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Vegetation serves as a vital carbon sink, crucial for regulating CO2 andO2 levels in
the atmosphere. However, the declining health of vegetation can contribute to a
rise in greenhouse gas emissions. Utilizing remote sensing satellite imagery, we
can effectively monitor global changes in vegetation health in near-real time.
Various vegetation indices have been developed to monitor specific biochemical
properties. Yet, many of these indices fall short in detecting health deterioration
caused by multiple stressors such as excessive heat, salinity, and water scarcity.
Indices that are primarily sensitive to single-leaf parameters may not fully capture
the complex stress responses in vegetation. To address this limitation, we
introduce a novel vegetation health indicator: the Sentinel-2-based
Vegetation Health Index (SVHI). This index is designed to detect stress-
induced changes in chlorophyll, water, and protein content. It was validated
using global sensitivity analysis (GSA) with physical models and laboratory-based
spectroscopy experiments. We have performed a global sensitivity analysis
utilizing radiative transfer models to support SVHI’s performance. It indicates
strong sensitivity to variations in chlorophyll and water content. Following GSA, a
lab-based spectroscopy experiment was conducted to detect the effect of water
stress and chlorophyll stress on the vegetation indices. In experiment performed
on water stress, SVHI demonstrated five and 1.1 times greater sensitivity than
NDVI and NDMI respectively in the early stages of water loss (150%–85% leaf
water content), confirmed by Tukey’s HSD test (p < 0.05). It was also observed
that NDVI failed to show a statistically significant change during this period (p =
0.63). The experiment performed on the effect of chlorophyll revealed that NDMI
could not detect chlorophyll degradation, while SVHI retained sensitivity
throughout the chlorophyll decline. Further, we have performed a corn crop
phenology analysis using Sentinel-2 data to confirm the effectiveness of SVHI.
The analysis revealed that the proposed index successfully distinguishes
characteristic changes in vegetation over time. In addition, as compared to
NDMI, SVHI differentiates non-vegetated areas, such as water bodies, from
vegetated areas. Finally, a temporal analysis of the vegetation indices reveals
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that SVHI is highly correlated with both NDVI (R2 � 0.958) and NDMI (R2 � 0.993),
indicating its capability to capture variations in both greenness and moisture
content.
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vegetation health index, vegetation index, global sensitivity analysis, radiative transfer
model, spectroscopy, leaf water content

1 Introduction

Plant stress is defined as any adverse condition or substance that
hinders or disrupts its metabolism, growth, or development
(Lichtenthaler, 1998). Plant stress can be classified into two
distinct types: biotic and abiotic stress. Any living organism, such
as insects, pathogens, and other herbivores, causes biotic stress.
Abiotic stress is instigated by external non-biological factors in the
plant’s environment, encompassing water availability, temperature
fluctuations, salinity levels, and other pertinent factors. As noted by
Sharma et al. (2012), abiotic stress caused by limiting photosynthesis
leads to increased Reactive Oxygen Species (ROS) production. This
heightened ROS presence can diminish the protein levels within
plants (Dumanović et al., 2021). Abiotic stresses in plants can cause
damage and reduced growth and sometimes may lead to the death of
plant tissues (Coatsworth et al., 2023). These stresses occur on
molecular and cellular levels, but the changes derived in plants
can appear over an extensive range of spatio-temporal scales
(Coatsworth et al., 2023).

Under normal physiological conditions, a significant portion
(approximately 80 − 90 %) of the light energy absorbed by
chlorophyll during photosynthesis is converted into chemical energy
through photosynthetic quantum conversion (Lichtenthaler, 1996).
This process is crucial for the plant’s energy production, resulting in
the formation of glucose (a sugar). Additionally, some absorbed energy
is dissipated through alternative pathways, such as heat emission
(around 5 − 15 %) and chlorophyll fluorescence (0.5 − 2 %)
(Lichtenthaler, 1996). However, under abiotic stress conditions, the
efficiency of photosynthetic quantum conversion declines, meaning the
plant’s capacity to use light energy for photosynthesis is diminished. As
a result, there is an increase in both heat emission and chlorophyll
fluorescence (Lichtenthaler and Rinderle, 1988; Schweiger et al., 1996).

The alteration of absorbed energy pathways during abiotic stress
conditions leads to stress-induced damage to the plant’s
photosynthetic apparatus (Lang et al., 1996). Monitoring these
changes allows researchers to assess the impact of stress on
plants and better understand how they respond to adverse
environmental conditions. For instance, water stress negatively
affects various physiological functions in plants, particularly their
photosynthetic capacity (Osakabe et al., 2014). Prolonged water
stress significantly reduces plant growth and productivity. This
stress directly impacts photosynthesis by causing stomatal
closure, which decreases the availability of CO2 (Flexas et al.,
2006; Chaves et al., 2009), and induces changes in photosynthetic
metabolism (Lawlor and Cornic, 2002).

Remote sensing satellite images are valuable tools for detecting
vegetation stress, as each vegetation element absorbs energy at
different wavelengths. Researchers can assess vegetation health by
monitoring the absorption features of key leaf components, such as

chlorophyll and water. Optical remote sensing in the visible near-
infrared (VNIR) and shortwave infrared (SWIR) regions has been
extensively used to detect these absorption features, particularly
those related to chlorophyll and leaf water content. Spectral features
like the red edge are also crucial for tracking changes in the
biochemical properties of plants. Physiological stressors often
simultaneously affect both chlorophyll and water content in leaf
tissue, making it challenging to disentangle these two
interdependent factors (Hazrati et al., 2016). Several studies have
documented significantly reduced chlorophyll content across
various crops under drought stress conditions (Gholamin and
Khayatnezhad, 2011; Farooq et al., 2009).

2 Previous work

In recent decades, numerous vegetation indices have been
developed using spectral absorbance information to serve specific
purposes (Gao, 1996; Huete, 1988; Gitelson, 2004). However, these
indices have been applied in many different contexts due to their
sensitivity to various vegetation parameters. For instance, several
indices used to monitor vegetation stress or health, such as the
Normalized Difference Vegetation Index (NDVI) (Wen et al., 2017;
Fokeng and Fogwe, 2022; Pettorelli et al., 2005; Roerink et al., 2003),
the Normalized Difference Moisture Index (NDMI) (Wilson and
Norman, 2018; Gu et al., 2008), the Global Vegetation Moisture
Index (GVMI) (Swathandran and Aslam, 2019), and the Enhanced
Vegetation Index (EVI) (Paliwal et al., 2019; Samanta et al., 2010),
are predominantly sensitive to a single leaf parameter. A single leaf
parameter typically refers to a specific attribute or characteristic of a
leaf that can be measured or modeled, such as leaf chlorophyll
content or leaf water content. However, the best indicator of
vegetation health would be the one that is sensitive to multiple
parameters simultaneously (Wang et al., 2019).

For instance, the NDMI correlates with canopy water content
and is particularly useful for detecting vegetation moisture stress in
vegetation (Hardisky et al., 1983). It is important to note that high
NDMI values may result from water bodies or vegetation with high
moisture concentrations. According to Wilson and Sader (2002),
NDMI is more effective than NDVI in detecting subtle disturbances
in vegetation. Based on radiative transfer theory, canopy reflectance
in the NIR and red bands can be used to estimate the Leaf Area Index
(LAI) (Knyazikhin et al., 1998). Since NDVI also uses bands in the
NIR and red regions, there is a direct relationship between NDVI
and LAI. However, NDVI tends to saturate at higher LAI values
(dense vegetation canopies) (Tao et al., 2021; Wang et al., 2025).

According to Zhao et al. (2024), drought conditions diminish
the effectiveness of NDVI in monitoring gross primary productivity
(GPP). Additionally, the performance of NDVI is influenced by
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factors such as moisture availability, soil background, and surface
texture (Huete et al., 1985). While NDVI can capture variations in
LAI across time and space (Wang et al., 2019), it does not fully
represent the overall health of the vegetation.

A study by Crespo et al. (2025) highlighted that in
Mediterranean olive orchards, NDMI alone was insufficient to
fully characterize vegetation stress under prolonged drought
conditions, suggesting the need for integrating additional indices
for comprehensive monitoring. Vegetation indices are commonly
used in two major applications: (1) estimating biochemical and
biophysical parameters and (2) serving as proxies for vegetation
traits. When estimating or retrieving biochemical and biophysical
parameters, the vegetation index should be susceptible to the specific
parameter of interest. Any additional sensitivity to other parameters
can introduce uncertainties into the results (Wang et al., 2019).
Conversely, when monitoring vegetation health or stress, selecting
an index that is not limited to a single parameter but sensitive to a
combination of factors (Zhang et al., 2017) is essential. The
limitations of commonly used vegetation indices for health
monitoring highlight the need to develop a more robust indicator
for vegetation health.

In this contribution, we introduce a novel vegetation health
indicator that is sensitive to vegetation chlorophyll, vegetation water
content, and leaf protein content. The proposed indicator offers
valuable insights into assessing overall vegetation stress. It leverages
the spectral absorption features used in the widely adopted NDVI
and NDMI indices, which are sensitive to leaf chlorophyll and water
content, respectively. Additionally, it incorporates reflectance near
700 nm, associated with the red edge, which is known to be sensitive
to plant chlorophyll stress (Collins 1978). The objectives of this
study are threefold: (1) to introduce a novel parameter for
monitoring vegetation health; (2) to validate the proposed index
using lab-based spectroscopy experiment on the leaves of Saraca
asoca and physical model-based Global Sensitivity Analysis (GSA)
utilizing the PROSPECT-leaf model, SAIL homogeneous canopy
model, and INFORM heterogeneous canopy model; and (3) to
evaluate the capability of the index for spatio-temporal analysis
of corn crops during the growing season. We utilize Sentinel-2
satellite data, which provide global reflectance images across
multiple bands in the VNIR and SWIR channels at spatial
resolutions of 10, 20, and 60 m. The combined datasets from
Sentinel-2A and 2B further enhance the temporal resolution to
5 days, offering a vast archive of imagery for global vegetation health
monitoring.

3 Methodology

This section outlines the formulation of the proposed index,
followed by a detailed description of the approach used for its
validation.

3.1 Proposed algorithm

This section is divided into two parts: the first part explains the
theoretical foundation for developing the new index, while the
second part provides details on its formulation.

3.1.1 Theoretical basis of the index
Absorption, reflection, and transmission are the three primary

phenomena that occur when electromagnetic radiation (EMR)
interacts with vegetation. In optical satellite remote sensing, most
of the EMR interacts with vegetation canopies composed mainly of
leaves. The biochemical pigments and internal structure of the leaves
influence how different wavelengths of EMR are affected.
Chlorophyll pigments absorb the blue and red regions of the EM
spectrum in the leaves, and this absorbed energy is used for
photosynthesis. The amount of chlorophyll also regulates the
position of the red edge on the electromagnetic spectrum (Gates
et al., 1965). In stressed plants, chlorophyll content is reduced,
causing the red edge to shift toward shorter wavelengths (Rock et al.,
1988). This shift has also been linked to stress induced by heavy
metals (Horler et al., 1980; 1983). A study by Gitelson et al. (1996)
has shown that reflectance near 700 nm is a sensitive indicator of
both the red edge position and chlorophyll concentration.
Therefore, the band centered at 700 nm is particularly useful for
detecting changes in chlorophyll content.

Leaves are composed of multiple layers of different cells,
including the upper epidermis, palisade mesophyll, spongy
mesophyll, and lower epidermis (Mader, 2014). Blue and red
wavelengths are absorbed by chlorophyll in the palisade
mesophyll layer. In contrast, Near-Infrared (NIR) electromagnetic
radiation penetrates the palisade mesophyll and interacts with the
spongy mesophyll. The spongy mesophyll consists of loosely packed,
irregularly shaped cells that contain air spaces. The scattering of NIR
radiation between the cell walls and these air spaces results in high
NIR reflectance in healthy leaves (Kupfer and Emerson, 2005).
However, when leaves experience stress, the mesophyll cells may
absorb a portion of the incoming NIR radiation, decreasing NIR
reflectance.

In addition to other pigments, leaves contain a significant
amount of water. This water absorbs most of the energy in the
shortwave-infrared (SWIR) region of the electromagnetic spectrum,
effectively stretching the O-H bond. The specific absorption
coefficients of pure liquid water at 1.6 µm and 2.2 µm are notably
high. According to Jacquemoud and Ustin (2019), the absorption
spectra of leaf water and pure liquid water are very similar in the
near-infrared (NIR) and SWIR regions. At 2.2 µm, the
electromagnetic radiation is not only absorbed by the water in
the leaves but also strongly absorbed by the proteins present
within them (Jacquemoud and Ustin, 2019). Factors such as heat,
drought, salinity, and water stress can induce oxidative stress,
increasing ROS (Chauhan et al., 2023). This increase in ROS can
damage plant proteins (Sharma et al., 2012). Consequently, energy
absorption at 2.2 µm will decrease under these stressed conditions.

3.1.2 Sentinel-2 based vegetation health
index (SVHI)

The significant absorption of the EMR at specific wavelengths
reveals the availability and quantity of essential pigments, such as
chlorophyll, carotenoids, and water content, which are critical to
governing photosynthesis in plants. The presence of these pigments
offers valuable insights into vegetation health. A wide range of
vegetation indices have been developed based on these absorption
characteristics. Some of the most commonly used indices include the
NDVI (Rouse Jr et al., 1974), EVI (Liu and Huete, 1995), Ratio
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Vegetation Index (RVI) (Pearson and Miller, 1972), Soil Adjusted
Vegetation Index (SAVI) (Huete, 1988), and NDMI (Gao, 1996),
among others. These indices primarily leverage either chlorophyll-
related or leaf water-related absorption features.

As discussed in section 2, NDVI and NDMI have limitations in
comprehensively detecting vegetation stress due to their primary
emphasis on specific aspects of vegetation. To overcome this
constraint, we propose a novel indicator in this study
incorporating chlorophyll absorption features, leaf water content,
and leaf protein content. By integrating these features, we aim to
make the index more efficient at detecting vegetation stress. The
proposed index, SVHI, is formulated as the normalized difference of
X and Y, expressed as: provided in Equation 1.

SVHI � X − Y
X + Y

. (1)

In this formulation, X exhibits a high value for healthy
vegetation and a low value for stressed vegetation, while Y shows
a high value for stressed vegetation and a low value for healthy
vegetation. We formulate SVHI similarly to indices like NDVI and
NDMI as a normalized difference measure with bounded values
ranging from −1 to +1 and reduced sensitivity to topographical
variations (Matsushita et al., 2007).

Based on the sensitivity of vegetation to different wavelengths,
and considering the availability of these wavelength bands in
multispectral satellite systems, X is calculated as four times the
reflectance at 0.84 µm, while Y is calculated as the sum of the
reflectance values at 0.66 µm, 0.70 µm, 1.6 µm, and 2.2 µm. Thus,
the index can be expressed as provided in Equation 2.

SVHI � 4R0.84 μm − R0.66 μm + R0.70 μm + R1.6 μm + R2.2 μm( )
4R0.84 μm + R0.66 μm + R0.70 μm + R1.6 μm + R2.2 μm( )

(2)

In this study, we utilize Sentinel-2 data, as it is the only
operational multispectral satellite that provides all the required
bands in the necessary wavelength regions for formulating the
proposed index. Hence, we have termed this index the Sentinel-2
based Vegetation Health Index (SVHI), which can be expressed as:
provided in Equation 3.

SVHI � 4B8 − B4 + B5 + B11 + B12( )
4B8 + B4 + B5 + B11 + B12( ) (3)

This index utilizes the reflectance from five bands of Sentinel-2:
B4 (Red), B5 (Red-Edge 1),B8 (NIR), B11 (SWIR 1), and B12 (SWIR
2). The SVHI ranges from −1 to +1, with high positive values
indicating healthy vegetation, while negative values represent either
dried vegetation or non-vegetation areas (Kumar et al., 2023; 2024).
A detailed explanation of the significance of these wavelength
regions is provided in section 3.1.1. Furthermore, we performed a
physical model-based sensitivity analysis and a spectroscopy lab
experiment to validate the proposed index. Details of these
experiments are presented in the following sections.

3.2 Physical model-based validation

This section presents an overview of the radiative transfer
models employed in this study, followed by a detailed

explanation of the procedure used to conduct a global sensitivity
analysis of the vegetation indices.

3.2.1 PROSAIL and PROINFORM
The PROSAIL (Jacquemoud et al., 2009) and PROINFORM

models combine the PROSPECT (leaf optical properties model)
(Jacquemoud and Baret, 1990) with SAIL (canopy reflectance
model) (Verhoef, 1984; 1985) and INFORM (INvertible FOrest
Reflectance Model) (Atzberger, 2000; Schlerf and Atzberger,
2006), respectively.

The PROSPECT-4 model simulates leaf reflectance and
hemispherical transmittance based on leaf biochemical and
structural parameters. It consists of four key parameters:
chlorophyll a+b content (Cab), dry matter content (Cm),
equivalent water thickness (Cw), and leaf structure (N). The
PROSPECT-5 model extends this by adding two parameters:
Carotenoids (Car) and brown pigments (Cbrown). The outputs
from the PROSPECT model serve as inputs for the SAIL and
INFORM models.

The SAIL model simulates canopy reflectance based on eight
parameters: Leaf Area Index (LAI), leaf angle distribution (LAD)
(Campbell, 1990), soil coefficient, the ratio of diffuse to direct solar
radiation, hot-spot size (Kuusk, 1995), solar zenith angle (SZA),
sensor viewing angle, and relative azimuth angle. Since LAI and

TABLE 1 Parameters considered in the reflectance simulation fromPROSAIL
and PROINFORM are listed here. The default values were selected for the
parameters not listed in the table.

Input Description Unit Min Max

Leaf: PROSPECT4 & 5

N Leaf structure parameter [-] 1 2.6

Cab Chlorophyll a+b content [µg cm−2] 0 80

Cm Dry matter content [g cm−2] 0.001 0.02

Cw Equivalent water thickness [g cm−2] 0 0.08

Leaf: only PROSPECT5

Cbrown Brown pigments [g cm−2] 0 1

Car Carotenoids [µg cm−2] 0 25

Canopy: SAIL and INFORM

LAD Leaf angle distribution [°] 0 90

SZA Solar zenith angle [°] 0 60

Sc Soil coefficient [-] 0 1

Canopy: only SAIL

LAI Total leaf area index (m2m−2) 0 10

Canopy: only INFORM

LAIs Single tree leaf area index (m2m−2) 0 10

LAIu Leaf area index of understory (m2m−2) 0 5

SD Stem density (ha−1) 0.5 1,500

H Tree height [m] 0.5 30

CD Crown diameter [m] 0.1 10
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LAD are the only two parameters defining canopy structure, SAIL is
limited to simulating the reflectance of homogeneous canopies
(Morcillo-Pallarés et al., 2019).

The hybrid radiative transfer model INFORM integrates the
strengths of geometric-optical radiative transfer and turbid-medium
models. In this model, geometric shapes, such as tree crowns, are
treated not as opaque entities but as a turbid medium. While this
model is more complex, it offers a more realistic representation of
forest canopies (Schlerf and Atzberger, 2006).

INFORM combines the SAILH (Verhoef, 1984) model, which
simulates radiative transfer in the canopy layer of turbid mediums,
with the FLIM (Rosema et al., 1992) model to account for geometric
factors such as leaf clumping, tree crowns, and crown geometry.
When used with PROSPECT (PROINFORM), the model effectively
simulates forest dynamics by incorporating leaf-level and canopy-
level variables. The canopy-level variables include crown diameter
(CD), tree height (H), stem density (SD), leaf angle distribution
(LAD), understory leaf area index (LAIu), and single tree leaf area
index (LAIs).

3.2.2 Global sensitivity analysis
Evaluating the sensitivity of vegetation indices to various plant

properties is essential for relative comparisons. In this study, we
utilized physics-based canopy reflectance models, specifically,
PROSPECT-4 and PROSPECT-5 combined with SAIL
(PROSAIL) and INFORM (PROINFORM) to generate theoretical
reflectance values by varying different vegetation
properties (Table 1).

Global Sensitivity Analysis (GSA) (Sobol’, 1990; Saltelli et al.,
2008) was performed using the Automated Radiative Transfer
Models Operator (ARTMO) (Verrelst et al., 2011). The GSA
toolbox in ARTMO operates on input variables of Radiative
Transfer Models (RTM) using Sobol’s first-order and total-order
sensitivity indices. We employed default Sobol sampling (Sobol’,
1967; Sobol and Levitan, 1999) for the input variable space of the
RTM. After conducting 2000 simulations per variable (Morcillo-
Pallarés et al., 2019), no significant fluctuations were observed.
Therefore, we selected 2000 samples per variable, resulting in a
total of 12,000, 16,000, 20,000, 24,000, 28,000, and
32,000 simulations for PROSPECT-4, PROSPECT-5,
PROSPECT4+SAIL, PROSPECT5+SAIL, PROSPECT4+INFORM,
and PROSPECT5+INFORM, respectively (Saltelli, 2002). The total
number of parameters selected for the analysis was based on the
criteria established by Morcillo-Pallarés et al. (2019).

During the simulations, we provided the minimum and
maximum possible values for each parameter in the models, as
detailed in Table 1. Additionally, we conducted simulations by
varying the maximum value of a parameter while keeping the
other parameters constant. These simulated reflectances were first
converted to the spectral resolution of Sentinel-2 using the sensor-
specific band settings. Following this conversion, vegetation indices
such as the SVHI, NDVI, and NDMI were calculated, followed by
the execution of GSA.

This analysis aimed to compare the sensitivity of the vegetation
indices to different vegetation parameters and to understand the
behavior of SVHI concerning variations in chlorophyll a+b content
(Cab) and equivalent water thickness (Cw) at different levels.

3.3 Experimental validation of SVHI

We conducted a lab-based spectroscopy experiment to validate
our proposed index, which was carried out in two parts: (a) analysis
of the effect of water content and (b) analysis of the effect of
chlorophyll content. The instrument used for this experiment
was an ASD FieldSpec3 spectroradiometer, which measures
contiguous reflectance across the wavelength range of 350 − 2500
nm (Guha et al., 2019). The spectral resolution was 1 nm for the
350 − 1000 nm and 3 nm for the 1000 − 2500 nm range. This
instrument provides reflectance measurements in 2,151 narrow
bands/channels. During each observation, the height of the
sensor was kept constant at 4 cm from the leaf surface, and a
1,000 W halogen bulb served as the radiation source.

In the first experiment, 15 fresh, green, mature leaves of the
Saraca asoca (Ashoka tree) were collected. Spectroscopic
measurements and fresh weights were recorded for each leaf.
Reflectance was measured at five distinct locations on each leaf
simultaneously. The leaves were then placed in a dark room for the
next 4 days, during which the measurements of weights and
reflectances were repeated at the same time each day. After
4 days, the leaves were exposed to direct sunlight for 1 week
until no weight loss was observed. Following this period, the dry
weight of the leaves was measured. The measured dry weights were
subsequently used to calculate the % leaf water content during each
observation. The % LWC is expressed as provided in Equation 4.

% LWC � Fw −Dw( )
Dw

× 100 (4)

where Fw and Dw represent the fresh weight and dry weight of the
leaves, respectively. This percentage of leaf water content (LWC) is
not bounded between 0 and 100. An LWC greater than 100%
indicates that the mass of water content in the leaves exceeds the
mass of dried leaves. Typically, fresh leaves will always exhibit an
LWC higher than 100%.

In the second experiment, green healthy, stressed, and dead
leaves from the same tree were collected. Five spectra were measured
from different parts of each leaf. All measured spectra from both
experiments were resampled to Sentinel-2 resolution using ENVI
5.6 software. These resampled spectra were then utilized to calculate
SVHI, NDVI, and NDMI. To enhance the absorption features
associated with different leaf conditions, we removed the
continuum lines from all spectra using the method described by
Dhoundiyal et al. (2023). These spectra have been generated to
illustrate the change in absorption characteristics for different
conditions of leaves, including healthy, water-stressed,
chlorophyll-stressed, and dead/dry leaves.

3.4 Spatio-temporal estimation of SVHI
using Sentinel-2

To assess the spatio-temporal evolution of SVHI, we conducted
on-field tests across different growth periods of corn during a crop
season. The study area is located between Webster and Boone cities
in the state of Iowa, USA, which is predominantly used for
agricultural practices. Corn is the most cultivated crop in this
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region, followed by soybeans, as indicated by the Crop Data Layer
(CDL) (CroplandCROS, 2024). The study area also features various
land use and land cover (LULC) types, including natural vegetation
(predominantly found along riverbanks), water bodies, and
developed structures such as roads and settlements. Like much of
the American Midwest, Iowa has a typical humid continental
climate. It experiences long, humid, and warm summers, while
winters are windy, cold, and snowy. The region has a fairly
consistent precipitation pattern throughout the year.

This study focused on the phenological stages of corn,
explicitly spanning from May to October 2021. We used the
Sentinel-2 surface reflectance product to calculate vegetation
indices during corn phenology. The Sentinel-2 Level 2A
product, which provides surface reflectance data, is open
access and globally available through platforms like Planetary
Computer (2024) and Google Earth Engine (2024). Before
conducting the analysis, all cloudy pixels in the selected scenes
were masked out. To map the corn fields in the study area, we
used the CDL, accessible at CroplandCROS (2024). Figure 1
presents the study area map, illustrating the extent of corn
cultivation. Additionally, we prepared the phenology chart of
the corn crop for Webster City based on the Iowa Crop Weekly
Progress Report for 2021 (USDA, 2021), shown in Figure 2.

4 Results and discussions

In this section, we present an analysis of the sensitivity of the
proposed index using physics-based models. Additionally, we

describe the results of a lab-based spectroscopy experiment
conducted with the leaves of Saraca asoca, which investigates the
impact of chlorophyll and water content on SVHI. Finally, the utility
of the proposed index is demonstrated through its application in
analysing the phenology of corn crops using Sentinel-2
satellite imagery.

4.1 Physical model-based GSA

Figure 3 highlights the varying sensitivities of NDVI, NDMI,
and SVHI at both leaf and canopy scales. As shown, NDVI exhibits
zero sensitivity towards Cw, while NDMI shows zero sensitivity to
Cab. SVHI demonstrates substantial sensitivity to both chlorophyll
content (Cab) and leaf water content (Cw), with contributions of
approximately 40%–55% and 55%–40%, respectively, as indicated
by the leaf-level model. This makes SVHI particularly responsive to
variations in these parameters.

When considering the canopy reflectance, LAI is the most
influential parameter for all indices. In homogeneous canopies,
LAI primarily defines canopy structure, with higher LAI resulting
in greater absorption in the visible and SWIR bands, leading to
reduced canopy reflectance. In contrast, in heterogeneous canopies
like forests, vegetation indices display additional sensitivity to
structural parameters such as crown density, stem density, and
leaf angle distribution, which intensifies anisotropy (Wang
et al., 2019).

At the canopy scale, we focus on Canopy Chlorophyll Content
(CCC) and Canopy Water Content (CWC) rather than individual

FIGURE 1
(a) The administrative boundary of USA with highlighting IOWA state, (b) False Colour Composite (R-NIR, G-Red, B-Green) Map of parts of Iowa
state, and (c) LULC map of the study area.
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leaf-level parameters such as Cab and Cw. CCC is computed as the
product of Cab and LAI, expressed as provided in Equation 5.

CCC � Cab × LAI (5)

Similarly, CWC is expressed as the product of Cw and LAI as
provided in Equation 6.

CWC � Cw × LAI (6)

As observed in previous sections, SVHI is sensitive to leaf water
and chlorophyll content, so we expect it to exhibit high sensitivity to
changes in CCC and CWC. These canopy-level variables represent a
combined sensitivity of Cab and Cw with LAI, respectively.
Therefore, any variations in CCC and CWC, which reflect the
overall chlorophyll and water status of the entire canopy, should
be effectively captured by SVHI.

Figures 4, 5 illustrates the change in sensitivity of SVHI at both
the leaf and canopy scales for varying levels of Cab and Cw. At the
leaf scale, SVHI is primarily sensitive to Cab, Cw, Cm, and Cbrown.
Notably, the sensitivity to Cm increases (from 0% to 30% in case of
Prospect4 and 0%–50% in case of Prospect5) as Cw decreases,
indicating that SVHI becomes more responsive to dry matter
content as leaves dry out.

Similarly, SVHI becomes more sensitive to Cbrown (upto 30%)
as Cab levels decline. A similar pattern was observed in
homogeneous canopy models, with SVHI showing heightened
sensitivity towards LAI (about 50%–70%). However, in
heterogeneous canopy models, as Cab and Cw decrease, the
sensitivity of SVHI shifts further towards structural parameters
such as crown density (about 30%–45%), stem density (about
20%–30%), and leaf angle distribution (about 8%–12%). This
increased sensitivity to structural components indicates that
SVHI becomes more responsive to vegetation structure,
particularly under conditions where vegetation is dry and
non-green.

4.2 Influence of water content and
chlorophyll on VI

This section presents the results from the lab-based spectroscopy
experiments conducted on the leaves of Saraca asoca. It is divided
into two subsections: in the first part, we examine the effect of water

content, and in the second, we investigate the impact of
chlorophyll content.

4.2.1 Analysis of the effect of water content
The indices NDVI, NDMI, and SVHI were calculated by

averaging the resampled spectra from 75 observations of
15 green leaves on a daily basis. The resulting box plot, shown in
Figure 6, displays these indices alongside their corresponding daily
mean % LWC. All three indices demonstrate a decrease in value as
the % LWC declines. Notably, the rate of decrease is more
pronounced for SVHI (0.10) and NDMI (0.09) compared to
NDVI (0.02) during the initial reduction in water content (refer
to Table 2).

In our observations, the rate of decrease in the index value is
highest for the SVHI within the % LWC ranges of 150 to 85, 85 to 52,
and 52 to 32 (highlighted in bold in Table 2). Conversely, within the
% LWC range of 32 to 4, the NDVI exhibits the steepest reduction in
values, while the NDMI shows the lowest rate of decrease. This
pronounced reduction in NDVI values within the % LWC ranges of
32 to 4 can be attributed to chlorosis, a process resulting from
chlorophyll breakdown during the complete dehydration of the leaf
(Seelig et al., 2008).

In this setup, the effectiveness of an index is evaluated based
on its sensitivity to variations in LWC. To assess whether the
indices show significant differences with changes in LWC, we
conducted Tukey’s HSD test on the indices calculated under
consecutive LWC conditions. This test analyses pairwise
significant differences using a pairwise p-value threshold of
< 0.05 and mean differences based on the respective critical
mean as threshold (Abdi and Williams, 2010).

According to Tukey’s HSD test, SVHI and NDMI exhibit
significantly different means, with p-values substantially lower
than 0.05 for all pairs of % LWC (refer to Supplementary Figure
S1; Supplementary Table S1 in the supplementary document). In
contrast, NDVI shows a mean difference that is considerably less
than the critical mean, with a p-value of � 0.63 for observations
between 150% LWC and 85% LWC (see Supplementary Figure S1;
Supplementary Table S1 in the supplementary document) and is
shown in red box in Figure 6. This finding indicates that NDVI is less
effective in detecting the initial water stress condition than
SVHI and NDMI.

As noted in previous literature (Chuvieco et al., 2002), we also
observed that NDVI is indirectly correlated with leaf water content.

FIGURE 2
This figure shows phenology of Corn crop in Webster city, Iowa, USA.
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However, our experiment demonstrates that NDVI exhibits an
insignificant response during the early stages of water stress,
particularly when LWC decreases from 150% to 85%. This
suggests that NDVI can only detect water stress when there is a
substantial reduction in water content within the vegetation. In
contrast, our findings indicate that both SVHI and NDMI effectively
identify initial water stress conditions.

Figure 7 displays the reflectance spectra of leaves at various levels
of % LWC, with the continuum removed. The red line representing

4% LWC exhibits minimal absorption features in the SWIR region.
However, as the % LWC increases (indicated by lines in shades of
blue), the depth of these absorption features in the SWIR region
becomes significantly more pronounced. This illustrates the
relationship between leaf water stress and absorption
characteristics in the SWIR region. In contrast, the continuous
changes in reflectance and absorption in the visible and near-
infrared (VNIR) wavelength region are less pronounced than
those in the shortwave infrared (SWIR) region. A slight linear

FIGURE 3
Global sensitivity analysis of NDVI, NDMI, and SVHI using leaf and canopy models.
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increase in reflectance is observed in the red band, which appears to
be absent in the blue and green wavelength regions.

To investigate the relationship between % LWC and the
reflectance of B11 and B12 of Sentinel-2, we created a scatter
plot comparing % LWC with the % change in SWIR reflectance
relative to NIR and is provided in Figure 8. The percentage change
can be estimated as follows provided in Equation 7.

%Change in SWIR wrt.NIR � NIR − SWIR( )
NIR

× 100 (7)

Instead of directly utilizing SWIR reflectance, we have
employed relative absorption in SWIR with respect to NIR.
This approach minimizes the potential errors introduced by
variations in leaf angle in the reflectance during laboratory
measurements. The results of our experiment demonstrated a
strong correlation between % LWC and the changes in reflectance
in B11 and B12, relative to B8 of Sentinel-2 (see Figure 8). The
Pearson correlation coefficient was approximately 0.97,
indicating a strong relationship between the changes in

FIGURE 4
Global sensitivity analysis of SVHI using Prospect4, Prospect4SAIL, and Prospect4INFORM models at varying level of Cab and Cw.
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reflectance in B11 and B12 and the water content in the leaves.
This suggests that B11 and B12 can be effectively utilized to detect
changes in vegetation water stress.

4.2.2 Analysis of the effect of chlorophyll
In this experiment, NDVI, NDMI, and SVHI were calculated

using the average spectra of leaves in different conditions, including
healthy, stressed, and dead/dry leaves. Figure 9 presents a
comparative plot for all three indices. These indices were
computed based on reflectances measured during a lab

experiment in a dark room with a controlled source of
illumination. The distance between the sensor and the leaf was
4 cm, minimizing the absorption of SWIR radiance by atmospheric
water vapor. However, this absorption effect is present in satellite-
based SWIR reflectance measurements. As a result, NDMI and
SVHI values tend to be lower in lab experiments than in satellite
measurements. NDVI is unaffected by this issue since it does not use
the SWIR band.

In terms of behavior, both SVHI and NDVI show a gradual
decrease as leaves transition from healthy to stressed and eventually

FIGURE 5
Global sensitivity analysis of SVHI using Prospect5, Prospect5SAIL, and Prospect5INFORM models at varying level of Cab and Cw.
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to dead states. In contrast, NDMI exhibits no significant change
between healthy and stressed leaves, only showing differences in
dead/dry leaves due to their notably lower % LWC.

Figure 10 displays reflectance curves (with continuum removed)
for leaves under various stress conditions. This figure clearly illustrates
the red-edge position shifting toward shorter wavelengths as the leaves
experience stress. The depth of the curve at the redwavelength is highest
for healthy leaves and decreases progressively as the leaves become
stressed and eventually dead. Additionally, absorption features are
visible in the SWIR regions, but the depth of these absorptions
diminishes when the leaves dry out and die.

Interestingly, this curve does not show distinguishable
absorption features in the SWIR region that can be used to
detect chlorophyll stress in the leaves. This indicates that
chlorophyll-related stresses cannot be observed using SWIR
reflectance alone. Instead, chlorophyll stress is best monitored
using reflectance in the red and red-edge channels. NDMI, which

FIGURE 6
Response of (a) SVHI, (b) NDVI, and (c) NDMI towards leaf water content. The red box shows the two observations are statistically similar according
to Tukey’s HSD test at p-value <0.05 significance level. The x-axis represents the average % LWC of leaves on each observation day. In each box plot, the
black horizontal line represents the median, and the green shape represents the mean of respective observations.

TABLE 2 The Slope (ΔVI/ΔLWC) is estimated to quantify the rate of
reduction in the values of vegetation indices as LWC decreases. The
scenarios with the maximum rate of reduction are highlighted in bold.

Vegetation
Indices

150%–
85%

85%–
52%

52%–
32%

32%–
4%

NDVI 0.02 0.13 0.18 0.21

NDMI 0.09 0.10 0.15 0.10

SVHI 0.10 0.14 0.21 0.18

FIGURE 7
Continuum removed spectra of leaves at different % LWC.
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does not use bands in the visible range of the electromagnetic
spectrum, is, therefore, unable to detect chlorophyll stress, as
demonstrated in Figure 9.

On the other hand, NDVI and the proposed SVHI make use of
reflectance from the red and red-edge parts of the spectrum,
enabling them to detect chlorophyll stress effectively. From the
analysis of leaf water content and chlorophyll stress, it becomes clear
that SVHI, unlike NDVI and NDMI, is sensitive to variations in both
leaf water content and chlorophyll content.

In plants, ROS are consistently produced, primarily within
chloroplasts, mitochondria, and peroxisomes (Apel and Hirt,
2004). The regulation of ROS production and removal is critical
for maintaining cellular homeostasis (Sahu et al., 2022). However,
several abiotic stress factors, including intense light, drought,
extreme temperatures (both high and low), and mechanical
stress, can disturb the delicate balance between ROS generation
and scavenging mechanisms (Prasad et al., 1994).

Typically, ROS production increases linearly with the severity of
stress conditions (Hussain et al., 2018). Under stress, the disruption
of cellular homeostasis leads to enhanced production of ROS, such
as hydrogen peroxide (H2O2), singlet oxygen (1O2), superoxide
radicals (O2−), and hydroxyl radicals (OH−) (Apel and Hirt, 2004).
This excessive ROS accumulation can result in the oxidation of
proteins in plant tissues (Sharma et al., 2012; Dumanović
et al., 2021).

Proteins in plants exhibit significant absorption of
electromagnetic radiation at 2.2 µm (Jacquemoud and Ustin,
2019). Under stress, a reduction in protein content leads to
decreased absorption and increased reflectance at this
wavelength. Since SVHI incorporates this wavelength in its
formulation, it is sensitive to reductions in leaf protein content
under stressful environmental conditions. Higher leaf protein
content will result in increased SVHI values, whereas a decline in
protein content will cause a corresponding decrease in SVHI.

FIGURE 8
Relationship between Sentinel-2 SWIR bands and % LWC.

FIGURE 9
Response of NDVI, NDMI, and SVHI towards stressed leaves.
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Establishing a direct relationship between SVHI and changes in
leaf protein content would require extensive chemical and cellular
analyses, which are beyond the scope of this study. Therefore, we
approach this relationship from a theoretical perspective rather than
through direct experimental validation, as was done for leaf water
and chlorophyll content.

4.3 Spatio-temporal analysis over corn crop

In the following section, we will explore the use of SVHI in
monitoring crop phenology.

4.3.1 Analysis over phenology of corn crop
This study analysed the phenology of a corn-dominated region

in Iowa. The three indices SVHI, NDVI, and NDMI were computed
for six distinct dates, capturing the entire growing season of the corn
crop as shown in Figure 11.

On 26May 2021, the corn crop was in the planting stage, and the
reflectance measurements were predominantly from bare soil. By
18 October 2021, the corn had reached the harvesting stage, with
reflectances measured either from bare soil, where harvesting had
already occurred or from dried, non-green corn plants that were
ready for harvest. Consequently, the vegetation index values were
notably low in both images.

On June 13, the corn crop entered the emerging stage, resulting
in an increase in the values of all indices. The images acquired on
July 15 and August 14 showed the corn in the silking and doughing
stages, respectively, corresponding to a further rise in index values.
However, by September 16, as the corn reached the mature stage,
there was a reduction in the values of all indices.

We found that all three vegetation indices are capable of
characterizing the phenological stages of corn. However, upon
analysing the indices for August 14, we observed that NDVI
exhibits similar values for both natural vegetation and corn. In
contrast, SVHI and NDMI clearly differentiate between the two.
This discrepancy arises because, at this stage, the greenness and

chlorophyll content of corn are comparable to that of natural
vegetation. However, the plant water content in corn at this
mature stage is significantly higher than that in natural
vegetation. Consequently, SVHI and NDMI yield higher values
for corn crops than for natural vegetation at this stage, while
NDVI fails to capture this distinction.

Interestingly, the zoomed image on the right side of Figure 11
from 16 September 2021, illustrates that the lake (highlighted in the
blue box) and the river are not discernible in the NDMI. In contrast,
these features remain clearly distinguishable in both SVHI and
NDVI. This phenomenon occurs because NDMI captures higher
values for moisture concentration in both surface water bodies and
vegetation moisture content. Consequently, NDMI exhibits similar
values for healthy vegetation and water bodies, indicating that it
cannot be used alone to define the moisture status and health of
vegetation accurately. Conversely, SVHI and NDVI show lower
values for water bodies, allowing them to differentiate healthy
vegetation from surface water effectively.

4.3.2 Temporal analysis of SVHI over corn crop
Three temporal scatterplots comparing NDVI, NDMI, and

SVHI for the period from May to October 2021 are presented in
Figure 12. Each point in the graph represents the mean value of
the corresponding vegetation index across all corn fields in the
study area for a given image. A strong correlation is observed
between SVHI and both NDVI (R2 � 0.958) and NDMI
(R2 � 0.993), indicating that SVHI captures information
related to both the greenness and moisture content of the
vegetation. Also, there is no anomalous point in the data as
evident from the narrow confidence interval (95%) shown as the
shaded region around the regression line in the image. During the
reproductive stage of corn (July and August), highlighted in
orange in Figure 12, NDVI becomes saturated, resulting in
minimal changes in NDVI values during this period. In
contrast, SVHI and NDMI do not exhibit this saturation
effect. This suggests that SVHI offers a broader range of
information than NDVI during this critical phenological stage.

FIGURE 10
Continuum removed spectra of different stress conditions of leaves.
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In numerous experiments, vegetation indices have typically been
selected to represent either vegetative greenness, such as NDVI or EVI
(Enhanced Vegetation Index), or water sensitivity, such as NDMI or
NDWI (Normalized Difference Water Index). In certain instances,

NDVI has been used in conjunction with canopy temperature.
However, given the varying sensitivities of these indices to greenness
and water content in plants, our findings indicate that SVHI serves as a
more reliable indicator of vegetation health.

FIGURE 11
Spatio-temporal variability of SVHI, NDVI, and NDMI over an agricultural region in Iowa, USA for 2021 crop season. The right side image as labeled by
(A-C) are zoomed view of the 16 September 2021 image of region marked within red boxes. The blue box highlights the lake, which is apparently
differentiable in both the SVHI, and NDVI but not in NDMI.
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5 Conclusion

In this study, we propose a vegetation health index, the Sentinel
Vegetation Health Index (SVHI), which effectively accounts for the
sensitivity of vegetation chlorophyll concentration and moisture
content. SVHI also incorporates the shift in the red edge position
due to vegetation stress and leaf protein content variations. To assess
the robustness of SVHI, we conducted three types of investigations:
1) validation through lab-based spectroscopy measurements, 2)
validation using physical model-based global sensitivity analysis,
and 3) spatio-temporal analysis over corn crops.

The spectroscopy experiment conducted on the leaves of Saraca
asoca demonstrates that chlorophyll-related stress is not
distinguishable using NDMI. Conversely, early stress associated
with leaf water content is insignificant in NDVI. However, the
proposed SVHI effectively captures these stresses. Global

sensitivity analysis reveals a strong dependency of SVHI on both
chlorophyll and water content in leaves. Additionally, a study of
corn crop phenology indicates that SVHI can more effectively
differentiate characteristic changes in vegetation, distinctly
separating vegetated areas from non-vegetated ones, such as
water bodies. The temporal scatterplot over corn crops reveals
that SVHI is highly correlated with NDVI and NDMI.

We conclude that the specific bands B11 and B12 in Sentinel-2
imagery can reliably detect changes in vegetation water stress. The
high correlation with % LWC suggests that monitoring the changes
in these bands can provide valuable insights into the water status of
vegetation, which is crucial for assessing plant health and water
stress. This novel vegetation index has significant potential for global
application in mapping and monitoring various vegetation types,
including crops and forests. With the extensive archives of global
open-access datasets from Sentinel-2, there is a remarkable

FIGURE 12
Temporal scatterplot of different vegetation indices over corn crop, (a) SVHI vs. NDVI, (b) SVHI vs. NDMI, and (c) NDMI vs. NDVI.
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opportunity to monitor the health of global vegetation at high
resolution. The upcoming Sentinel-2C and 2D satellites are set to
succeed the currently operational Sentinel-2A and 2B satellites,
ensuring the continuous availability of Sentinel-2 datasets well
into the future.

The Sentinel-2 Based Vegetation Health Index (SVHI) proposed
in this study offers a promising approach for assessing vegetation
health and stress by leveraging the spectral sensitivity of specific
Sentinel-2 bands to chlorophyll, moisture, and protein-related
features. However, certain limitations must be acknowledged to
provide a comprehensive understanding of its applicability. Firstly,
SVHI is dependent on optical data from the Sentinel-2 satellite
constellation, rendering it sensitive to atmospheric conditions.
Persistent cloud cover, particularly in tropical and monsoon-
prone regions, can limit the availability of usable observations
and hinder consistent monitoring. Moreover, the temporal
resolution of Sentinel-2 (5–10 days) restricts the index’s ability to
capture rapid vegetation changes, making it less suitable for
applications requiring high-frequency data, such as early-stage
stress detection or daily crop monitoring.

Secondly, although SVHI effectively integrates multiple stress-
related spectral signals, it is not designed for the direct retrieval of
biophysical or biochemical vegetation parameters, such as leaf area
index (LAI), chlorophyll content, or vegetation water content. For
applications necessitating quantitative estimates of these
parameters, more specialized inversion models or empirical
methods would be required. Furthermore, in areas with sparse
vegetation or at early growth stages (where the canopy cover is
low), the influence of soil background can significantly affect the
spectral signal, leading to reduced accuracy of SVHI in such
conditions. This is particularly relevant in semi-arid regions or
during early phenological stages.

Despite these limitations, SVHI demonstrates considerable
potential for a range of large-scale environmental applications,
including vegetation health assessment, drought monitoring,
forest disturbance detection, and crop phenology mapping.
Future research will explore the integration of SVHI with data
from high-temporal-resolution sensors and Synthetic Aperture
Radar (SAR) systems to overcome the constraints associated with
cloud cover and to improve temporal continuity. These
enhancements will further support the operational deployment of
SVHI for regional and global vegetation monitoring.
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