error bars for the
ECH2O sensor present the 0.03 m3/m3 instrument error. Missing data
reflects frozen soil conditions.
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Distortion of SMAP results from vegetation biases are difficult to
correct for and can be compounded by temporal variability in
vegetation. For instance, an offset in the retrieved SSM from the
measured soil VWC may be associated with errors in the vegetation
correction that lead to time-variable biases (Zwieback et al., 2018). In
this study, the SMAP product overestimated SSM relative to the
TDR sensors in early spring, during leaf budding, but transitioned
into underestimated SSM throughout the summer and autumn
months. However, leaf loss in autumn did not seem to reduce
the magnitude of SSM underestimation. The full time series of
SMAP compared to TDR sensor VWC showing the ±0.03%
instrument error is provided in Figure 9. Other sources for low
correlation may stem from inherent pedophysical differences
between the study site and the SMAP core calibration sites
(Whitcomb et al., 2020).

Given the noted correlation bias in TDR coverage that
represents the natural scale of SSM heterogeneity, finer spatial
resolution may yet prove useful for characterizing the natural
SSM variability in boreal forest at our site. The enhanced SSM
clustering at 20 m or less suggested by Moran’s I indicate the
importance of higher spatial resolution for realizing the natural
spatial heterogeneity of boreal forest SSM. Future applications of
higher resolution (3–50 m) UAS-based L-band sensors (Stern et al.,
2024) may improve detections of SSM patterns in boreal forest.

3.7 Using Repeat C-band to track soil thaw

Polarimetric detection of soil thaw with C-band has previously
been demonstrated by a change from surface-like scattering in

frozen soils, to volume scattering in thawed soils (Jagdhuber
et al., 2014). However, this approach assumed no contribution
from vegetation cover on volume scattering, whereas vegetation
influence is expected in our boreal forest site. Other approaches use
autumn images to represent thawed soil conditions (Cohen et al.,
2018; Cohen et al., 2021). Because snow cover tends to occur early in
our study location, we focused on backscatter signals of spring thaw
and vegetation green-up. To visualize potential differences in
volume backscatter related to soil moisture from that associated
with vegetation, backscatter in VH and VV polarizations for a time-
series of Sentinel-1 images spanning January to July 2024 were
viewed alongside in situ soil VWC and NDVI. The results
(Figure 10) reveal an early rise in VWC of the upper 10 cm of
soil in April, which is congruent with field observations of early soil
thaw occurring beneath a residual snowpack of 38.6 cm on April 18.
Thaw probing at this time confirmed the near complete thaw of the
surface moss layer, with frost retreating to the mineral soil contact.
Although early snowpack degradation and meltwater percolation to
the ground surface is likely contributing to the SSM values, soil thaw
is required for moisture infiltration and TDR detection of the VWC
increase. Backscatter intensities compared for three orbits spanning
January to July show a correlated increase in VH scattering for two
of three orbits with this initial SSM signal, while VV shows less of a
response. The residual snow cover and the dependence of plant leaf-
out on snow disappearance for interior Alaska (Kawashima et al.,
2021; 2023) lead to low NDVI for this interval, indicating that the
observed peaks in backscatter are related to this early soil thaw
signal. The results demonstrate the potential for time-series C-band
backscatter in identifying soil thaw onset beneath the
spring snowpack.

FIGURE 10
Sentinel- 1 backscatter change at VV and VH polarizations at three orbit geometries, each compared with NDVI and TDR soil VWC for the Permafrost
Tunnel site. NDVI values are normalized to the maximum seasonal value for the scene.
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Marked increases in backscatter, soil VWC, and NDVI patterns
concurred in early May with onset of the spring freshet, when solar
conditionswere optimized for snowmelt and photosynthetic activity. The
initial rise in spring NDVI is commonly attributed to snow
disappearance prior to deciduous leaf-out in Alaska’s Arctic
(Swanson, 2021), and similarly budburst tends to immediately follow
snow disappearance in interior Alaska (Kawashima et al., 2021;
Kawashima et al., 2023). Therefore, volume scattering from the snow-
exhumed vegetation is likely reflected in both backscatter distributions at
this stage in the thaw season, with the concomitant peak in SSM from
meltwater runoff likely contributing significant scatter simultaneously.
The culmination complicates any parsing of the importance of one
scatter source from the other after snow disappearance.

Later in the thaw season, peaks in measured SSM correlate to
precipitation events and vary irrespective of plant phenology as NDVI
remains elevated from peak leaf volume through this interval.
Deviations in backscatter intensity from this sustained peak in
NDVI do not correlate with measured SSM, indicating substantial
influence from vegetation volume scattering into the summermonths.

4 Conclusions

The spatial variability and autocorrelation of SSM were investigated
with relevance to site specific controls in permafrost environments of
Alaska. Multi-platform ground-based measurements revealed significant
fine-scale (~1 m) variability in SSM by landscape setting (p < 0.001) and
substrate type (p = 0.01) in an arctic tundra site, and by land cover type
(p < 0.001) in a low-relief boreal forest site. Temporal variability in these
patterns was related to active layer thaw extent which varied with site-
specific soil properties, and by weather events such as snowmelt and
precipitation. Spatial autocorrelation analysis revealed that the operating
scales of the spatial controls vary from 2.5 m to 20 m clustering. These
results suggest a spatial resolution of 20 m or less, and multi-scale
mapping capabilities, are important for capturing the natural complexity
of SSM spatial structure in Alaskan boreal forest and arctic tundra
environments.

Comparisons of VWC for the upper 6 cm versus 20 cm with soil
stratigraphic units revealed the potential for any shallow signal
penetration from spaceborne microwave (<6 cm) to largely represent
VWC of moss or organic soil in both boreal forest and arctic tundra
where thick organic horizons are characteristic. Furthermore, dense
cover of high-profile tussocks may create a detection bias towards VWC
of the tussock peat which was generally wetter than adjacent substrate
material. Therefore, site specific information on soil properties and
substrate types are essential for improving the interpretation of remotely
sensed SSM in these environments.

Relative SSM from C-band time series agreed with the ground-
based SSM characterizations and meteorological data for the arctic
tundra site. The time-series approach offers an appropriate means for
reducing the effects of surface roughness and vegetation on SSM
estimations in this study environment. Daily SSM estimated from
coarse-resolution SMAP produced low correlation with TDR
measured SSM (r2 = 0.08) and an uRMSE of 0.092, reflecting
limited spatial representation by in situ data and spatial averaging of
areas with differing SSM controls in the 9 km SMAP product. However,
correction of potential time-dependent vegetation biases and the
optimization of validation sensor coverage in high latitude

environments may improve SMAP application for the coarse
assessment of boreal forest SSM heterogeneity. Lastly, C-band time
series demonstrated the potential utility for parsing backscatter
distributions related to soil thaw beneath a residual spring snowpack
(before deciduous leaf-out). Backscatter intensities compared for three
orbits showed a correlated increase in VH scattering for two of three
orbits with the initial spring SSM signal that correlated with field
observations of sub-snowpack soil thaw, while VV showed less of a
response. Further expansion on Sentinel-1 backscatter time-series
applications to this end could enable C-band application for long-
term tracking of active layer thaw initiation relevant for permafrost.
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