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Classifying corn varieties presents a significant challenge due to the high-
dimensional characteristics of hyperspectral images and the complexity of
feature extraction, which hinder progress in developing intelligent agriculture
systems. To cope with these challenges, we introduce the Residual Convolution-
Attention Transformer Network (RCTNet), an innovative framework designed to
optimize hyperspectral image classification. RCTNet integrates Conv2D with
Channel Attention (2DWCA) and Conv3D with Spatial Attention (3DWSA)
modules for efficient local spatial-spectral feature extraction, ensuring
meaningful feature selection across multiple dimensions. Additionally, a
residual transformer module is incorporated to enhance global feature
learning by capturing long-range dependencies and improving classification
performance. By effectively fusing local and global representations, RCTNet
maximizes feature utilization, leading to superior accuracy and robustness in
classification tasks. Extensive experimental results on a corn seed hyperspectral
image dataset and two widely used remote sensing datasets validate the
effectiveness, efficiency, and generalizability of RCTNet in hyperspectral image
classification applications.
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1 Introduction

As a staple crop of global significance, corn plays a vital role in ensuring food security
and sustaining agricultural economies. The quality and diversity of corn seeds directly
impact crop yields, which in turn influence food production and the broader agricultural
market. Given its importance, accurately classifying and identifying corn varieties is
essential for optimizing agricultural practices and improving overall efficiency.
However, traditional seed identification methods suffer from notable limitations,
including susceptibility to human subjectivity, inefficiency in processing large sample
volumes, and reduced accuracy under varying lighting conditions (Xu et al., 2022; Yuan
et al., 2023; Zhang et al., 2023a; Zhao et al., 2025; Zhang et al., 2025b). These challenges
undermine the scalability and reliability of conventional techniques. In response to these
challenges, hyperspectral imaging technology has emerged as a powerful non-destructive
testing method, offering significant advantages in seed identification. This advanced
imaging technique enhances classification accuracy by capturing rich spectral and
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spatial information and has become an indispensable tool in
intelligent agriculture (Zhang L. et al., 2024; Barbedo, 2023;
Zhang W. et al., 2024; Zhang et al., 2025a).

In the early stage, various machine learning techniques were
employed for seed recognition tasks (Su et al., 2022; Jin et al., 2023).
These early methods typically relied on manual or semi-automatic
feature extraction processes, which were labor-intensive and prone
to overlooking crucial information (Liang et al., 2024). Furthermore,
these methods exhibited inconsistent performance across different
datasets and under varying environmental conditions. As a result,
the effectiveness of early seed identification approaches was limited.
However, with rapid advancements in deep learning, convolutional
neural networks (CNNs) have become increasingly popular due to
their robust ability to learn hierarchical feature representations from
raw image data automatically.

CNN-based methods have demonstrated strong capabilities in
hyperspectral image classification due to their proficiency in
extracting local spatial features. For instance, Zhang et al. (2021)
proposed a rapid, non-destructive corn seed purity assessment
method by leveraging hyperspectral imaging with CNNs,
significantly improving accuracy and efficiency. Later, Zhang
et al. (2022) enhanced this framework by integrating 2D/3D
convolutions and attention mechanisms, allowing for the effective
extraction of spatial, spectral, and textural features. Zheng et al.
(2022) further addressed spectral interference using CSpeA and
RSpaAmodels, which focused on reducing redundant spectral bands
and capturing rotation-invariant features. Diao et al. (2023)
introduced residual 3D frequency convolutions and spectral-
spatial attention modules to enhance spatial-spectral learning,
while Tian et al. (2024) incorporated hierarchical representations
to improve classification performance. Despite these advances,
CNN-based models often fall short in capturing global
dependencies across the high-dimensional hyperspectral data. In
contrast, transformer-based methods have garnered attention since
the introduction of Vision Transformer (ViT) (Dosovitskiy et al.,
2020), which effectively models long-range dependencies (Dai et al.,
2021). CoAtNet (2021) exemplifies this trend by integrating
convolution with self-attention while optimizing computational
efficiency. SpectralFormer (Hong et al., 2021) reframes HSI
classification as a sequence modeling task, and other frameworks
(Zhang et al., 2023b; Li Y. et al., 2024; Shi et al., 2024; Song et al.,
2024) propose various attention-enhanced transformers capable of
better spectral-spatial feature representation. These models
demonstrate strong global modeling but often lack precision in
capturing fine-grained local information.

Recognizing these complementary strengths and limitations,
we propose RCTNet, a hybrid architecture that combines
convolutional networks for local spatial-spectral feature
extraction with transformers for global representation
learning. Specifically, we design 2DWCA and 3DWSA
modules to refine channel and spatial information,
respectively, and introduce a Residual Transformer Module
(RTM) to enhance the modeling of long-range dependencies.
Our RCTNet achieves an accuracy of 99.32% on the CSHID
dataset, surpassing state-of-the-art models by up to 0.49%. This
performance, along with consistent results on Salinas-A and
Botswana datasets, confirms the generalizability and
robustness of RCTNet. The major contributions are as follows.

• We propose a residual convolution-attention transformer
network designed for classifying corn hyperspectral images,
which integrates the complementary strengths of convolution
operations and transformer structures from local and global
perspectives.

• We design the 2DWCA and 3DWSA modules, refining
traditional Conv2D to focus on critical channel features
while ignoring irrelevant or redundant information and
adjusting traditional Conv3D to prioritize the spatial
dimension, enhancing the representation of features in
crucial regions.

• We develop the Residual Transformer Module (RTM), which
enhances the network’s global feature extraction by integrating
max and average pooling into the traditional transformer
structure and incorporating residual connections between
transformer structures.

The structure of this paper is as follows: Section 2 shows the
related work of hyperspectral image classification, Section 3 outlines
the proposed method, Section 4 presents the experiments and
analyses, and Section 5 concludes the study.

2 Related work

This section provides a concise overview of existing deep
learning methods for hyperspectral image classification, focusing
on how they attempt to address the challenges of modeling spatial
and spectral information. We group prior works into three
categories: CNN-based, Transformer-based, and CNN-
Transformer collaborative network-based methods, and highlight
their key limitations that motivate the design of our RCTNet.

CNN-based methods have been widely adopted in hyperspectral
image classification due to their ability to extract local spatial-
spectral features through convolutional operations. For instance,
Sellami and Tabbone (2022) introduced a method using multi-view
deep neural networks to fuse spectral and spatial features with a
limited number of labeled samples. Sun et al. (2023) introduced a
large kernel spectral-spatial attention network to solve two issues,
which neglect spatial properties and do not fully consider the
dependence between spectral and spatial information. Paoletti
et al. (2023) developed a method that automatically designs and
optimizes convolutional neural networks for hyperspectral image
classification by using channel-based attention mechanisms.
Although these models achieve good performance, they often
require deep architectures to expand receptive fields, making
them computationally intensive and prone to overfitting when
training data is scarce.

Transformer-based methods, inspired by the Vision
Transformer (ViT), provide powerful capabilities in modeling
long-range dependencies and global contextual information. Yu
et al. (2022) designed a multilevel spatial-spectral transformer
method for hyperspectral image classification, addressing the
limitations of CNNs, such as limited receptive fields, information
loss, and high computational costs. Wang et al. (2023) introduced a
tri-spectral image generation pipeline that converts hyperspectral
images into high-quality tri-spectral images, enabling the use of
ImageNet pre-trained networks for feature extraction. Ahmad et al.
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(2024a) introduced a pyramid-based hierarchical spatial-spectral
transformer that organizes input data hierarchically into pyramid
segments to improve processing efficiency. Moreover, Ahmad et al.
(2024b) presented a novel transformer-based method that employs
wavelet transforms for invertible downsampling, avoiding
information loss from average pooling. While they have shown
promise in hyperspectral image classification tasks, pure
transformer architectures often lack precision in modeling fine-
grained local spatial details, especially under conditions of limited
training data. Their reliance on large-scale data and high
computational cost further restricts their application in certain
remote sensing scenarios.

CNN-Transformer collaborative network-based methods
integrate the advantages of both CNNs and transformers, using
CNNs for local feature extraction and transformers for modeling
global context. These hybrid architectures have shown great promise
in hyperspectral image classification by combining the fine-grained
feature extraction capabilities of CNNs with the long-range
dependency modeling of transformers. For example, Sun et al.
(2022) introduced an SSFTT method, which extracts low-level
and high-level features through a spectral-spatial feature
extraction module, integrates a Gaussian-weighted feature
tokenizer, and employs a transformer encoder module for feature
representation and learning. Yang et al. (2022) proposed a fusion
network for hyperspectral image classification that uses both serial
and parallel mechanisms to fully leverage spectral-spatial features,
with CNNs capturing local spatial features and Transformers
capturing global features. Yan et al. (2023) developed a hybrid
convolution and vision transformer network, addressing the issue
of obtaining actual global features in existing transformer-
based methods.

Liang et al. (2023) developed an HSI classification method
that integrates transformers with SimAM-based CNNs to
address limitations in spatial and global feature extraction.
The CNN module employs a hierarchical 2-D dense structure
to enhance spatial feature representation, guided by a dual
attention unit (DAU) that focuses on discriminative pixel and
channel features. Spectral features are modeled using a squeeze-
enhanced axial transformer to capture global dependencies and
local details.

Xu et al. (2024) designed a double branch convolution-
transformer network to address the high computational
complexity and underutilization of spectral information in
existing hybrid models. These collaborative approaches benefit
from the complementary strengths of CNNs and transformers,
offering improved feature representation by jointly modeling
local details and global dependencies. However, they often suffer
from ineffective integration strategies or increased architectural
complexity, which may limit their scalability and generalization.

From the above discussion, it is evident that our proposed
RCTNet also follows the CNN-Transformer collaborative
paradigm, which itself is not a novel concept. However, RCTNet
introduces architectural innovations that effectively enhance the
synergy between convolutional and transformer components. These
improvements result in a more balanced trade-off between local
feature preservation and global context modeling, enabling more
efficient and accurate hyperspectral image classification, particularly
under limited training data conditions.

3 Proposed methods

Figure 1 illustrates the workflow of RCTNet. The framework
begins with data preprocessing, where principal component analysis
is applied to reduce the dimensionality of the hyperspectral images,
thereby retaining the most informative components while
eliminating redundant or noisy features. Next, the model extracts
and enhances local spatial-spectral features through a dual-branch
structure, which consists of two key modules: the 2D Convolution
with Channel Attention (2DWCA) and the 3D Convolution with
Spatial Attention (3DWSA). Following the local feature extraction,
the model transitions to the global feature extraction stage using a
residual transformer module. The transformer is responsible for
capturing global spatial, spectral, and texture features by modeling
long-range dependencies between different spectral bands and
spatial regions. The residual connections within the transformer
help preserve important feature information across layers,
alleviating the potential issue of vanishing gradients and ensuring
the robustness of the model during training. Finally, the classifier
processes the extracted local and global features and outputs the
specific corn seed variety. Table 1 presents the output size and the
number of parameters for each layer of the proposed RCTNet, which
helps readers better understand the overall network structure.

3.1 Mixed convolution module

Convolutional neural networks have demonstrated remarkable
performance in various image processing and computer vision tasks,
including image classification, segmentation, and object detection.
Traditionally, 2D convolutional operations capture local features by
sliding a fixed-size filter over the image’s spatial dimensions.
However, for more complex datasets like hyperspectral images,
which include both spatial and spectral information, extending
this capability to 3D convolutions can be highly beneficial. 3D
convolutional operations enable the model to capture both spatial
and spectral features simultaneously, providing richer
representations of image data. Despite these advantages, directly
using traditional 2D or 3D convolutions for hyperspectral data often
results in suboptimal performance due to the increased complexity
of feature extraction across multiple dimensions. To alleviate this
limitation, we propose the use of a dual-branch architecture that
combines 2DWCA and 3DWSA. This design enables us to efficiently
process the corn hyperspectral image data by integrating spectral,
spatial, and texture information. By fusing the features extracted
from both branches, the overall performance of the model
is enhanced.

In the 2DWCA branch, we utilize a 2D convolution operation
integrated with a channel attention mechanism. This integration
enhances the network’s ability to focus on the most relevant features
from critical channels, which is particularly important in
hyperspectral image processing. The goal is to fully capture the
spectral-spatial feature information from the corn hyperspectral
images. Let us denote ICHS as the input image data and first
perform the correlated convolution operation, which can be
expressed as Equation 1

I2CHS � Relu BN Conv2D ICHS( )( )( ), (1)
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where Conv2D(·) represents a 2D convolution with 64 output
channels, a stride of 1 × 1, and a convolution kernel size of
3 × 3. BN(·) refers to batch normalization, which helps in
accelerating network convergence by reducing internal covariate
shift. Following this, the convolutional features I2CHS are passed
through a channel attention mechanism to enhance the most
informative channels. The attention mechanism is implemented as

I2′CHS � σ fc2 Relu fc1 AP I2CHS( ) ⊕ MP I2CHS( )( )( )( )( ) × I2CHS, (2)
where AP(·) and MP(·) represent the average pooling and max
pooling operations, respectively. The operations fc1(·) and fc2(·)
perform dimensionality reduction and restoration of the feature
vector, respectively. σ(·) is the Sigmoid activation function,
which normalizes the channel attention map to a range
between 0 and 1.

In the 3DWSA branch, we leverage 3D convolutions in
combination with a spatial attention mechanism. The spatial
attention mechanism dynamically adjusts the focus of the
convolution operation on important regions in the image,
effectively capturing spectral, spatial, and texture information.
This enhances the overall feature extraction and improves the
robustness of the learned representations. The process begins
with a 3D convolution operation, which is applied to the input
image ICHS as Equation 3

I3CHS � Relu BN Conv3D ICHS( )( )( ), (3)
where Conv3D(·) indicates a 3D convolution operation with a
convolution kernel size of 7 × 3 ×3 and 16 output channels.
Following the convolution, the extracted features I3CHS are
processed by a spatial attention mechanism, which can be
expressed as Equation 4

I3′CHS � σ Conv2D AP I3CHS( ) ⊕ MP I3CHS( )( )( ) × I3CHS, (4)
where AP(·), MP(·), and σ are defined in Equation 2. Additionally,
Conv2D(·) represents a 2D convolution operation with a kernel size
of 7 × 7 and a stride of 3 × 3. After the features are extracted and
enhanced through the 2DWCA and 3DWSA branches, the next step
is to fuse the extracted features for further processing.

The features I2′CHS and I3′CHS from both branches are combined,
and the resulting fused features are passed to a residual transformer
module for further refinement. The feature fusion process is
expressed as Equation 5

I′CHS � I2′CHS ⊕ I3′CHS. (5)

The fusion strategy effectively combines the complementary
information captured by the 2D and 3D convolutions, enhancing
both the spatial and spectral representation of the image data.

FIGURE 1
The workflow of the residual conv-attention transformer network. Begins with acquiring corn hyperspectral image data, which undergoes initial
processing through region extraction and principal component analysis. Subsequently, local spatial-spectral features are extracted and fused using a
dual-branch pattern incorporating 2DWCA and 3DWSA. The global feature information is then processed via a transformer module with residual
connections introduced between the transformer structures. Finally, the classifier produces the classification and recognition results.

TABLE 1 Output size and parameters of each layer of the RCTNet.

Layer (type) Output size #Param

2DWCA_1 (64 × 1 × 1, 32) 1154

3DWSA_1 (304 × 1 × 1, 32) 15616

MAMN_1 (32 × 368, 1) 460

FFAN_1 (32 × 368, 1) 629660

MAMN_2 (16 × 368, 1) 736

FFAN_2 (16 × 368, 1) 1085968

MAMN_3 (8 × 368, 1) 1012

FFAN_3 (8 × 368, 1) 1542246

Linear_1 10/6 48522

Total params: 3,325,404
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3.2 Residual transformer module

The novel residual transformer module integrates residual
connectivity with an enhanced transformer structure, combining the
strengths of both residual learning and attention mechanisms. This
module is designed to improve the performance and efficiency of
hyperspectral image processing by facilitating the learning of both
local and global feature representations. The residual transformer
module consists of two primary sub-modules: Multi-head Attention
with Max Pooling and Layer Normalization (MAMN) and Feed-
Forward with Average Pooling and Layer Normalization (FFAN).
These sub-modules are connected through residual concatenation,
which allows the network to preserve vital information while
enhancing its learning capacity.

The MAMN leverages the multi-head attention mechanism to
capture global relationships between the input feature sequences.
This mechanism allows the model to learn from different subspaces,
providing a richer feature representation. In hyperspectral images, the
relationships between spatial and spectral dimensions are complex, and
multi-head attention helps the network focus on different aspects of the
image simultaneously. After the attention mechanism, a max pooling
operation is applied to extract the most salient features. Max pooling
helps in retaining the highest activation values while discarding less
important information, allowing the model to concentrate on the key
features that are essential for downstream tasks. The incorporation of
layer normalization further accelerates convergence by stabilizing the
learning process and ensuring consistent training behavior. The
computational process of the MAMN is given by Equation 6

IMAMN � LN I′CHS( ) ⊕ LN Dropout MP MH I′CHS, I′CHS, I′CHS( )( )( )( ),
(6)

where LN denotes layer normalization, which normalizes the output
across the feature dimensions. MH refers to the multi-head attention
operation, which enables the model to process multiple attention
heads in parallel, enhancing its ability to model complex
dependencies. The Dropout is set to 0.3 to prevent overfitting
and promote generalization during training. The max pooling
operation MP helps retain the most significant features while
downsampling the feature maps.

The FFAN starts with two fully connected layers designed to
enhance the feature representation through nonlinear mapping.
These layers serve to increase the expressive power of the model
by transforming the features into a higher-dimensional space.
Afterward, an average pooling operation is applied, which
aggregates local features across the feature maps. Average pooling
helps reduce noise and smoothens the output, ensuring that the
model focuses on more stable and prominent features that are less
sensitive to small variations in the input data. This process results in
a more robust representation, which is essential for effective image
analysis in complex scenarios such as hyperspectral image
classification. The final step in the FFAN is the application of
layer normalization, which accelerates network convergence and
ensures stability. This normalization technique has been shown to
improve the training efficiency and overall performance of deep
learning models. The computational process of the FFAN is
expressed as Equation 7

IFFAN � LN IMAMN( ) ⊕ LN Dropout AP FFN IMAMN( )( )( )( ), (7)

where FFN refers to the operation performed by the two fully
connected layers, which introduce nonlinear transformations to
enhance feature representations. The average pooling operation
AP aggregates local features, while Dropout helps prevent
overfitting. The features extracted after processing through the
residual transformer module can be expressed as Equation 8

IRTM � I′CHS ⊕ IFFANi, i ∈ 0, 3[ ]. (8)

This residual fusion strategy ensures that both the initial and
enhanced features contribute to the final output, preserving critical
information while refining the learned representations. The resulting
features, enriched by the combined capabilities of the multi-head
attention, max pooling, average pooling, and fully connected layers, are
then ready for subsequent processing in the model’s classification tasks.

3.3 Loss function

The objective of RCTNet in corn hyperspectral images variety
classification is to forecast the probability distribution of an input
image corresponding to a particular corn variety. The network
produces a set of logits z � [z1,j, z2,j, . . . , zm,j], which are then
transformed into a probability distribution ŷ �
[ŷ1,j, ŷ2,j, . . . , ŷm,j] using the Softmax function Equation 9

ŷi,j �
exp zi,j( )

∑
m

k�1
exp zk,j( )

, (9)

where zi,j and ŷi,j represent the logit and predicted probability for
the j − th sample in the i − th class, respectively. m denotes the total
number of classes. The CrossEntropyLoss function measures the
discrepancy between the predicted probability ŷi,j and true label yi,j,
which is well-suited for multi-categorical problems, and the loss is
calculated as Equation 10

L y, ŷ( ) � −∑
n

i�1
∑
m

j�1
yi,j log ŷi,j( ), (10)

where yi,j denotes the one-hot encoded true label, and n is the total
number of sample.

4 Experiments and analysis

In the experiments and analysis section, we examine how specific
parameter settings influence the performance of the proposed RCTNet
for classifying corn seeds. We also perform several comparative
experiments to showcase RCTNet’s effectiveness compared to other
image classification methods. Furthermore, experiments conducted on
two general hyperspectral remote sensing image datasets confirm the
robustness of RCTNet. Lastly, ablation studies were carried out to verify
the contribution of each component.

4.1 Experimental configuration

To validate the effectiveness and generalization of RCTNet, we
conducted experiments and analyses on a system running Windows
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10 Professional, equipped with an Intel i9-14900 KF CPU at
3.20 GHz, an NVIDIA RTX 4060 GPU, 64 GB of RAM, Python
3.11, and PyTorch-GPU 2.1.0. During the experiments, RCTNet was
optimized using the Adam optimizer with an initial learning rate of
0.0001, and the total number of iterations was set to 200. We first
conducted experiments on the CSHID (Zhang et al., 2022) dataset,
setting the test batch size to 8 and designing multiple experimental
setups with training batch sizes of 16, 32, and 48. To evaluate the
impact of parameter settings on network performance, we used
training-to-test sample ratios of 7:3, 8:2, and 9:1. Additionally, to
assess the generalization capability of the network, we tested it on the
Salinas-A scene (Li et al., 2018) dataset and Botswana (Xu et al.,
2019) dataset. For these datasets, we increased the test batch size to
16, maintained the training batch size at 32, and reduced the number
of training samples to 10%, while still achieving robust
classification results.

4.2 Experimental data

In this work, we utilize the CSHID dataset introduced in
SSTNet (Zhang et al., 2022), which comprises ten types of corn
seed hyperspectral images from the Henan region. It including
varieties such as FengDa601, BaiYu9284, BaiYu8317, BaiYu918,
BaiYu897, BaiYu879, BaiYu833, BaiYu818, BaiYu808, and
BaiYu607. Each variety contains 120 samples, and a
400–1000 nm range in 128 spectral bands. Figure 2 displays
12 representative bands for the BaiYu818 variety. The raw images
have a resolution of 696 × 520 pixels and are reduced to 210 ×
200 pixels after extracting the region of interest. Specific details
regarding the hyperspectral bands of corn images can be found in
SSTNet (Zhang et al., 2022). To further evaluate the performance
and generalization capability of RCTNet, we incorporated two
publicly available hyperspectral datasets: Salinas-A scene (Li
et al., 2018) and Botswana (Xu et al., 2019). The Salinas-A

scene dataset, captured by the AVIRIS sensor, represents
agricultural terrain in Salinas Valley, California. It consists of
224 spectral bands spanning 380–2500 nm, with a spatial
resolution of 83 × 86 pixels, and primarily focuses on six crop
categories. Meanwhile, the Botswana dataset, acquired by the
Hyperion sensor onboard the EO-1 satellite, covers a broad
spectral range of 400–2500 nm with 145 bands and a spatial
resolution of 30 m per pixel. By leveraging these two datasets, we
aim to comprehensively assess RCTNet across different imaging
conditions, ensuring its robustness and effectiveness in real-
world applications. Table 2 presents details of specific
categories along with the number of training samples and
testing samples.

4.3 Classification results

It is worth noting that the proposed RCTNet is primarily
designed to classify corn seed varieties in agricultural production.
To validate its performance, we conducted a series of experiments on
the CSHID dataset (Zhang et al., 2022), compared with ten
classification methods, including G-MDRF (Zhang et al., 2025c),
SGD (Lei and Tang, 2021), RFA (Chen et al., 2021), SSTNet (Zhang
et al., 2022), SSFTT (Sun et al., 2022), SCTNet (Chen et al., 2025),
GACNet (Zhang W. et al., 2023), PolSARFormer (Jamali et al.,
2023), ERNet (Li X. et al., 2024), and RDTN (Li Y. et al., 2024). All
methods were executed with identical configurations on the same
device. We employ the common metrics Accuracy, Recall, F1-score,
and Precision to measure the classification performance of these
methods. Additionally, the robustness of RCTNet was validated on
the general Botswana (Xu et al., 2019) and Salinas-A scene (Li et al.,
2018) datasets. Next, we will separately analyze the experimental
results on the CSHID dataset (Zhang et al., 2022), the Botswana
dataset (Xu et al., 2019) and the Salinas-A scene dataset (Li
et al., 2018).

FIGURE 2
Selected spectral bands of BaiYu818 corn seeds. (a) first spectral band (b) 10th spectral band (c) 20th spectral band (d) 30th spectral band (e) 40th
spectral band (f) 50th spectral band (g) 60th spectral band (h) 70th spectral band (i) 80th spectral band (j) 90th spectral band (k) 100th spectral band (l)
128th spectral band.
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Quantitative evaluation on the CSHID dataset (Zhang et al.,
2022). By comparing with other classification methods, the
effectiveness of the proposed RCTNet has been validated.
Additionally, we explored the impact of different training batch
sizes and testing sample quantities on the model performance.
Tables 3–5 show the results for training batch sizes of 16, 32,
and 48, and testing sample proportions of 30%, 20%, and 10% of
the total samples, further validating the effectiveness of RCTNet.

Across all three tables, the results indicate that the training batch size
significantly impacts the model’s performance. When the batch size
is set to 32, RCTNet consistently achieves the best performance in
terms of Precision, Recall, F1-score, and Accuracy. With a smaller
batch size of 16, the network’s performance slightly decreases due to
the limited number of samples processed per iteration, and an
excessively large batch size of 48 also leads to suboptimal
performance. Overall, the results demonstrate that a moderate

FIGURE 3
(a) Classification confusion matrix of RCTNet experiments on the CSHID (Zhang et al., 2022) dataset. (b) Classification map of RCTNet experiments
on the Salinas-A scene (Li et al., 2018) dataset. (c) Classification map of RCTNet experiments on the Botswana (Xu et al., 2019) dataset.

TABLE 2 Specific categories and corresponding training and testing samples in the Botswana (Xu et al., 2019) and Salinas-A scene (Li et al., 2018) datasets.

No. Botswana (Xu et al., 2019) Salinas-A scene (Li et al., 2018)

Name Training Samples Testing Samples Name Training Samples Testing Samples

1 Water 27 243 Brocoli green weeds 1 39 352

2 Hippograss 10 91 Lettuce romaine 7 weeks 80 719

3 Floodplain grasses 1 25 226 Corn senesced green weeds 134 1209

4 Floodplain grasses 2 22 193 Lettuce romaine 6 weeks 67 607

5 Reeds 27 242 Lettuce romaine 4 weeks 62 554

6 Riparian 27 242 Lettuce romaine 5 weeks 152 1373

7 Firescar 26 233

8 Island interior 20 183

9 Acacia woodlands 31 283

10 Acacia shrublands 25 223

11 Acacia grasslands 31 274

12 Short mopane 18 163

13 Mixed mopane 27 241

14 Exposed soils 10 85

Total 325 2923 Total 534 4814
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TABLE 3 Classification results of RCTNet experiments on the CSHID dataset (Zhang et al., 2022) using the training batch size 16, with test sample ratios of 30%, 20%, and 10%. (Best results are highlighted in red, and
second-best results in blue).

Method 30% 20% 10%

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

G-MDRF (Zhang et al., 2025c) 95.82 94.90 95.08 95.51 96.04 95.73 95.75 96.10 96.15 95.95 96.00 96.13

SGD (Lei and Tang, 2021) 96.13 96.10 96.12 96.38 96.80 96.50 96.55 96.85 96.55 96.37 96.35 96.83

RFA (Chen et al., 2021) 93.68 93.48 93.50 93.72 94.13 93.89 93.86 94.35 94.90 94.71 94.77 94.89

SSFTT (Sun et al., 2022) 96.39 96.67 96.55 96.96 95.97 95.82 95.73 95.49 95.35 95.08 95.29 95.16

SSTNet (Zhang et al., 2022) 97.55 97.50 97.55 97.68 97.90 97.70 97.81 97.85 98.15 98.05 97.94 98.10

GACNet (Zhang et al., 2023c) 97.21 97.05 96.99 97.18 97.13 96.95 96.82 97.04 96.57 96.38 96.42 96.50

SCTNet (Chen et al., 2025) 97.60 97.45 97.50 97.50 97.85 97.60 97.70 97.80 98.10 97.90 98.05 98.05

PSARF (Jamali et al., 2023) 96.10 96.18 96.17 96.20 96.50 96.40 96.45 96.55 96.70 96.60 96.65 96.75

ERNet (Li et al., 2024a) 97.25 97.58 97.65 97.95 97.89 97.89 97.79 97.95 97.55 97.45 97.46 97.80

RDTN (Li et al., 2024b) 98.10 97.63 97.60 97.93 97.76 98.05 98.06 97.88 97.60 97.38 97.40 97.72

RCTNet 97.76 97.55 97.69 98.02 97.55 97.80 97.86 98.33 97.62 97.93 97.97 98.57
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TABLE 4 Classification results of RCTNet experiments on the CSHID dataset (Zhang et al., 2022) using the training batch size 32, with test sample ratios of 30%, 20%, and 10%.

Method 30% 20% 10%

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

G-MDRF (Zhang et al., 2025c) 96.02 95.00 95.50 95.75 96.36 95.85 96.18 96.25 96.25 96.20 96.15 96.23

SGD Lei and Tang, 2021) 96.50 96.10 96.20 96.58 97.02 96.72 96.75 97.08 97.15 96.87 96.88 97.16

RFA (Chen et al., 2021) 93.80 93.49 93.62 93.80 94.30 94.10 94.28 94.58 94.98 94.82 94.83 95.04

SSFTT (Sun et al., 2022) 96.53 96.59 96.67 96.85 96.12 95.97 95.92 95.76 95.63 95.51 95.38 95.29

SSTNet (Zhang et al., 2022) 97.70 97.59 97.60 97.75 98.06 97.92 97.91 97.92 98.32 98.13 98.13 98.20

GACNet (Zhang et al., 2023c) 97.59 97.38 97.51 97.67 97.59 97.30 97.08 97.28 97.32 97.18 97.31 97.50

SCTNet (Chen et al., 2025) 97.59 97.48 97.50 97.13 98.12 97.97 97.95 97.60 98.10 98.02 97.98 97.73

PSARF (Jamali et al., 2023) 96.30 96.00 96.10 96.40 96.58 96.60 96.69 96.67 96.63 96.58 96.63 96.71

ERNet (Li et al., 2024a) 97.80 98.10 98.15 98.05 98.48 98.33 98.14 98.75 98.57 98.46 98.43 98.80

RDTN (Li et al., 2024b) 98.20 97.99 98.12 98.15 98.09 97.93 97.91 98.33 99.05 98.42 98.50 98.83

RCTNet 98.14 98.06 98.05 98.75 98.89 98.75 98.76 99.17 99.23 99.17 99.17 99.32
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TABLE 5 Classification results of RCTNet experiments on the CSHID dataset (Zhang et al., 2022) using the training batch size 48, with test sample ratios of 30%, 20%, and 10%.

Method 30% 20% 10%

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

G-MDRF (Zhang et al., 2025c) 95.85 95.05 95.08 95.63 95.97 95.82 95.80 96.31 96.36 96.12 96.15 96.38

SGD (Lei and Tang, 2021) 96.28 96.19 96.21 96.50 96.82 96.58 96.60 96.90 96.47 96.35 96.39 96.86

RFA (Chen et al., 2021) 93.55 93.50 93.53 93.75 94.28 93.98 94.01 94.53 94.98 94.85 94.87 95.03

SSFTT (Sun et al., 2022) 96.38 96.47 96.53 96.79 96.20 96.11 95.86 95.83 95.37 95.62 95.47 95.33

SSTNet (Zhang et al., 2022) 97.82 97.66 97.60 97.77 97.98 97.85 97.86 97.92 98.46 98.25 98.19 98.35

GACNet (Zhang et al., 2023c) 97.53 97.47 97.39 97.34 97.42 97.48 97.27 97.37 97.07 97.31 97.28 97.31

SCTNet (Chen et al., 2025) 97.58 97.42 97.45 97.53 97.93 97.66 97.67 97.89 98.23 97.98 98.15 98.37

PSARF (Jamali et al., 2023) 96.38 96.24 96.27 96.33 96.61 96.52 96.53 96.58 96.85 96.73 96.74 96.82

ERNet (Li et al., 2024a) 97.15 97.51 97.65 97.81 97.93 97.93 97.89 98.02 97.90 97.88 97.89 98.29

RDTN (Li et al., 2024b) 98.15 97.63 97.67 97.99 97.83 98.33 98.30 97.93 97.76 97.58 97.52 97.98

RCTNet 98.17 97.92 97.93 98.28 98.40 98.25 98.28 98.52 98.19 98.33 98.29 98.73
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batch size (e.g., 32) strikes a balance between learning efficiency and
generalization ability, yielding the best results for this dataset. The
performance of RCTNet improves as the proportion of training
samples increases, showcasing the network’s ability to learn
effectively from more data. This trend is observed across all
evaluation metrics and further emphasizes the importance of
sufficient training data for achieving optimal results.

Quantitative evaluation on the Salinas-A scene dataset (Li
et al., 2018). After validating the excellent performance of
RCTNet in the corn seed classification task, we further
conducted experiments on the general hyperspectral remote
sensing dataset to verify its robustness. In the experiment, we
fixed the training batch size at 32, the testing batch size at 16, and
progressively reduced the proportion of training samples to
evaluate the model’s adaptability to limited training data. Even
under the extreme condition where the training sample
proportion was reduced to 10%, RCTNet maintained
satisfactory classification performance, demonstrating its
strong learning capacity and adaptability. Table 6 provides
detailed comparative results against various traditional and
deep learning-based methods. In comparison, RCTNet
consistently outperformed all competing methods across all
metrics. It achieved a precision of 99.17%, a recall of 99.07%,
an F1-score of 99.11%, and an accuracy of 99.19%, clearly
establishing its superiority. These results not only validate the
model’s robustness but also demonstrate its capacity to handle
diverse datasets, further solidifying its potential for general
remote sensing and classification applications.

Quantitative evaluation on the Botswana dataset (Xu et al.,
2019). To further validate the robustness of RCTNet in
hyperspectral image classification, we conducted additional
experiments on the Botswana dataset (Xu et al., 2019). The
experimental setup was identical to that used for the Salinas-A
scene dataset (Li et al., 2018), with a training batch size of 32 and a
testing batch size of 16. When the training sample proportion was
reduced to 10%, RCTNet maintained high classification

performance, demonstrating its strong learning capacity and
adaptability. Table 6 provides a detailed comparison against
various traditional and deep learning-based methods. These
results further confirm the model’s robustness across diverse
datasets, solidifying its potential for general remote sensing
applications.

Furthermore, Figure 3a exhibitions the classification results
of RCTNet on the CSHID (Zhang et al., 2022) dataset through a
confusion matrix. The matrix shows that 100% accuracy was
achieved in eight corn varieties. However, two samples of
BaiYu8317 were misclassified as BaiYu879, leading to an
overall accuracy of 91.67%. The BaiYu918 variety reached a
classification accuracy of 95.83%. Additionally, Figure 3b
displays the classification map generated by RCTNet on the
Salinas-A scene (Li et al., 2018) dataset Figure 3c presents the
classification map produced by RCTNet for the Botswana dataset
(Xu et al., 2019).

4.4 Ablation study

Based on the comprehensive experiments, we further conducted
ablation studies to validate the effectiveness of each component in
RCTNet. The experiments were meticulously designed to analyze
the impact of individual components on the network’s performance.
Specifically, we evaluated the following variations: 1) The proposed
RCTNet without 2DWCA (-w/o 2DWCA); 2) The proposed
RCTNet without 3DWSA (-w/o 3DWSA); 3) The proposed
RCTNet without Residual connection (-w/o Res-Conn); 4) The
proposed RCTNet cuts down one layer of the transformer
structure (-c/d OneTS). In each ablation experiment, only one
component of RCTNet is modified while the others remain
constant. Table 7 presents the results of the ablation experiments,
showing that each component positively influences RCTNet and
optimal performance is achieved only when the network is fully
intact. The fully intact RCTNet demonstrates superior performance

TABLE 6 Classification results of different methods on the Salinas-A scene (Li et al., 2018) and Botswana (Xu et al., 2019) datasets. (Best results are
highlighted in red, and second-best results in blue).

Method Salinas-A scene (Li et al., 2018) Botswana (Xu et al., 2019)

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

G-MDRF (Zhang et al., 2025c) 96.28 96.33 96.30 96.24 96.37 96.20 96.44 96.39

SGD (Lei and Tang, 2021) 96.21 96.02 96.12 95.98 95.83 96.12 95.94 95.88

RFA (Chen et al., 2021) 94.46 94.50 94.38 95.02 93.87 93.61 93.76 93.92

SSFTT (Sun et al., 2022) 97.58 97.23 97.35 97.40 97.26 97.43 97.45 97.59

SSTNet (Zhang et al., 2022) 96.35 96.50 96.47 96.66 97.34 97.31 97.12 97.53

GACNet (Zhang et al., 2023c) 96.83 96.91 96.76 96.93 95.86 96.05 95.79 96.08

SCTNet (Chen et al., 2025) 98.11 98.12 98.10 98.47 97.15 97.37 97.25 97.29

PSARF (Jamali et al., 2023) 97.15 97.02 96.98 97.23 96.18 96.14 96.13 96.35

ERNet (Li et al., 2024a) 96.66 96.81 96.73 96.58 96.11 96.08 96.24 96.15

RDTN (Li et al., 2024b) 98.24 98.05 98.12 98.58 97.32 97.20 97.09 97.18

RCTNet 99.17 99.07 99.11 99.19 98.38 97.76 98.06 98.11
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across all metrics, achieving the highest precision, recall, F1-score,
and accuracy. This confirms that each component contributes
positively to the network’s effectiveness, and optimal
performance is attained only when RCTNet is fully integrated.
These findings validate the design choices and underscore the
importance of each architectural element in RCTNet.

5 Conclusion

In this work, we propose a deep learning architecture RCTNet
for corn hyperspectral image classification. RCTNet is designed to
effectively capture and utilize both local and global feature
information, making it well-suited for hyperspectral image
analysis. The network leverages a combination of Conv2D with
Channel Attention, Conv3D with Spatial Attention, and residual
transformer modules to enhance feature extraction and improve
classification accuracy. The effectiveness and generalization are
validated through experiments on the CSHID and Salinas-A
scene datasets. Furthermore, RCTNet introduces a non-
destructive, highly efficient approach to seed classification,
making it particularly suitable for real-world applications in
precision agriculture. By leveraging hyperspectral imaging for
accurate seed identification, RCTNet holds significant promise in
advancing the field of intelligent agriculture, contributing to more
precise and efficient agricultural practices. However, despite its
strong performance, RCTNet has a relatively large number of
parameters, which affects computational efficiency and limits its
deployment on resource-constrained devices. In future research, we
aim to explore lightweight model designs to reduce computational
overhead while maintaining classification accuracy.
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